mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 10:16:27 +03:00
Remove old model shortcuts (#11916)
* Remove old model shortcuts * Remove error, docs warnings about shortcuts * Fix import in util Accidentally deleted the whole import and not just the old part... * Change universe example to v3 style * Switch ubuntu-latest to ubuntu-20.04 in main tests (#11928) * Switch ubuntu-latest to ubuntu-20.04 in main tests * Only use 20.04 for 3.6 * Update some model loading in Universe * Add v2 tag to neuralcoref * Use the spacy-version feature instead of a v2 tag Co-authored-by: svlandeg <svlandeg@github.com>
This commit is contained in:
parent
6b9af38eeb
commit
d60997febb
|
@ -8,7 +8,6 @@ from ._util import app, Arg, Opt, WHEEL_SUFFIX, SDIST_SUFFIX
|
|||
from .. import about
|
||||
from ..util import is_package, get_minor_version, run_command
|
||||
from ..util import is_prerelease_version
|
||||
from ..errors import OLD_MODEL_SHORTCUTS
|
||||
|
||||
|
||||
@app.command(
|
||||
|
@ -61,12 +60,6 @@ def download(
|
|||
version = components[-1]
|
||||
else:
|
||||
model_name = model
|
||||
if model in OLD_MODEL_SHORTCUTS:
|
||||
msg.warn(
|
||||
f"As of spaCy v3.0, shortcuts like '{model}' are deprecated. Please "
|
||||
f"use the full pipeline package name '{OLD_MODEL_SHORTCUTS[model]}' instead."
|
||||
)
|
||||
model_name = OLD_MODEL_SHORTCUTS[model]
|
||||
compatibility = get_compatibility()
|
||||
version = get_version(model_name, compatibility)
|
||||
|
||||
|
|
|
@ -720,13 +720,6 @@ class Errors(metaclass=ErrorsWithCodes):
|
|||
"method in component '{name}'. If you want to use this "
|
||||
"method, make sure it's overwritten on the subclass.")
|
||||
E940 = ("Found NaN values in scores.")
|
||||
E941 = ("Can't find model '{name}'. It looks like you're trying to load a "
|
||||
"model from a shortcut, which is obsolete as of spaCy v3.0. To "
|
||||
"load the model, use its full name instead:\n\n"
|
||||
"nlp = spacy.load(\"{full}\")\n\nFor more details on the available "
|
||||
"models, see the models directory: https://spacy.io/models. If you "
|
||||
"want to create a blank model, use spacy.blank: "
|
||||
"nlp = spacy.blank(\"{name}\")")
|
||||
E942 = ("Executing `after_{name}` callback failed. Expected the function to "
|
||||
"return an initialized nlp object but got: {value}. Maybe "
|
||||
"you forgot to return the modified object in your function?")
|
||||
|
@ -955,15 +948,6 @@ class Errors(metaclass=ErrorsWithCodes):
|
|||
"but got '{received_type}'")
|
||||
|
||||
|
||||
# Deprecated model shortcuts, only used in errors and warnings
|
||||
OLD_MODEL_SHORTCUTS = {
|
||||
"en": "en_core_web_sm", "de": "de_core_news_sm", "es": "es_core_news_sm",
|
||||
"pt": "pt_core_news_sm", "fr": "fr_core_news_sm", "it": "it_core_news_sm",
|
||||
"nl": "nl_core_news_sm", "el": "el_core_news_sm", "nb": "nb_core_news_sm",
|
||||
"lt": "lt_core_news_sm", "xx": "xx_ent_wiki_sm"
|
||||
}
|
||||
|
||||
|
||||
# fmt: on
|
||||
|
||||
|
||||
|
|
|
@ -40,7 +40,7 @@ except ImportError:
|
|||
|
||||
from .symbols import ORTH
|
||||
from .compat import cupy, CudaStream, is_windows, importlib_metadata
|
||||
from .errors import Errors, Warnings, OLD_MODEL_SHORTCUTS
|
||||
from .errors import Errors, Warnings
|
||||
from . import about
|
||||
|
||||
if TYPE_CHECKING:
|
||||
|
@ -427,8 +427,6 @@ def load_model(
|
|||
return load_model_from_path(Path(name), **kwargs) # type: ignore[arg-type]
|
||||
elif hasattr(name, "exists"): # Path or Path-like to model data
|
||||
return load_model_from_path(name, **kwargs) # type: ignore[arg-type]
|
||||
if name in OLD_MODEL_SHORTCUTS:
|
||||
raise IOError(Errors.E941.format(name=name, full=OLD_MODEL_SHORTCUTS[name])) # type: ignore[index]
|
||||
raise IOError(Errors.E050.format(name=name))
|
||||
|
||||
|
||||
|
|
|
@ -51,7 +51,7 @@ markup is correct.
|
|||
"import spacy",
|
||||
"import package_name",
|
||||
"",
|
||||
"nlp = spacy.load('en')",
|
||||
"nlp = spacy.load('en_core_web_sm')",
|
||||
"nlp.add_pipe(package_name)"
|
||||
],
|
||||
"code_language": "python",
|
||||
|
|
|
@ -342,22 +342,6 @@ The easiest way to download a trained pipeline is via spaCy's
|
|||
[`download`](/api/cli#download) command. It takes care of finding the
|
||||
best-matching package compatible with your spaCy installation.
|
||||
|
||||
> #### Important note for v3.0
|
||||
>
|
||||
> Note that as of spaCy v3.0, shortcut links like `en` that create (potentially
|
||||
> brittle) symlinks in your spaCy installation are **deprecated**. To download
|
||||
> and load an installed pipeline package, use its full name:
|
||||
>
|
||||
> ```diff
|
||||
> - python -m spacy download en
|
||||
> + python -m spacy download en_core_web_sm
|
||||
> ```
|
||||
>
|
||||
> ```diff
|
||||
> - nlp = spacy.load("en")
|
||||
> + nlp = spacy.load("en_core_web_sm")
|
||||
> ```
|
||||
|
||||
```cli
|
||||
# Download best-matching version of a package for your spaCy installation
|
||||
$ python -m spacy download en_core_web_sm
|
||||
|
@ -489,17 +473,6 @@ spacy.cli.download("en_core_web_sm")
|
|||
To load a pipeline package, use [`spacy.load`](/api/top-level#spacy.load) with
|
||||
the package name or a path to the data directory:
|
||||
|
||||
> #### Important note for v3.0
|
||||
>
|
||||
> Note that as of spaCy v3.0, shortcut links like `en` that create (potentially
|
||||
> brittle) symlinks in your spaCy installation are **deprecated**. To download
|
||||
> and load an installed pipeline package, use its full name:
|
||||
>
|
||||
> ```diff
|
||||
> - python -m spacy download en
|
||||
> + python -m spacy download en_core_web_sm
|
||||
> ```
|
||||
|
||||
```python
|
||||
import spacy
|
||||
nlp = spacy.load("en_core_web_sm") # load package "en_core_web_sm"
|
||||
|
|
|
@ -1021,7 +1021,8 @@
|
|||
"author_links": {
|
||||
"github": "mholtzscher"
|
||||
},
|
||||
"category": ["pipeline"]
|
||||
"category": ["pipeline"],
|
||||
"spacy_version": 2
|
||||
},
|
||||
{
|
||||
"id": "spacy-sentence-segmenter",
|
||||
|
@ -1045,7 +1046,7 @@
|
|||
{
|
||||
"id": "spacy_cld",
|
||||
"title": "spaCy-CLD",
|
||||
"slogan": "Add language detection to your spaCy pipeline using CLD2",
|
||||
"slogan": "Add language detection to your spaCy v2 pipeline using CLD2",
|
||||
"description": "spaCy-CLD operates on `Doc` and `Span` spaCy objects. When called on a `Doc` or `Span`, the object is given two attributes: `languages` (a list of up to 3 language codes) and `language_scores` (a dictionary mapping language codes to confidence scores between 0 and 1).\n\nspacy-cld is a little extension that wraps the [PYCLD2](https://github.com/aboSamoor/pycld2) Python library, which in turn wraps the [Compact Language Detector 2](https://github.com/CLD2Owners/cld2) C library originally built at Google for the Chromium project. CLD2 uses character n-grams as features and a Naive Bayes classifier to identify 80+ languages from Unicode text strings (or XML/HTML). It can detect up to 3 different languages in a given document, and reports a confidence score (reported in with each language.",
|
||||
"github": "nickdavidhaynes/spacy-cld",
|
||||
"pip": "spacy_cld",
|
||||
|
@ -1065,7 +1066,8 @@
|
|||
"author_links": {
|
||||
"github": "nickdavidhaynes"
|
||||
},
|
||||
"category": ["pipeline"]
|
||||
"category": ["pipeline"],
|
||||
"spacy_version": 2
|
||||
},
|
||||
{
|
||||
"id": "spacy-iwnlp",
|
||||
|
@ -1139,7 +1141,8 @@
|
|||
"github": "sammous"
|
||||
},
|
||||
"category": ["pipeline"],
|
||||
"tags": ["pos", "lemmatizer", "french"]
|
||||
"tags": ["pos", "lemmatizer", "french"],
|
||||
"spacy_version": 2
|
||||
},
|
||||
{
|
||||
"id": "lemmy",
|
||||
|
@ -1333,8 +1336,8 @@
|
|||
},
|
||||
{
|
||||
"id": "neuralcoref",
|
||||
"slogan": "State-of-the-art coreference resolution based on neural nets and spaCy",
|
||||
"description": "This coreference resolution module is based on the super fast [spaCy](https://spacy.io/) parser and uses the neural net scoring model described in [Deep Reinforcement Learning for Mention-Ranking Coreference Models](http://cs.stanford.edu/people/kevclark/resources/clark-manning-emnlp2016-deep.pdf) by Kevin Clark and Christopher D. Manning, EMNLP 2016. Since ✨Neuralcoref v2.0, you can train the coreference resolution system on your own dataset — e.g., another language than English! — **provided you have an annotated dataset**. Note that to use neuralcoref with spaCy > 2.1.0, you'll have to install neuralcoref from source.",
|
||||
"slogan": "State-of-the-art coreference resolution based on neural nets and spaCy v2",
|
||||
"description": "This coreference resolution module is based on the super fast spaCy parser and uses the neural net scoring model described in [Deep Reinforcement Learning for Mention-Ranking Coreference Models](http://cs.stanford.edu/people/kevclark/resources/clark-manning-emnlp2016-deep.pdf) by Kevin Clark and Christopher D. Manning, EMNLP 2016. Since ✨Neuralcoref v2.0, you can train the coreference resolution system on your own dataset — e.g., another language than English! — **provided you have an annotated dataset**. Note that to use neuralcoref with spaCy > 2.1.0, you'll have to install neuralcoref from source, and v3+ is not supported.",
|
||||
"github": "huggingface/neuralcoref",
|
||||
"thumb": "https://i.imgur.com/j6FO9O6.jpg",
|
||||
"code_example": [
|
||||
|
@ -1355,7 +1358,8 @@
|
|||
"github": "huggingface"
|
||||
},
|
||||
"category": ["standalone", "conversational", "models"],
|
||||
"tags": ["coref"]
|
||||
"tags": ["coref"],
|
||||
"spacy_version": 2
|
||||
},
|
||||
{
|
||||
"id": "neuralcoref-vizualizer",
|
||||
|
@ -1431,7 +1435,7 @@
|
|||
"import spacy",
|
||||
"import explacy",
|
||||
"",
|
||||
"nlp = spacy.load('en')",
|
||||
"nlp = spacy.load('en_core_web_sm')",
|
||||
"explacy.print_parse_info(nlp, 'The salad was surprisingly tasty.')"
|
||||
],
|
||||
"author": "Tyler Neylon",
|
||||
|
|
Loading…
Reference in New Issue
Block a user