Lowest common ancestor matrix for spans and docs

Added functionality for spans and docs to get lowest common ancestor
matrix by simply calling: doc.get_lca_matrix() or
doc[:3].get_lca_matrix().
Corresponding unit tests were also added under spacy/tests/doc and
spacy/tests/spans.
Designed to address: https://github.com/explosion/spaCy/issues/969.
This commit is contained in:
Eric Zhao 2017-09-03 12:16:59 -07:00
parent dcff10abe9
commit d61c117081
4 changed files with 113 additions and 0 deletions

View File

@ -216,6 +216,13 @@ def test_doc_api_has_vector(en_tokenizer, text_file, text, vectors):
doc = en_tokenizer(text)
assert doc.has_vector
def test_lowest_common_ancestor(en_tokenizer):
tokens = en_tokenizer('the lazy dog slept')
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=[2, 1, 1, 0])
lca = doc.get_lca_matrix()
assert(lca[1, 1] == 1)
assert(lca[0, 1] == 2)
assert(lca[1, 2] == 2)
def test_parse_tree(en_tokenizer):
"""Tests doc.print_tree() method."""

View File

@ -54,6 +54,17 @@ def test_spans_span_sent(doc):
assert doc[6:7].sent.root.left_edge.text == 'This'
def test_spans_lca_matrix(en_tokenizer):
"""Test span's lca matrix generation"""
tokens = en_tokenizer('the lazy dog slept')
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=[2, 1, 1, 0])
lca = doc[:2].get_lca_matrix()
assert(lca[0, 0] == 0)
assert(lca[0, 1] == -1)
assert(lca[1, 0] == -1)
assert(lca[1, 1] == 1)
def test_spans_default_sentiment(en_tokenizer):
"""Test span.sentiment property's default averaging behaviour"""
text = "good stuff bad stuff"

View File

@ -614,6 +614,49 @@ cdef class Doc:
self.is_tagged = bool(TAG in attrs or POS in attrs)
return self
def get_lca_matrix(self):
'''
Calculates the lowest common ancestor matrix
for a given Spacy doc.
Returns LCA matrix containing the integer index
of the ancestor, or -1 if no common ancestor is
found (ex if span excludes a necessary ancestor).
Apologies about the recursion, but the
impact on performance is negligible given
the natural limitations on the depth of a typical human sentence.
'''
def __pairwise_lca(token_j, token_k, lca_matrix):
if lca_matrix[token_j.i][token_k.i] != -2:
return lca_matrix[token_j.i][token_k.i]
elif token_j == token_k:
lca_index = token_j.i
elif token_k.head == token_j:
lca_index = token_j.i
elif token_j.head == token_k:
lca_index = token_k.i
elif (token_j.head == token_j) and (token_k.head == token_k):
lca_index = -1
else:
lca_index = __pairwise_lca(token_j.head, token_k.head, lca_matrix)
lca_matrix[token_j.i][token_k.i] = lca_index
lca_matrix[token_k.i][token_j.i] = lca_index
return lca_index
lca_matrix = numpy.empty((len(self), len(self)), dtype=numpy.int32)
lca_matrix.fill(-2)
for j in range(len(self)):
token_j = self[j]
for k in range(len(self)):
token_k = self[k]
lca_matrix[j][k] = __pairwise_lca(token_j, token_k, lca_matrix)
lca_matrix[k][j] = lca_matrix[j][k]
return lca_matrix
def to_bytes(self):
"""
Serialize, producing a byte string.

View File

@ -130,6 +130,58 @@ cdef class Span:
return 0.0
return numpy.dot(self.vector, other.vector) / (self.vector_norm * other.vector_norm)
def get_lca_matrix(self):
'''
Calculates the lowest common ancestor matrix
for a given Spacy span.
Returns LCA matrix containing the integer index
of the ancestor, or -1 if no common ancestor is
found (ex if span excludes a necessary ancestor).
Apologies about the recursion, but the
impact on performance is negligible given
the natural limitations on the depth of a typical human sentence.
'''
def __pairwise_lca(token_j, token_k, lca_matrix, margins):
offset = margins[0]
token_k_head = token_k.head if token_k.head.i in range(*margins) else token_k
token_j_head = token_j.head if token_j.head.i in range(*margins) else token_j
token_j_i = token_j.i - offset
token_k_i = token_k.i - offset
if lca_matrix[token_j_i][token_k_i] != -2:
return lca_matrix[token_j_i][token_k_i]
elif token_j == token_k:
lca_index = token_j_i
elif token_k_head == token_j:
lca_index = token_j_i
elif token_j_head == token_k:
lca_index = token_k_i
elif (token_j_head == token_j) and (token_k_head == token_k):
lca_index = -1
else:
lca_index = __pairwise_lca(token_j_head, token_k_head, lca_matrix, margins)
lca_matrix[token_j_i][token_k_i] = lca_index
lca_matrix[token_k_i][token_j_i] = lca_index
return lca_index
lca_matrix = numpy.empty((len(self), len(self)), dtype=numpy.int32)
lca_matrix.fill(-2)
margins = [self.start, self.end]
for j in range(len(self)):
token_j = self[j]
for k in range(len(self)):
token_k = self[k]
lca_matrix[j][k] = __pairwise_lca(token_j, token_k, lca_matrix, margins)
lca_matrix[k][j] = lca_matrix[j][k]
return lca_matrix
cpdef int _recalculate_indices(self) except -1:
if self.end > self.doc.length \
or self.doc.c[self.start].idx != self.start_char \