Switch parser to gemm from thinc.openblas

This commit is contained in:
Matthew Honnibal 2018-03-13 02:10:58 +01:00
parent 9aeec9c242
commit d55620041b

View File

@ -1,7 +1,6 @@
# cython: infer_types=True
# cython: cdivision=True
# cython: boundscheck=False
# cython: profile=True
# coding: utf-8
from __future__ import unicode_literals, print_function
@ -29,6 +28,8 @@ from thinc.neural.ops import CupyOps
from thinc.neural.util import get_array_module
from thinc.linalg cimport Vec, VecVec
from thinc.openblas cimport simple_gemm, simple_axpy
from .._ml import zero_init, PrecomputableAffine, Tok2Vec, flatten
from .._ml import link_vectors_to_models, create_default_optimizer
from ..compat import json_dumps, copy_array
@ -171,8 +172,9 @@ cdef void sum_state_features(float* output,
else:
idx = token_ids[f] * F * O + f*O
feature = &cached[idx]
for i in range(O):
output[i] += feature[i]
simple_axpy(output, O, feature, 1.)
#for i in range(O):
# output[i] += feature[i]
output += O
token_ids += F
@ -422,59 +424,69 @@ cdef class Parser:
cdef int nr_hidden = hidden_weights.shape[0]
cdef int nr_task = states.size()
with nogil:
for i in range(nr_task):
self._parseC(states[i],
feat_weights, bias, hW, hb,
nr_class, nr_hidden, nr_feat, nr_piece)
self._parseC(&states[0], nr_task, feat_weights, bias, hW, hb,
nr_class, nr_hidden, nr_feat, nr_piece)
PyErr_CheckSignals()
tokvecs = self.model[0].ops.unflatten(tokvecs,
[len(doc) for doc in docs])
return state_objs, tokvecs
cdef void _parseC(self, StateC* state,
cdef void _parseC(self, StateC** states, int nr_task,
const float* feat_weights, const float* bias,
const float* hW, const float* hb,
int nr_class, int nr_hidden, int nr_feat, int nr_piece) nogil:
token_ids = <int*>calloc(nr_feat, sizeof(int))
is_valid = <int*>calloc(nr_class, sizeof(int))
vectors = <float*>calloc(nr_hidden * nr_piece, sizeof(float))
scores = <float*>calloc(nr_class, sizeof(float))
vectors = <float*>calloc(nr_hidden * nr_task, sizeof(float))
unmaxed = <float*>calloc(nr_hidden * nr_piece, sizeof(float))
scores = <float*>calloc(nr_class*nr_task, sizeof(float))
if not (token_ids and is_valid and vectors and scores):
with gil:
PyErr_SetFromErrno(MemoryError)
PyErr_CheckSignals()
cdef float feature
while not state.is_final():
state.set_context_tokens(token_ids, nr_feat)
memset(vectors, 0, nr_hidden * nr_piece * sizeof(float))
memset(scores, 0, nr_class * sizeof(float))
sum_state_features(vectors,
feat_weights, token_ids, 1, nr_feat, nr_hidden * nr_piece)
for i in range(nr_hidden * nr_piece):
vectors[i] += bias[i]
V = vectors
W = hW
for i in range(nr_hidden):
if nr_piece == 1:
feature = V[0] if V[0] >= 0. else 0.
elif nr_piece == 2:
feature = V[0] if V[0] >= V[1] else V[1]
else:
feature = Vec.max(V, nr_piece)
for j in range(nr_class):
scores[j] += feature * W[j]
W += nr_class
V += nr_piece
for i in range(nr_class):
scores[i] += hb[i]
self.moves.set_valid(is_valid, state)
guess = arg_max_if_valid(scores, is_valid, nr_class)
action = self.moves.c[guess]
action.do(state, action.label)
state.push_hist(guess)
cdef int nr_todo = nr_task
cdef int i, j
cdef vector[StateC*] unfinished
while nr_todo >= 1:
memset(vectors, 0, nr_todo * nr_hidden * sizeof(float))
memset(scores, 0, nr_todo * nr_class * sizeof(float))
for i in range(nr_todo):
state = states[i]
state.set_context_tokens(token_ids, nr_feat)
memset(unmaxed, 0, nr_hidden * nr_piece * sizeof(float))
sum_state_features(unmaxed,
feat_weights, token_ids, 1, nr_feat, nr_hidden * nr_piece)
simple_axpy(unmaxed, nr_hidden*nr_piece, bias, 1.0)
state_vector = &vectors[i*nr_hidden]
for j in range(nr_hidden):
index = j * nr_piece
which = Vec.arg_max(&unmaxed[index], nr_piece)
state_vector[j] = unmaxed[index + which]
# Compute hidden-to-output
simple_gemm(scores, nr_todo, nr_class,
vectors, nr_todo, nr_hidden,
hW, nr_hidden, nr_class, 0, 0)
# Add bias
for i in range(nr_todo):
simple_axpy(&scores[i*nr_class], nr_class, hb, 1.0)
# Validate actions, argmax, take action.
for i in range(nr_todo):
state = states[i]
self.moves.set_valid(is_valid, state)
guess = arg_max_if_valid(&scores[i*nr_class], is_valid, nr_class)
action = self.moves.c[guess]
action.do(state, action.label)
state.push_hist(guess)
if not state.is_final():
unfinished.push_back(state)
for i in range(unfinished.size()):
states[i] = unfinished[i]
nr_todo = unfinished.size()
unfinished.clear()
free(token_ids)
free(is_valid)
free(vectors)
free(unmaxed)
free(scores)
def beam_parse(self, docs, int beam_width=3, float beam_density=0.001,