Fix efficiency of parser backprop_nonlinearity

This commit is contained in:
Matthw Honnibal 2020-06-30 21:22:54 +02:00
parent 57e09747dc
commit d525552979

View File

@ -339,6 +339,7 @@ cdef class precompute_hiddens:
cdef readonly int nF, nO, nP
cdef bint _is_synchronized
cdef public object ops
cdef public object numpy_ops
cdef np.ndarray _features
cdef np.ndarray _cached
cdef np.ndarray bias
@ -368,6 +369,7 @@ cdef class precompute_hiddens:
self.nP = 1
self.nO = cached.shape[2]
self.ops = lower_model.ops
self.numpy_ops = NumpyOps()
assert activation in (None, "relu", "maxout")
self.activation = activation
self._is_synchronized = False
@ -446,44 +448,32 @@ cdef class precompute_hiddens:
return state_vector, backward
def _nonlinearity(self, state_vector):
if isinstance(state_vector, numpy.ndarray):
ops = NumpyOps()
else:
ops = CupyOps()
if self.activation == "maxout":
state_vector, mask = ops.maxout(state_vector)
return self._maxout_nonlinearity(state_vector)
else:
state_vector = state_vector.reshape(state_vector.shape[:-1])
if self.activation == "relu":
return self._relu_nonlinearity(state_vector)
def _maxout_nonlinearity(self, state_vector):
state_vector, mask = self.numpy_ops.maxout(state_vector)
# We're outputting to CPU, but we need this variable on GPU for the
# backward pass.
mask = self.ops.asarray(mask)
def backprop_maxout(d_best):
return self.ops.backprop_maxout(d_best, mask, self.nP)
return state_vector, backprop_maxout
def _relu_nonlinearity(self, state_vector):
mask = state_vector >= 0.
state_vector *= mask
else:
mask = None
# We're outputting to CPU, but we need this variable on GPU for the
# backward pass.
mask = self.ops.asarray(mask)
def backprop_nonlinearity(d_best):
if isinstance(d_best, numpy.ndarray):
ops = NumpyOps()
else:
ops = CupyOps()
if mask is not None:
mask_ = ops.asarray(mask)
# This will usually be on GPU
d_best = ops.asarray(d_best)
# Fix nans (which can occur from unseen classes.)
try:
d_best[ops.xp.isnan(d_best)] = 0.
except:
print(ops.xp.isnan(d_best))
raise
if self.activation == "maxout":
mask_ = ops.asarray(mask)
return ops.backprop_maxout(d_best, mask_, self.nP)
elif self.activation == "relu":
mask_ = ops.asarray(mask)
d_best *= mask_
def backprop_relu(d_best):
d_best *= mask
d_best = d_best.reshape((d_best.shape + (1,)))
return d_best
else:
return d_best.reshape((d_best.shape + (1,)))
return state_vector, backprop_nonlinearity
return state_vector, backprop_relu