update splitter

This commit is contained in:
India Kerle 2024-03-04 09:34:02 -03:00
parent e263b6c8fd
commit d82d98b374
3 changed files with 503 additions and 215 deletions

View File

@ -1,5 +1,5 @@
from .attributeruler import AttributeRuler
#from .coordinationruler import CoordinationSplitter
from .coordinationruler import CoordinationSplitter
from .dep_parser import DependencyParser
from .edit_tree_lemmatizer import EditTreeLemmatizer
from .entity_linker import EntityLinker
@ -22,7 +22,7 @@ from .trainable_pipe import TrainablePipe
__all__ = [
"AttributeRuler",
#"CoordinationSplitter",
"CoordinationSplitter",
"DependencyParser",
"EditTreeLemmatizer",
"EntityLinker",

View File

@ -1,25 +1,99 @@
from typing import List, Callable, Optional, Union
from pydantic import BaseModel, validator
import re
from typing import Callable, List, Optional, Union
from pydantic import BaseModel, validator
from ..tokens import Doc
from ..language import Language
from ..tokens import Doc, Token
from ..vocab import Vocab
from .pipe import Pipe
######### helper functions across the default splitting rules ##############
def _split_doc(doc: Doc) -> bool:
"""Check to see if the document has a noun phrase
with a modifier and a conjunction.
Args:
doc (Doc): The input document.
Returns:
bool: True if the document has a noun phrase
with a modifier and a conjunction, else False.
"""
noun_modified = False
has_conjunction = False
for token in doc:
if token.head.pos_ == "NOUN": ## check to see that the phrase is a noun phrase
has_modifier = any(
child.dep_ == "amod" for child in token.head.children
) # check to see if the noun has a modifier
if has_modifier:
noun_modified = True
# check if there is a conjunction in the phrase
if token.pos_ == "CCONJ":
has_conjunction = True
return (
True if noun_modified and has_conjunction else False
) # and not all_nouns_modified else False
def _collect_modifiers(token: Token) -> List[str]:
"""Collects adverbial modifiers for a given token.
Args:
token (Token): The input token.
Returns:
List[str]: A list of modifiers for the token.
"""
modifiers = []
for child in token.children:
if child.dep_ == "amod":
# collect adverbial modifiers for this adjective
adv_mods = [
adv_mod.text
for adv_mod in child.children
if adv_mod.dep_ in ["advmod"] and not adv_mod.pos_ == "CCONJ"
]
modifier_phrase = " ".join(adv_mods + [child.text])
modifiers.append(modifier_phrase)
# also check for conjunctions to this adjective
for conj in child.conjuncts:
adv_mods_conj = [
adv_mod.text
for adv_mod in conj.children
if adv_mod.dep_ in ["advmod"] and not adv_mod.pos_ == "CCONJ"
]
modifier_phrase_conj = " ".join(adv_mods_conj + [conj.text])
modifiers.append(modifier_phrase_conj)
return modifiers
########### DEFAULT COORDINATION SPLITTING RULES ##############
def split_noun_coordination(doc: Doc) -> Union[List[str], None]:
"""Identifies and splits phrases with multiple nouns, a modifier
"""Identifies and splits noun phrases with a modifier
and a conjunction.
Examples:
construction cases:
- "apples and oranges" -> None
- "green apples and oranges" -> ["green apples", "green oranges"]
- "green apples and rotten oranges" -> None
- "apples and juicy oranges" -> ["juicy apples", "juicy oranges"]
- "hot chicken wings and soup" -> ["hot chicken wings", "hot soup"]
- "spicy ice cream and chicken wings" -> ["spicy ice cream", "spicy chicken wings"]
- "green apples and rotten oranges" -> ["green apples", "rotten oranges"]
- "very green apples and oranges" -> ["very green apples", "very green oranges"]
- "delicious and juicy apples" -> ["delicious apples", "juicy apples"]
- "delicious but quite sour apples" -> ["delicious apples", "quite sour apples"]
- "delicious but quite sour apples and oranges" -> ["delicious apples", "quite sour apples", "delicious oranges", "quite sour oranges"]
Args:
doc (Doc): The input document.
@ -28,21 +102,6 @@ def split_noun_coordination(doc: Doc) -> Union[List[str], None]:
Union[List[str], None]: A list of the coordinated noun phrases,
or None if no coordinated noun phrases are found.
"""
def _split_doc(doc: Doc) -> bool:
noun_modified = False
has_conjunction = False
for token in doc:
if token.head.pos_ == 'NOUN': ## check to see that the phrase is a noun phrase
has_modifier = any(child.dep_ == 'amod' for child in token.head.children) #check to see if the noun has a modifier
if has_modifier:
noun_modified = True
# check if there is a conjunction linked directly to a noun
if token.dep_ == 'conj' and token.head.pos_ == 'NOUN':
has_conjunction = True
return True if noun_modified and has_conjunction else False
phrases = []
modified_nouns = set()
to_split = _split_doc(doc)
@ -50,17 +109,22 @@ def split_noun_coordination(doc: Doc) -> Union[List[str], None]:
if to_split:
for token in doc:
if token.dep_ == "amod" and token.head.pos_ == "NOUN":
modifier = token.text
head_noun = token.head
if head_noun not in modified_nouns:
modifier_phrases = _collect_modifiers(head_noun)
nouns_to_modify = [head_noun] + list(head_noun.conjuncts)
for noun in nouns_to_modify:
compound_parts = [child.text for child in noun.lefts if child.dep_ == "compound"]
compound_parts = [
child.text
for child in noun.lefts
if child.dep_ == "compound"
]
complete_noun_phrase = " ".join(compound_parts + [noun.text])
phrases.append(f"{modifier} {complete_noun_phrase}")
modified_nouns.add(noun) # Mark this noun as modified
for modifier_phrase in modifier_phrases:
phrases.append(f"{modifier_phrase} {complete_noun_phrase}")
modified_nouns.add(noun) # mark this noun as modified
return phrases if phrases != [] else None
else:
@ -69,119 +133,110 @@ def split_noun_coordination(doc: Doc) -> Union[List[str], None]:
###############################################################
# class SplittingRule(BaseModel):
# function: Callable[[Doc], Union[List[str], None]]
# @validator("function")
# def check_return_type(cls, v):
# nlp = en_core_web_sm.load()
# dummy_doc = nlp("This is a dummy sentence.")
# result = v(dummy_doc)
# if result is not None:
# if not isinstance(result, List):
# raise ValueError(
# "The custom splitting rule must return None or a list."
# )
# elif not all(isinstance(item, str) for item in result):
# raise ValueError(
# "The custom splitting rule must return None or a list of strings."
# )
# return v
class SplittingRule(BaseModel):
function: Callable[[Doc], Union[List[str], None]]
@validator("function")
def check_return_type(cls, v):
dummy_doc = Doc(Language().vocab, words=["dummy", "doc"], spaces=[True, False])
result = v(dummy_doc)
if result is not None:
if not isinstance(result, List):
raise ValueError(
"The custom splitting rule must return None or a list."
)
elif not all(isinstance(item, str) for item in result):
raise ValueError(
"The custom splitting rule must return None or a list of strings."
)
return v
# @Language.factory(
# "coordination_splitter", requires=["token.dep", "token.tag", "token.pos"]
# )
# def make_coordination_splitter(nlp: Language, name: str):
# """Make a CoordinationSplitter component.
@Language.factory(
"coordination_splitter", requires=["token.dep", "token.tag", "token.pos"]
)
def make_coordination_splitter(nlp: Language, name: str):
"""Make a CoordinationSplitter component.
# the default splitting rules include:
the default splitting rules include:
- split_noun_coordination
# - _split_duplicate_object: Split a text with 2 verbs and 1 object (and optionally a subject) into two texts each with 1 verb, the shared object (and its modifiers), and the subject if present.
# - _split_duplicate_verb: Split a text with 1 verb and 2 objects into two texts each with 1 verb and 1 object.
# - _split_skill_mentions: Split a text with 2 skills into 2 texts with 1 skill (the phrase must end with 'skills' and the skills must be separated by 'and')
Args:
nlp (Language): The spaCy Language object.
name (str): The name of the component.
RETURNS The CoordinationSplitter component.
DOCS: xxx
"""
return CoordinationSplitter(nlp.vocab, name=name)
# Args:
# nlp (Language): The spaCy Language object.
# name (str): The name of the component.
class CoordinationSplitter(Pipe):
def __init__(
self,
vocab: Vocab,
name: str = "coordination_splitter",
rules: Optional[List[SplittingRule]] = None,
) -> None:
self.name = name
self.vocab = vocab
if rules is None:
default_rules = [
split_noun_coordination,
]
self.rules = [SplittingRule(function=rule) for rule in default_rules]
else:
self.rules = [
rule
if isinstance(rule, SplittingRule)
else SplittingRule(function=rule)
for rule in rules
]
# RETURNS The CoordinationSplitter component.
def clear_rules(self) -> None:
"""Clear the default splitting rules."""
self.rules = []
# DOCS: xxx
# """
def add_default_rules(self) -> List[SplittingRule]:
"""Reset the default splitting rules."""
default_rules = [
split_noun_coordination,
]
self.rules = [SplittingRule(function=rule) for rule in default_rules]
# return CoordinationSplitter(nlp.vocab, name=name)
def add_rule(self, rule: Callable[[Doc], Union[List[str], None]]) -> None:
"""Add a single splitting rule to the default rules."""
validated_rule = SplittingRule(function=rule)
self.rules.append(validated_rule)
def add_rules(self, rules: List[Callable[[Doc], Union[List[str], None]]]) -> None:
"""Add a list of splitting rules to the default rules.
# class CoordinationSplitter(Pipe):
# def __init__(
# self,
# vocab: Vocab,
# name: str = "coordination_splitter",
# rules: Optional[List[SplittingRule]] = None,
# ) -> None:
# self.name = name
# self.vocab = vocab
# if rules is None:
# default_rules = [
# _split_duplicate_object,
# _split_duplicate_verb,
# _split_skill_mentions,
# ]
# self.rules = [SplittingRule(function=rule) for rule in default_rules]
# else:
# # Ensure provided rules are wrapped in SplittingRule instances
# self.rules = [
# rule
# if isinstance(rule, SplittingRule)
# else SplittingRule(function=rule)
# for rule in rules
# ]
Args:
rules (List[Callable[[Doc], Union[List[str], None]]]): A list of functions to be added as splitting rules.
"""
for rule in rules:
# Wrap each rule in a SplittingRule instance to ensure it's validated
validated_rule = SplittingRule(function=rule)
self.rules.append(validated_rule)
# def clear_rules(self) -> None:
# """Clear the default splitting rules."""
# self.rules = []
def __call__(self, doc: Doc) -> Doc:
"""Apply the splitting rules to the doc.
# def add_default_rules(self) -> List[SplittingRule]:
# """Reset the default splitting rules."""
# default_rules = [
# _split_duplicate_object,
# _split_duplicate_verb,
# _split_skill_mentions,
# ]
# self.rules = [SplittingRule(function=rule) for rule in default_rules]
Args:
doc (Doc): The spaCy Doc object.
# def add_rule(self, rule: Callable[[Doc], Union[List[str], None]]) -> None:
# """Add a single splitting rule to the default rules."""
# validated_rule = SplittingRule(function=rule)
# self.rules.append(validated_rule)
Returns:
Doc: The modified spaCy Doc object.
"""
if doc.lang_ != "en":
return doc
# def add_rules(self, rules: List[Callable[[Doc], Union[List[str], None]]]) -> None:
# """Add a list of splitting rules to the default rules.
# Args:
# rules (List[Callable[[Doc], Union[List[str], None]]]): A list of functions to be added as splitting rules.
# """
# for rule in rules:
# # Wrap each rule in a SplittingRule instance to ensure it's validated
# validated_rule = SplittingRule(function=rule)
# self.rules.append(validated_rule)
# def __call__(self, doc: Doc) -> Doc:
# """Apply the splitting rules to the doc.
# Args:
# doc (Doc): The spaCy Doc object.
# Returns:
# Doc: The modified spaCy Doc object.
# """
# if doc.lang_ != "en":
# return doc
# for rule in self.rules:
# split = rule.function(doc)
# if split:
# return Doc(doc.vocab, words=split)
# return doc
for rule in self.rules:
split = rule.function(doc)
if split:
return Doc(doc.vocab, words=split)
return doc

View File

@ -1,86 +1,83 @@
import pytest
from typing import List
from spacy.tokens import Doc
import spacy
import pytest
import spacy
from spacy.pipeline.coordinationruler import split_noun_coordination
from spacy.tokens import Doc
@pytest.fixture
def nlp():
return spacy.blank("en")
### NOUN CONSTRUCTION CASES ###
### CONSTRUCTION CASES ###
@pytest.fixture
def noun_construction_case1(nlp):
words = ["apples", "and", "oranges"]
spaces = [True, True, False] # Indicates whether the word is followed by a space
spaces = [True, True, False]
pos_tags = ["NOUN", "CCONJ", "NOUN"]
dep_relations = ["nsubj", "cc", "conj"]
doc = Doc(nlp.vocab, words=words, spaces=spaces)
#set pos_ and dep_ attributes
for token, pos, dep in zip(doc, pos_tags, dep_relations):
token.pos_ = pos
token.dep_ = dep
# # define head relationships manually
doc[1].head = doc[2] # "and" -> "oranges"
doc[2].head = doc[0] # "oranges" -> "apples"
doc[1].head = doc[2]
doc[2].head = doc[0]
doc[0].head = doc[0]
return doc
@pytest.fixture
def noun_construction_case2(nlp):
words = ["red", "apples", "and", "oranges"]
spaces = [True, True, True, False] # Indicates whether the word is followed by a space
spaces = [True, True, True, False]
pos_tags = ["ADJ", "NOUN", "CCONJ", "NOUN"]
dep_relations = ["amod", "nsubj", "cc", "conj"]
# Create a Doc object manually
doc = Doc(nlp.vocab, words=words, spaces=spaces)
#set pos_ and dep_ attributes
for token, pos, dep in zip(doc, pos_tags, dep_relations):
token.pos_ = pos
token.dep_ = dep
# define head relationships manually
doc[0].head = doc[1]
doc[2].head = doc[3]
doc[3].head = doc[1]
return doc
@pytest.fixture
def noun_construction_case3(nlp):
words = ["apples", "and", "juicy", "oranges"]
spaces = [True, True, True, False] # Indicates whether the word is followed by a space.
spaces = [True, True, True, False]
pos_tags = ["NOUN", "CCONJ", "ADJ", "NOUN"]
dep_relations = ["nsubj", "cc", "amod", "conj"]
#create a Doc object manually
doc = Doc(nlp.vocab, words=words, spaces=spaces)
#set POS and dependency tags
for token, pos, dep in zip(doc, pos_tags, dep_relations):
token.pos_ = pos
token.dep_ = dep
#defining head relationships manually
doc[0].head = doc[0] # "apples" as root, pointing to itself for simplicity.
doc[1].head = doc[3] # "and" -> "oranges"
doc[2].head = doc[3] # "juicy" -> "oranges"
doc[3].head = doc[0] # "oranges" -> "apples", indicating a conjunctive relationship
doc[0].head = doc[0]
doc[1].head = doc[3]
doc[2].head = doc[3]
doc[3].head = doc[0]
return doc
@pytest.fixture
def noun_construction_case4(nlp):
words = ["hot", "chicken", "wings", "and", "soup"]
spaces = [True, True, True, True, False] # Indicates whether the word is followed by a space.
spaces = [True, True, True, True, False]
pos_tags = ["ADJ", "NOUN", "NOUN", "CCONJ", "NOUN"]
dep_relations = ["amod", "compound", "ROOT", "cc", "conj"]
@ -90,44 +87,198 @@ def noun_construction_case4(nlp):
token.pos_ = pos
token.dep_ = dep
# Define head relationships manually for "hot chicken wings and soup".
doc[0].head = doc[2] # "hot" -> "wings"
doc[1].head = doc[2] # "chicken" -> "wings"
doc[2].head = doc[2] # "wings" as root
doc[3].head = doc[4] # "and" -> "soup"
doc[4].head = doc[2] # "soup" -> "wings"
doc[0].head = doc[2]
doc[1].head = doc[2]
doc[2].head = doc[2]
doc[3].head = doc[4]
doc[4].head = doc[2]
return doc
@pytest.fixture
def noun_construction_case5(nlp):
words = ["green", "apples", "and", "rotten", "oranges"]
spaces = [True, True, True, True, False] # Indicates whether the word is followed by a space.
spaces = [True, True, True, True, False]
pos_tags = ["ADJ", "NOUN", "CCONJ", "ADJ", "NOUN"]
dep_relations = ["amod", "ROOT", "cc", "amod", "conj"]
doc = Doc(nlp.vocab, words=words, spaces=spaces)
# Set POS and dependency tags.
for token, pos, dep in zip(doc, pos_tags, dep_relations):
token.pos_ = pos
token.dep_ = dep
# Define head relationships manually for "green apples and rotten oranges".
doc[0].head = doc[1] # "green" -> "apples"
doc[1].head = doc[1] # "apples" as root
doc[2].head = doc[4] # "and" -> "oranges"
doc[3].head = doc[4] # "rotten" -> "oranges"
doc[4].head = doc[1] # "oranges" -> "apples"
doc[0].head = doc[1]
doc[1].head = doc[1]
doc[2].head = doc[4]
doc[3].head = doc[4]
doc[4].head = doc[1]
return doc
#test split_noun_coordination on 5 different cases
def test_split_noun_coordination(noun_construction_case1,
@pytest.fixture
def noun_construction_case6(nlp):
words = ["very", "green", "apples", "and", "oranges"]
spaces = [True, True, True, True, False]
pos_tags = ["ADV", "ADJ", "NOUN", "CCONJ", "NOUN"]
dep_relations = ["advmod", "amod", "ROOT", "cc", "conj"]
doc = Doc(nlp.vocab, words=words, spaces=spaces)
for token, pos, dep in zip(doc, pos_tags, dep_relations):
token.pos_ = pos
token.dep_ = dep
doc[0].head = doc[1]
doc[1].head = doc[2]
doc[2].head = doc[2]
doc[3].head = doc[4]
doc[4].head = doc[2]
return doc
@pytest.fixture
def noun_construction_case7(nlp):
words = ["fresh", "and", "juicy", "apples"]
spaces = [True, True, True, False]
pos_tags = ["ADJ", "CCONJ", "ADJ", "NOUN"]
dep_relations = ["amod", "cc", "conj", "ROOT"]
doc = Doc(nlp.vocab, words=words, spaces=spaces)
for token, pos, dep in zip(doc, pos_tags, dep_relations):
token.pos_ = pos
token.dep_ = dep
doc[0].head = doc[3]
doc[1].head = doc[2]
doc[2].head = doc[0]
doc[3].head = doc[3]
return doc
@pytest.fixture
def noun_construction_case8(nlp):
words = ["fresh", ",", "juicy", "and", "delicious", "apples"]
spaces = [True, True, True, True, True, False]
pos_tags = ["ADJ", "PUNCT", "ADJ", "CCONJ", "ADJ", "NOUN"]
dep_relations = ["amod", "punct", "conj", "cc", "conj", "ROOT"]
doc = Doc(nlp.vocab, words=words, spaces=spaces)
for token, pos, dep in zip(doc, pos_tags, dep_relations):
token.pos_ = pos
token.dep_ = dep
doc[0].head = doc[5]
doc[1].head = doc[2]
doc[2].head = doc[0]
doc[3].head = doc[4]
doc[4].head = doc[0]
doc[5].head = doc[5]
return doc
@pytest.fixture
def noun_construction_case9(nlp):
words = ["fresh", "and", "quite", "sour", "apples"]
spaces = [True, True, True, True, False]
pos_tags = ["ADJ", "CCONJ", "ADV", "ADJ", "NOUN"]
dep_relations = ["amod", "cc", "advmod", "conj", "ROOT"]
doc = Doc(nlp.vocab, words=words, spaces=spaces)
for token, pos, dep in zip(doc, pos_tags, dep_relations):
token.pos_ = pos
token.dep_ = dep
doc[0].head = doc[4]
doc[1].head = doc[3]
doc[2].head = doc[3]
doc[3].head = doc[0]
doc[4].head = doc[4]
return doc
@pytest.fixture
def noun_construction_case10(nlp):
words = ["fresh", "but", "quite", "sour", "apples", "and", "chicken", "wings"]
spaces = [True, True, True, True, True, True, True, False]
pos_tags = ["ADJ", "CCONJ", "ADV", "ADJ", "NOUN", "CCONJ", "NOUN", "NOUN"]
dep_relations = ["amod", "cc", "advmod", "conj", "ROOT", "cc", "conj", "compound"]
doc = Doc(nlp.vocab, words=words, spaces=spaces)
for token, pos, dep in zip(doc, pos_tags, dep_relations):
token.pos_ = pos
token.dep_ = dep
doc[0].head = doc[4]
doc[1].head = doc[3]
doc[2].head = doc[3]
doc[3].head = doc[0]
doc[4].head = doc[4]
doc[5].head = doc[6]
doc[6].head = doc[4]
doc[7].head = doc[6]
return doc
@pytest.fixture
def noun_construction_case11(nlp):
words = ["water", "and", "power", "meters", "and", "electrical", "sockets"]
spaces = [True, True, True, True, True, True, False]
pos_tags = ["NOUN", "CCONJ", "NOUN", "NOUN", "CCONJ", "ADJ", "NOUN"]
dep_relations = ["compound", "cc", "compound", "ROOT", "cc", "amod", "conj"]
doc = Doc(nlp.vocab, words=words, spaces=spaces)
for token, pos, dep in zip(doc, pos_tags, dep_relations):
token.pos_ = pos
token.dep_ = dep
doc[0].head = doc[2]
doc[1].head = doc[2]
doc[2].head = doc[3]
doc[3].head = doc[3]
doc[4].head = doc[6]
doc[5].head = doc[6]
doc[6].head = doc[3]
return doc
### splitting rules ###
def _my_custom_splitting_rule(doc: Doc) -> List[str]:
split_phrases = []
for token in doc:
if token.text == "red":
split_phrases.append("test1")
split_phrases.append("test2")
return split_phrases
# test split_noun_coordination on 6 different cases
def test_split_noun_coordination(
noun_construction_case1,
noun_construction_case2,
noun_construction_case3,
noun_construction_case4,
noun_construction_case5):
# noun_construction_case5,
noun_construction_case6,
noun_construction_case7,
noun_construction_case8,
noun_construction_case9,
noun_construction_case10,
noun_construction_case11,
):
# test 1: no modifier - it should return None from _split_doc
case1_split = split_noun_coordination(noun_construction_case1)
@ -142,7 +293,6 @@ def test_split_noun_coordination(noun_construction_case1,
assert all(isinstance(phrase, str) for phrase in case2_split)
assert case2_split == ["red apples", "red oranges"]
# test 3: modifier is at the end of the noun phrase
case3_split = split_noun_coordination(noun_construction_case3)
@ -159,8 +309,91 @@ def test_split_noun_coordination(noun_construction_case1,
assert all(isinstance(phrase, str) for phrase in case4_split)
assert case4_split == ["hot chicken wings", "hot soup"]
# #test 5: multiple modifiers
# case5_split = split_noun_coordination(noun_construction_case5)
# assert case5_split == None
#test 5: multiple modifiers
case5_split = split_noun_coordination(noun_construction_case5)
# test 6: modifier phrases
case6_split = split_noun_coordination(noun_construction_case6)
pass #this should return none i think
assert len(case6_split) == 2
assert isinstance(case6_split, list)
assert all(isinstance(phrase, str) for phrase in case6_split)
assert case6_split == ["very green apples", "very green oranges"]
## test cases for coordinating adjectives
# test 7:
case7_split = split_noun_coordination(noun_construction_case7)
assert case7_split == ["fresh apples", "juicy apples"]
# test 8:
case8_split = split_noun_coordination(noun_construction_case8)
assert case8_split == ["fresh apples", "juicy apples", "delicious apples"]
# test 9:
case9_split = split_noun_coordination(noun_construction_case9)
assert case9_split == ["fresh apples", "quite sour apples"]
# test 10:
case10_split = split_noun_coordination(noun_construction_case10)
assert case10_split == ["fresh apples", "quite sour apples", "chicken soup"]
# test 11:
case11_split = split_noun_coordination(noun_construction_case11)
assert case11_split == None
################### test factory ##############################
def test_coordinationruler(nlp, noun_construction_case2):
assert len(noun_construction_case2) == 4
assert [d.text for d in noun_construction_case2] == [
"red",
"apples",
"and",
"oranges",
]
coord_splitter = nlp.add_pipe("coordination_splitter")
assert len(coord_splitter.rules) == 1
assert coord_splitter.name == "coordination_splitter"
doc_split = coord_splitter(noun_construction_case2)
assert len(doc_split) == 2
assert [t.text for t in doc_split] == ["red apples", "red oranges"]
def test_coordinationruler_clear_rules(nlp):
coord_splitter = nlp.add_pipe("coordination_splitter")
assert len(coord_splitter.rules) == 1
coord_splitter.clear_rules()
assert len(coord_splitter.rules) == 0
assert coord_splitter.rules == []
def test_coordinationruler_add_rule(nlp):
coord_splitter = nlp.add_pipe("coordination_splitter")
assert len(coord_splitter.rules) == 1
coord_splitter.add_rule(_my_custom_splitting_rule)
assert len(coord_splitter.rules) == 2
def test_coordinationruler_add_rules(nlp, noun_construction_case2):
coord_splitter = nlp.add_pipe("coordination_splitter")
coord_splitter.clear_rules()
coord_splitter.add_rules([_my_custom_splitting_rule, _my_custom_splitting_rule])
assert len(coord_splitter.rules) == 2
doc_split = coord_splitter(noun_construction_case2)
assert len(doc_split) == 2
assert [t.text for t in doc_split] == ["test1", "test2"]
def test_coordinationruler_add_default_rules(nlp):
coord_splitter = nlp.add_pipe("coordination_splitter")
coord_splitter.clear_rules()
assert len(coord_splitter.rules) == 0
coord_splitter.add_default_rules()
assert len(coord_splitter.rules) == 1