mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 10:46:29 +03:00
Switch parser to gemm from thinc.openblas
This commit is contained in:
parent
9aeec9c242
commit
d55620041b
|
@ -1,7 +1,6 @@
|
|||
# cython: infer_types=True
|
||||
# cython: cdivision=True
|
||||
# cython: boundscheck=False
|
||||
# cython: profile=True
|
||||
# coding: utf-8
|
||||
from __future__ import unicode_literals, print_function
|
||||
|
||||
|
@ -29,6 +28,8 @@ from thinc.neural.ops import CupyOps
|
|||
from thinc.neural.util import get_array_module
|
||||
from thinc.linalg cimport Vec, VecVec
|
||||
|
||||
from thinc.openblas cimport simple_gemm, simple_axpy
|
||||
|
||||
from .._ml import zero_init, PrecomputableAffine, Tok2Vec, flatten
|
||||
from .._ml import link_vectors_to_models, create_default_optimizer
|
||||
from ..compat import json_dumps, copy_array
|
||||
|
@ -171,8 +172,9 @@ cdef void sum_state_features(float* output,
|
|||
else:
|
||||
idx = token_ids[f] * F * O + f*O
|
||||
feature = &cached[idx]
|
||||
for i in range(O):
|
||||
output[i] += feature[i]
|
||||
simple_axpy(output, O, feature, 1.)
|
||||
#for i in range(O):
|
||||
# output[i] += feature[i]
|
||||
output += O
|
||||
token_ids += F
|
||||
|
||||
|
@ -422,59 +424,69 @@ cdef class Parser:
|
|||
cdef int nr_hidden = hidden_weights.shape[0]
|
||||
cdef int nr_task = states.size()
|
||||
with nogil:
|
||||
for i in range(nr_task):
|
||||
self._parseC(states[i],
|
||||
feat_weights, bias, hW, hb,
|
||||
self._parseC(&states[0], nr_task, feat_weights, bias, hW, hb,
|
||||
nr_class, nr_hidden, nr_feat, nr_piece)
|
||||
PyErr_CheckSignals()
|
||||
tokvecs = self.model[0].ops.unflatten(tokvecs,
|
||||
[len(doc) for doc in docs])
|
||||
return state_objs, tokvecs
|
||||
|
||||
cdef void _parseC(self, StateC* state,
|
||||
cdef void _parseC(self, StateC** states, int nr_task,
|
||||
const float* feat_weights, const float* bias,
|
||||
const float* hW, const float* hb,
|
||||
int nr_class, int nr_hidden, int nr_feat, int nr_piece) nogil:
|
||||
token_ids = <int*>calloc(nr_feat, sizeof(int))
|
||||
is_valid = <int*>calloc(nr_class, sizeof(int))
|
||||
vectors = <float*>calloc(nr_hidden * nr_piece, sizeof(float))
|
||||
scores = <float*>calloc(nr_class, sizeof(float))
|
||||
vectors = <float*>calloc(nr_hidden * nr_task, sizeof(float))
|
||||
unmaxed = <float*>calloc(nr_hidden * nr_piece, sizeof(float))
|
||||
scores = <float*>calloc(nr_class*nr_task, sizeof(float))
|
||||
if not (token_ids and is_valid and vectors and scores):
|
||||
with gil:
|
||||
PyErr_SetFromErrno(MemoryError)
|
||||
PyErr_CheckSignals()
|
||||
cdef float feature
|
||||
while not state.is_final():
|
||||
cdef int nr_todo = nr_task
|
||||
cdef int i, j
|
||||
cdef vector[StateC*] unfinished
|
||||
while nr_todo >= 1:
|
||||
memset(vectors, 0, nr_todo * nr_hidden * sizeof(float))
|
||||
memset(scores, 0, nr_todo * nr_class * sizeof(float))
|
||||
for i in range(nr_todo):
|
||||
state = states[i]
|
||||
state.set_context_tokens(token_ids, nr_feat)
|
||||
memset(vectors, 0, nr_hidden * nr_piece * sizeof(float))
|
||||
memset(scores, 0, nr_class * sizeof(float))
|
||||
sum_state_features(vectors,
|
||||
memset(unmaxed, 0, nr_hidden * nr_piece * sizeof(float))
|
||||
sum_state_features(unmaxed,
|
||||
feat_weights, token_ids, 1, nr_feat, nr_hidden * nr_piece)
|
||||
for i in range(nr_hidden * nr_piece):
|
||||
vectors[i] += bias[i]
|
||||
V = vectors
|
||||
W = hW
|
||||
for i in range(nr_hidden):
|
||||
if nr_piece == 1:
|
||||
feature = V[0] if V[0] >= 0. else 0.
|
||||
elif nr_piece == 2:
|
||||
feature = V[0] if V[0] >= V[1] else V[1]
|
||||
else:
|
||||
feature = Vec.max(V, nr_piece)
|
||||
for j in range(nr_class):
|
||||
scores[j] += feature * W[j]
|
||||
W += nr_class
|
||||
V += nr_piece
|
||||
for i in range(nr_class):
|
||||
scores[i] += hb[i]
|
||||
simple_axpy(unmaxed, nr_hidden*nr_piece, bias, 1.0)
|
||||
state_vector = &vectors[i*nr_hidden]
|
||||
for j in range(nr_hidden):
|
||||
index = j * nr_piece
|
||||
which = Vec.arg_max(&unmaxed[index], nr_piece)
|
||||
state_vector[j] = unmaxed[index + which]
|
||||
# Compute hidden-to-output
|
||||
simple_gemm(scores, nr_todo, nr_class,
|
||||
vectors, nr_todo, nr_hidden,
|
||||
hW, nr_hidden, nr_class, 0, 0)
|
||||
# Add bias
|
||||
for i in range(nr_todo):
|
||||
simple_axpy(&scores[i*nr_class], nr_class, hb, 1.0)
|
||||
# Validate actions, argmax, take action.
|
||||
for i in range(nr_todo):
|
||||
state = states[i]
|
||||
self.moves.set_valid(is_valid, state)
|
||||
guess = arg_max_if_valid(scores, is_valid, nr_class)
|
||||
guess = arg_max_if_valid(&scores[i*nr_class], is_valid, nr_class)
|
||||
action = self.moves.c[guess]
|
||||
action.do(state, action.label)
|
||||
state.push_hist(guess)
|
||||
if not state.is_final():
|
||||
unfinished.push_back(state)
|
||||
for i in range(unfinished.size()):
|
||||
states[i] = unfinished[i]
|
||||
nr_todo = unfinished.size()
|
||||
unfinished.clear()
|
||||
free(token_ids)
|
||||
free(is_valid)
|
||||
free(vectors)
|
||||
free(unmaxed)
|
||||
free(scores)
|
||||
|
||||
def beam_parse(self, docs, int beam_width=3, float beam_density=0.001,
|
||||
|
|
Loading…
Reference in New Issue
Block a user