mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
* Remove regularization cruft from _ml, move score from .pxd file to .pyx
This commit is contained in:
parent
08044ea70c
commit
d82f9d958d
|
@ -18,18 +18,10 @@ cdef int arg_max(const weight_t* scores, const int n_classes) nogil
|
|||
cdef class Model:
|
||||
cdef int n_classes
|
||||
|
||||
cdef int regularize(self, Feature* feats, int n, int a=*) except -1
|
||||
cdef const weight_t* score(self, atom_t* context, bint regularize) except NULL
|
||||
|
||||
cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1
|
||||
|
||||
|
||||
cdef object model_loc
|
||||
cdef Extractor _extractor
|
||||
cdef LinearModel _model
|
||||
|
||||
cdef inline const weight_t* score(self, atom_t* context, bint regularize) except NULL:
|
||||
cdef int n_feats
|
||||
feats = self._extractor.get_feats(context, &n_feats)
|
||||
if regularize:
|
||||
self.regularize(feats, n_feats, 3)
|
||||
return self._model.get_scores(feats, n_feats)
|
||||
|
||||
|
|
|
@ -33,6 +33,11 @@ cdef class Model:
|
|||
if self.model_loc and path.exists(self.model_loc):
|
||||
self._model.load(self.model_loc, freq_thresh=0)
|
||||
|
||||
cdef const weight_t* score(self, atom_t* context, bint regularize) except NULL:
|
||||
cdef int n_feats
|
||||
feats = self._extractor.get_feats(context, &n_feats)
|
||||
return self._model.get_scores(feats, n_feats)
|
||||
|
||||
cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1:
|
||||
cdef int n_feats
|
||||
if cost == 0:
|
||||
|
@ -44,19 +49,6 @@ cdef class Model:
|
|||
count_feats(counts[guess], feats, n_feats, -cost)
|
||||
self._model.update(counts)
|
||||
|
||||
@cython.cdivision
|
||||
@cython.boundscheck(False)
|
||||
cdef int regularize(self, Feature* feats, int n, int a=3) except -1:
|
||||
pass
|
||||
# Disable this for now, while we investigate effect.
|
||||
# Use the Zipfian corruptions technique from here:
|
||||
# http://www.aclweb.org/anthology/N13-1077
|
||||
# This seems good for 0.1 - 0.3 % on OOD data.
|
||||
#cdef int i
|
||||
#cdef long[:] zipfs = numpy.random.zipf(a, n)
|
||||
#for i in range(n):
|
||||
# feats[i].value *= 1 / zipfs[i]
|
||||
|
||||
def end_training(self):
|
||||
self._model.end_training()
|
||||
self._model.dump(self.model_loc, freq_thresh=0)
|
||||
|
|
Loading…
Reference in New Issue
Block a user