mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Revert "Move to contiguous buffer for token_ids and d_vectors"
This reverts commit 3ff8c35a79
.
This commit is contained in:
parent
b272890a8c
commit
d52b65aec2
|
@ -237,9 +237,10 @@ cdef class NeuralEntityRecognizer(NeuralParser):
|
|||
|
||||
nr_feature = 6
|
||||
|
||||
def set_token_ids(self, ids, states):
|
||||
def get_token_ids(self, states):
|
||||
cdef StateClass state
|
||||
cdef int n_tokens = 6
|
||||
ids = numpy.zeros((len(states), n_tokens), dtype='i', order='c')
|
||||
for i, state in enumerate(states):
|
||||
ids[i, 0] = state.c.B(0)-1
|
||||
ids[i, 1] = state.c.B(0)
|
||||
|
@ -252,7 +253,7 @@ cdef class NeuralEntityRecognizer(NeuralParser):
|
|||
ids[i, j] = -1
|
||||
if ids[i, j] != -1:
|
||||
ids[i, j] += state.c.offset
|
||||
ids[i+1:ids.shape[0]] = -1
|
||||
return ids
|
||||
|
||||
|
||||
cdef class BeamDependencyParser(BeamParser):
|
||||
|
|
|
@ -303,9 +303,7 @@ cdef class Parser:
|
|||
|
||||
todo = [st for st in states if not st.is_final()]
|
||||
while todo:
|
||||
token_ids = numpy.zeros((len(todo), self.nr_feature),
|
||||
dtype='i', order='C')
|
||||
self.set_token_ids(token_ids, todo)
|
||||
token_ids = self.get_token_ids(todo)
|
||||
vectors = state2vec(token_ids)
|
||||
scores = vec2scores(vectors)
|
||||
self.transition_batch(todo, scores)
|
||||
|
@ -329,53 +327,44 @@ cdef class Parser:
|
|||
todo = [(s, g) for s, g in zip(states, golds) if not s.is_final()]
|
||||
|
||||
backprops = []
|
||||
cdef int max_steps = max(len(doc)*3 for doc in docs)
|
||||
# Allocate one buffer for the token_ids and d_vectors
|
||||
# This will make it quicker to copy back to GPU
|
||||
token_ids = numpy.zeros((max_steps, len(todo), self.nr_feature),
|
||||
dtype='i', order='C')
|
||||
d_vectors = numpy.zeros((max_steps, len(todo), self.model[0].nO),
|
||||
dtype='f', order='C')
|
||||
cdef float loss = 0.
|
||||
cdef int nr_step = 0
|
||||
while len(todo) >= 4 and nr_step < max_steps:
|
||||
while todo:
|
||||
states, golds = zip(*todo)
|
||||
|
||||
self.set_token_ids(token_ids[nr_step], states)
|
||||
length = len(todo)
|
||||
vector, bp_vector = state2vec.begin_update(token_ids[nr_step, :length],
|
||||
drop=drop)
|
||||
token_ids = self.get_token_ids(states)
|
||||
vector, bp_vector = state2vec.begin_update(token_ids, drop=drop)
|
||||
scores, bp_scores = vec2scores.begin_update(vector, drop=drop)
|
||||
|
||||
d_scores = self.get_batch_loss(states, golds, scores)
|
||||
d_vectors[nr_step, :length] = bp_scores(d_scores, sgd=sgd)
|
||||
d_vector = bp_scores(d_scores, sgd=sgd)
|
||||
|
||||
backprops.append((length, bp_vector))
|
||||
if isinstance(self.model[0].ops, CupyOps) \
|
||||
and not isinstance(token_ids, state2vec.ops.xp.ndarray):
|
||||
# Move token_ids and d_vector to CPU, asynchronously
|
||||
backprops.append((
|
||||
get_async(cuda_stream, token_ids),
|
||||
get_async(cuda_stream, d_vector),
|
||||
bp_vector
|
||||
))
|
||||
else:
|
||||
backprops.append((token_ids, d_vector, bp_vector))
|
||||
self.transition_batch(states, scores)
|
||||
todo = [st for st in todo if not st[0].is_final()]
|
||||
nr_step += 1
|
||||
|
||||
d_tokvecs = state2vec.ops.allocate(tokvecs.shape)
|
||||
if type(token_ids) != type(d_tokvecs):
|
||||
token_ids = get_async(cuda_stream, token_ids)
|
||||
d_vectors = get_async(cuda_stream, d_vectors)
|
||||
# Tells CUDA to block, so our async copies complete.
|
||||
if cuda_stream is not None:
|
||||
# Tells CUDA to block, so our async copies complete.
|
||||
cuda_stream.synchronize()
|
||||
d_tokvecs = state2vec.ops.allocate(tokvecs.shape)
|
||||
xp = state2vec.ops.xp # Handle for numpy/cupy
|
||||
for i, (length, bp_vector) in enumerate(backprops):
|
||||
d_vector = d_vectors[i, :length]
|
||||
for token_ids, d_vector, bp_vector in backprops:
|
||||
d_state_features = bp_vector(d_vector, sgd=sgd)
|
||||
step_token_ids = token_ids[i, :length]
|
||||
active_feats = step_token_ids * (step_token_ids >= 0)
|
||||
active_feats = active_feats.reshape((active_feats.shape[0],
|
||||
active_feats.shape[1], 1))
|
||||
active_feats = token_ids * (token_ids >= 0)
|
||||
active_feats = active_feats.reshape((token_ids.shape[0], token_ids.shape[1], 1))
|
||||
if hasattr(xp, 'scatter_add'):
|
||||
xp.scatter_add(d_tokvecs,
|
||||
step_token_ids, d_state_features)
|
||||
token_ids, d_state_features * active_feats)
|
||||
else:
|
||||
xp.add.at(d_tokvecs,
|
||||
step_token_ids, d_state_features * active_feats)
|
||||
token_ids, d_state_features * active_feats)
|
||||
return d_tokvecs
|
||||
|
||||
def get_batch_model(self, batch_size, tokvecs, stream, dropout):
|
||||
|
@ -386,11 +375,13 @@ cdef class Parser:
|
|||
|
||||
nr_feature = 13
|
||||
|
||||
def set_token_ids(self, token_ids, states):
|
||||
def get_token_ids(self, states):
|
||||
cdef StateClass state
|
||||
cdef int n_tokens = self.nr_feature
|
||||
ids = numpy.zeros((len(states), n_tokens), dtype='i', order='C')
|
||||
for i, state in enumerate(states):
|
||||
state.set_context_tokens(token_ids[i])
|
||||
token_ids[i+1:token_ids.shape[0]] = -1
|
||||
state.set_context_tokens(ids[i])
|
||||
return ids
|
||||
|
||||
def transition_batch(self, states, float[:, ::1] scores):
|
||||
cdef StateClass state
|
||||
|
|
Loading…
Reference in New Issue
Block a user