mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-13 09:42:26 +03:00
Make factories top-level functions in registrations.py
This commit is contained in:
parent
5c331884c3
commit
d8388aa591
|
@ -19,8 +19,6 @@ from .pipeline.entityruler import EntityRuler
|
||||||
from .pipeline.span_finder import SpanFinder
|
from .pipeline.span_finder import SpanFinder
|
||||||
from .pipeline.ner import EntityRecognizer
|
from .pipeline.ner import EntityRecognizer
|
||||||
from .pipeline._parser_internals.transition_system import TransitionSystem
|
from .pipeline._parser_internals.transition_system import TransitionSystem
|
||||||
from .pipeline.ner import EntityRecognizer
|
|
||||||
from .pipeline.dep_parser import DependencyParser
|
|
||||||
from .pipeline.dep_parser import DependencyParser
|
from .pipeline.dep_parser import DependencyParser
|
||||||
from .pipeline.tagger import Tagger
|
from .pipeline.tagger import Tagger
|
||||||
from .pipeline.multitask import MultitaskObjective
|
from .pipeline.multitask import MultitaskObjective
|
||||||
|
@ -169,6 +167,420 @@ def register_factories() -> None:
|
||||||
if FACTORIES_REGISTERED:
|
if FACTORIES_REGISTERED:
|
||||||
return
|
return
|
||||||
|
|
||||||
|
# Register factories using the same pattern as Language.factory decorator
|
||||||
|
# We use Language.factory()() pattern which exactly mimics the decorator
|
||||||
|
|
||||||
|
# attributeruler
|
||||||
|
Language.factory(
|
||||||
|
"attribute_ruler",
|
||||||
|
default_config={
|
||||||
|
"validate": False,
|
||||||
|
"scorer": {"@scorers": "spacy.attribute_ruler_scorer.v1"},
|
||||||
|
},
|
||||||
|
)(make_attribute_ruler)
|
||||||
|
|
||||||
|
# entity_linker
|
||||||
|
Language.factory(
|
||||||
|
"entity_linker",
|
||||||
|
requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
|
||||||
|
assigns=["token.ent_kb_id"],
|
||||||
|
default_config={
|
||||||
|
"model": DEFAULT_NEL_MODEL,
|
||||||
|
"labels_discard": [],
|
||||||
|
"n_sents": 0,
|
||||||
|
"incl_prior": True,
|
||||||
|
"incl_context": True,
|
||||||
|
"entity_vector_length": 64,
|
||||||
|
"get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
|
||||||
|
"get_candidates_batch": {"@misc": "spacy.CandidateBatchGenerator.v1"},
|
||||||
|
"generate_empty_kb": {"@misc": "spacy.EmptyKB.v2"},
|
||||||
|
"overwrite": True,
|
||||||
|
"scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
|
||||||
|
"use_gold_ents": True,
|
||||||
|
"candidates_batch_size": 1,
|
||||||
|
"threshold": None,
|
||||||
|
},
|
||||||
|
default_score_weights={
|
||||||
|
"nel_micro_f": 1.0,
|
||||||
|
"nel_micro_r": None,
|
||||||
|
"nel_micro_p": None,
|
||||||
|
},
|
||||||
|
)(make_entity_linker)
|
||||||
|
|
||||||
|
# entity_ruler
|
||||||
|
Language.factory(
|
||||||
|
"entity_ruler",
|
||||||
|
assigns=["doc.ents", "token.ent_type", "token.ent_iob"],
|
||||||
|
default_config={
|
||||||
|
"phrase_matcher_attr": None,
|
||||||
|
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
|
||||||
|
"validate": False,
|
||||||
|
"overwrite_ents": False,
|
||||||
|
"ent_id_sep": DEFAULT_ENT_ID_SEP,
|
||||||
|
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
|
||||||
|
},
|
||||||
|
default_score_weights={
|
||||||
|
"ents_f": 1.0,
|
||||||
|
"ents_p": 0.0,
|
||||||
|
"ents_r": 0.0,
|
||||||
|
"ents_per_type": None,
|
||||||
|
},
|
||||||
|
)(make_entity_ruler)
|
||||||
|
|
||||||
|
# lemmatizer
|
||||||
|
Language.factory(
|
||||||
|
"lemmatizer",
|
||||||
|
assigns=["token.lemma"],
|
||||||
|
default_config={
|
||||||
|
"model": None,
|
||||||
|
"mode": "lookup",
|
||||||
|
"overwrite": False,
|
||||||
|
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
|
||||||
|
},
|
||||||
|
default_score_weights={"lemma_acc": 1.0},
|
||||||
|
)(make_lemmatizer)
|
||||||
|
|
||||||
|
# textcat
|
||||||
|
Language.factory(
|
||||||
|
"textcat",
|
||||||
|
assigns=["doc.cats"],
|
||||||
|
default_config={
|
||||||
|
"threshold": 0.0,
|
||||||
|
"model": DEFAULT_SINGLE_TEXTCAT_MODEL,
|
||||||
|
"scorer": {"@scorers": "spacy.textcat_scorer.v2"},
|
||||||
|
},
|
||||||
|
default_score_weights={
|
||||||
|
"cats_score": 1.0,
|
||||||
|
"cats_score_desc": None,
|
||||||
|
"cats_micro_p": None,
|
||||||
|
"cats_micro_r": None,
|
||||||
|
"cats_micro_f": None,
|
||||||
|
"cats_macro_p": None,
|
||||||
|
"cats_macro_r": None,
|
||||||
|
"cats_macro_f": None,
|
||||||
|
"cats_macro_auc": None,
|
||||||
|
"cats_f_per_type": None,
|
||||||
|
},
|
||||||
|
)(make_textcat)
|
||||||
|
|
||||||
|
# token_splitter
|
||||||
|
Language.factory(
|
||||||
|
"token_splitter",
|
||||||
|
default_config={"min_length": 25, "split_length": 10},
|
||||||
|
retokenizes=True,
|
||||||
|
)(make_token_splitter)
|
||||||
|
|
||||||
|
# doc_cleaner
|
||||||
|
Language.factory(
|
||||||
|
"doc_cleaner",
|
||||||
|
default_config={"attrs": {"tensor": None, "_.trf_data": None}, "silent": True},
|
||||||
|
)(make_doc_cleaner)
|
||||||
|
|
||||||
|
# tok2vec
|
||||||
|
Language.factory(
|
||||||
|
"tok2vec",
|
||||||
|
assigns=["doc.tensor"],
|
||||||
|
default_config={"model": DEFAULT_TOK2VEC_MODEL},
|
||||||
|
)(make_tok2vec)
|
||||||
|
|
||||||
|
# senter
|
||||||
|
Language.factory(
|
||||||
|
"senter",
|
||||||
|
assigns=["token.is_sent_start"],
|
||||||
|
default_config={
|
||||||
|
"model": DEFAULT_SENTER_MODEL,
|
||||||
|
"overwrite": False,
|
||||||
|
"scorer": {"@scorers": "spacy.senter_scorer.v1"},
|
||||||
|
},
|
||||||
|
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
||||||
|
)(make_senter)
|
||||||
|
|
||||||
|
# morphologizer
|
||||||
|
Language.factory(
|
||||||
|
"morphologizer",
|
||||||
|
assigns=["token.morph", "token.pos"],
|
||||||
|
default_config={
|
||||||
|
"model": DEFAULT_MORPH_MODEL,
|
||||||
|
"overwrite": True,
|
||||||
|
"extend": False,
|
||||||
|
"scorer": {"@scorers": "spacy.morphologizer_scorer.v1"},
|
||||||
|
"label_smoothing": 0.0,
|
||||||
|
},
|
||||||
|
default_score_weights={
|
||||||
|
"pos_acc": 0.5,
|
||||||
|
"morph_acc": 0.5,
|
||||||
|
"morph_per_feat": None,
|
||||||
|
},
|
||||||
|
)(make_morphologizer)
|
||||||
|
|
||||||
|
# spancat
|
||||||
|
Language.factory(
|
||||||
|
"spancat",
|
||||||
|
assigns=["doc.spans"],
|
||||||
|
default_config={
|
||||||
|
"threshold": 0.5,
|
||||||
|
"spans_key": DEFAULT_SPANS_KEY,
|
||||||
|
"max_positive": None,
|
||||||
|
"model": DEFAULT_SPANCAT_MODEL,
|
||||||
|
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
|
||||||
|
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
|
||||||
|
},
|
||||||
|
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
|
||||||
|
)(make_spancat)
|
||||||
|
|
||||||
|
# spancat_singlelabel
|
||||||
|
Language.factory(
|
||||||
|
"spancat_singlelabel",
|
||||||
|
assigns=["doc.spans"],
|
||||||
|
default_config={
|
||||||
|
"spans_key": DEFAULT_SPANS_KEY,
|
||||||
|
"model": DEFAULT_SPANCAT_SINGLELABEL_MODEL,
|
||||||
|
"negative_weight": 1.0,
|
||||||
|
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
|
||||||
|
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
|
||||||
|
"allow_overlap": True,
|
||||||
|
},
|
||||||
|
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
|
||||||
|
)(make_spancat_singlelabel)
|
||||||
|
|
||||||
|
# future_entity_ruler
|
||||||
|
Language.factory(
|
||||||
|
"future_entity_ruler",
|
||||||
|
assigns=["doc.ents"],
|
||||||
|
default_config={
|
||||||
|
"phrase_matcher_attr": None,
|
||||||
|
"validate": False,
|
||||||
|
"overwrite_ents": False,
|
||||||
|
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
|
||||||
|
"ent_id_sep": "__unused__",
|
||||||
|
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
|
||||||
|
},
|
||||||
|
default_score_weights={
|
||||||
|
"ents_f": 1.0,
|
||||||
|
"ents_p": 0.0,
|
||||||
|
"ents_r": 0.0,
|
||||||
|
"ents_per_type": None,
|
||||||
|
},
|
||||||
|
)(make_future_entity_ruler)
|
||||||
|
|
||||||
|
# span_ruler
|
||||||
|
Language.factory(
|
||||||
|
"span_ruler",
|
||||||
|
assigns=["doc.spans"],
|
||||||
|
default_config={
|
||||||
|
"spans_key": SPAN_RULER_DEFAULT_SPANS_KEY,
|
||||||
|
"spans_filter": None,
|
||||||
|
"annotate_ents": False,
|
||||||
|
"ents_filter": {"@misc": "spacy.first_longest_spans_filter.v1"},
|
||||||
|
"phrase_matcher_attr": None,
|
||||||
|
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
|
||||||
|
"validate": False,
|
||||||
|
"overwrite": True,
|
||||||
|
"scorer": {
|
||||||
|
"@scorers": "spacy.overlapping_labeled_spans_scorer.v1",
|
||||||
|
"spans_key": SPAN_RULER_DEFAULT_SPANS_KEY,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
default_score_weights={
|
||||||
|
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_f": 1.0,
|
||||||
|
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_p": 0.0,
|
||||||
|
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_r": 0.0,
|
||||||
|
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_per_type": None,
|
||||||
|
},
|
||||||
|
)(make_span_ruler)
|
||||||
|
|
||||||
|
# trainable_lemmatizer
|
||||||
|
Language.factory(
|
||||||
|
"trainable_lemmatizer",
|
||||||
|
assigns=["token.lemma"],
|
||||||
|
requires=[],
|
||||||
|
default_config={
|
||||||
|
"model": DEFAULT_EDIT_TREE_LEMMATIZER_MODEL,
|
||||||
|
"backoff": "orth",
|
||||||
|
"min_tree_freq": 3,
|
||||||
|
"overwrite": False,
|
||||||
|
"top_k": 1,
|
||||||
|
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
|
||||||
|
},
|
||||||
|
default_score_weights={"lemma_acc": 1.0},
|
||||||
|
)(make_edit_tree_lemmatizer)
|
||||||
|
|
||||||
|
# textcat_multilabel
|
||||||
|
Language.factory(
|
||||||
|
"textcat_multilabel",
|
||||||
|
assigns=["doc.cats"],
|
||||||
|
default_config={
|
||||||
|
"threshold": 0.5,
|
||||||
|
"model": DEFAULT_MULTI_TEXTCAT_MODEL,
|
||||||
|
"scorer": {"@scorers": "spacy.textcat_multilabel_scorer.v2"},
|
||||||
|
},
|
||||||
|
default_score_weights={
|
||||||
|
"cats_score": 1.0,
|
||||||
|
"cats_score_desc": None,
|
||||||
|
"cats_micro_p": None,
|
||||||
|
"cats_micro_r": None,
|
||||||
|
"cats_micro_f": None,
|
||||||
|
"cats_macro_p": None,
|
||||||
|
"cats_macro_r": None,
|
||||||
|
"cats_macro_f": None,
|
||||||
|
"cats_macro_auc": None,
|
||||||
|
"cats_f_per_type": None,
|
||||||
|
},
|
||||||
|
)(make_multilabel_textcat)
|
||||||
|
|
||||||
|
# span_finder
|
||||||
|
Language.factory(
|
||||||
|
"span_finder",
|
||||||
|
assigns=["doc.spans"],
|
||||||
|
default_config={
|
||||||
|
"threshold": 0.5,
|
||||||
|
"model": DEFAULT_SPAN_FINDER_MODEL,
|
||||||
|
"spans_key": DEFAULT_SPANS_KEY,
|
||||||
|
"max_length": 25,
|
||||||
|
"min_length": None,
|
||||||
|
"scorer": {"@scorers": "spacy.span_finder_scorer.v1"},
|
||||||
|
},
|
||||||
|
default_score_weights={
|
||||||
|
f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
|
||||||
|
f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
|
||||||
|
f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
|
||||||
|
},
|
||||||
|
)(make_span_finder)
|
||||||
|
|
||||||
|
# ner
|
||||||
|
Language.factory(
|
||||||
|
"ner",
|
||||||
|
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
|
||||||
|
default_config={
|
||||||
|
"moves": None,
|
||||||
|
"update_with_oracle_cut_size": 100,
|
||||||
|
"model": DEFAULT_NER_MODEL,
|
||||||
|
"incorrect_spans_key": None,
|
||||||
|
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
|
||||||
|
},
|
||||||
|
default_score_weights={
|
||||||
|
"ents_f": 1.0,
|
||||||
|
"ents_p": 0.0,
|
||||||
|
"ents_r": 0.0,
|
||||||
|
"ents_per_type": None,
|
||||||
|
},
|
||||||
|
)(make_ner)
|
||||||
|
|
||||||
|
# beam_ner
|
||||||
|
Language.factory(
|
||||||
|
"beam_ner",
|
||||||
|
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
|
||||||
|
default_config={
|
||||||
|
"moves": None,
|
||||||
|
"update_with_oracle_cut_size": 100,
|
||||||
|
"model": DEFAULT_NER_MODEL,
|
||||||
|
"beam_density": 0.01,
|
||||||
|
"beam_update_prob": 0.5,
|
||||||
|
"beam_width": 32,
|
||||||
|
"incorrect_spans_key": None,
|
||||||
|
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
|
||||||
|
},
|
||||||
|
default_score_weights={
|
||||||
|
"ents_f": 1.0,
|
||||||
|
"ents_p": 0.0,
|
||||||
|
"ents_r": 0.0,
|
||||||
|
"ents_per_type": None,
|
||||||
|
},
|
||||||
|
)(make_beam_ner)
|
||||||
|
|
||||||
|
# parser
|
||||||
|
Language.factory(
|
||||||
|
"parser",
|
||||||
|
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
|
||||||
|
default_config={
|
||||||
|
"moves": None,
|
||||||
|
"update_with_oracle_cut_size": 100,
|
||||||
|
"learn_tokens": False,
|
||||||
|
"min_action_freq": 30,
|
||||||
|
"model": DEFAULT_PARSER_MODEL,
|
||||||
|
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
|
||||||
|
},
|
||||||
|
default_score_weights={
|
||||||
|
"dep_uas": 0.5,
|
||||||
|
"dep_las": 0.5,
|
||||||
|
"dep_las_per_type": None,
|
||||||
|
"sents_p": None,
|
||||||
|
"sents_r": None,
|
||||||
|
"sents_f": 0.0,
|
||||||
|
},
|
||||||
|
)(make_parser)
|
||||||
|
|
||||||
|
# beam_parser
|
||||||
|
Language.factory(
|
||||||
|
"beam_parser",
|
||||||
|
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
|
||||||
|
default_config={
|
||||||
|
"moves": None,
|
||||||
|
"update_with_oracle_cut_size": 100,
|
||||||
|
"learn_tokens": False,
|
||||||
|
"min_action_freq": 30,
|
||||||
|
"beam_width": 8,
|
||||||
|
"beam_density": 0.0001,
|
||||||
|
"beam_update_prob": 0.5,
|
||||||
|
"model": DEFAULT_PARSER_MODEL,
|
||||||
|
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
|
||||||
|
},
|
||||||
|
default_score_weights={
|
||||||
|
"dep_uas": 0.5,
|
||||||
|
"dep_las": 0.5,
|
||||||
|
"dep_las_per_type": None,
|
||||||
|
"sents_p": None,
|
||||||
|
"sents_r": None,
|
||||||
|
"sents_f": 0.0,
|
||||||
|
},
|
||||||
|
)(make_beam_parser)
|
||||||
|
|
||||||
|
# tagger
|
||||||
|
Language.factory(
|
||||||
|
"tagger",
|
||||||
|
assigns=["token.tag"],
|
||||||
|
default_config={
|
||||||
|
"model": DEFAULT_TAGGER_MODEL,
|
||||||
|
"overwrite": False,
|
||||||
|
"scorer": {"@scorers": "spacy.tagger_scorer.v1"},
|
||||||
|
"neg_prefix": "!",
|
||||||
|
"label_smoothing": 0.0,
|
||||||
|
},
|
||||||
|
default_score_weights={
|
||||||
|
"tag_acc": 1.0,
|
||||||
|
"pos_acc": 0.0,
|
||||||
|
"tag_micro_p": None,
|
||||||
|
"tag_micro_r": None,
|
||||||
|
"tag_micro_f": None,
|
||||||
|
},
|
||||||
|
)(make_tagger)
|
||||||
|
|
||||||
|
# nn_labeller
|
||||||
|
Language.factory(
|
||||||
|
"nn_labeller",
|
||||||
|
default_config={
|
||||||
|
"labels": None,
|
||||||
|
"target": "dep_tag_offset",
|
||||||
|
"model": DEFAULT_MT_MODEL,
|
||||||
|
},
|
||||||
|
)(make_nn_labeller)
|
||||||
|
|
||||||
|
# sentencizer
|
||||||
|
Language.factory(
|
||||||
|
"sentencizer",
|
||||||
|
assigns=["token.is_sent_start", "doc.sents"],
|
||||||
|
default_config={
|
||||||
|
"punct_chars": None,
|
||||||
|
"overwrite": False,
|
||||||
|
"scorer": {"@scorers": "spacy.senter_scorer.v1"},
|
||||||
|
},
|
||||||
|
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
||||||
|
)(make_sentencizer)
|
||||||
|
|
||||||
|
# Set the flag to indicate that all factories have been registered
|
||||||
|
FACTORIES_REGISTERED = True
|
||||||
|
|
||||||
|
|
||||||
# We can't have function implementations for these factories in Cython, because
|
# We can't have function implementations for these factories in Cython, because
|
||||||
# we need to build a Pydantic model for them dynamically, reading their argument
|
# we need to build a Pydantic model for them dynamically, reading their argument
|
||||||
# structure from the signature. In Cython 3, this doesn't work because the
|
# structure from the signature. In Cython 3, this doesn't work because the
|
||||||
|
@ -605,415 +1017,4 @@ def register_factories() -> None:
|
||||||
scorer=scorer
|
scorer=scorer
|
||||||
)
|
)
|
||||||
|
|
||||||
# Register factories using the same pattern as Language.factory decorator
|
|
||||||
# We use Language.factory()() pattern which exactly mimics the decorator
|
|
||||||
|
|
||||||
# attributeruler
|
|
||||||
Language.factory(
|
|
||||||
"attribute_ruler",
|
|
||||||
default_config={
|
|
||||||
"validate": False,
|
|
||||||
"scorer": {"@scorers": "spacy.attribute_ruler_scorer.v1"},
|
|
||||||
},
|
|
||||||
)(make_attribute_ruler)
|
|
||||||
|
|
||||||
# entity_linker
|
|
||||||
Language.factory(
|
|
||||||
"entity_linker",
|
|
||||||
requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
|
|
||||||
assigns=["token.ent_kb_id"],
|
|
||||||
default_config={
|
|
||||||
"model": DEFAULT_NEL_MODEL,
|
|
||||||
"labels_discard": [],
|
|
||||||
"n_sents": 0,
|
|
||||||
"incl_prior": True,
|
|
||||||
"incl_context": True,
|
|
||||||
"entity_vector_length": 64,
|
|
||||||
"get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
|
|
||||||
"get_candidates_batch": {"@misc": "spacy.CandidateBatchGenerator.v1"},
|
|
||||||
"generate_empty_kb": {"@misc": "spacy.EmptyKB.v2"},
|
|
||||||
"overwrite": True,
|
|
||||||
"scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
|
|
||||||
"use_gold_ents": True,
|
|
||||||
"candidates_batch_size": 1,
|
|
||||||
"threshold": None,
|
|
||||||
},
|
|
||||||
default_score_weights={
|
|
||||||
"nel_micro_f": 1.0,
|
|
||||||
"nel_micro_r": None,
|
|
||||||
"nel_micro_p": None,
|
|
||||||
},
|
|
||||||
)(make_entity_linker)
|
|
||||||
|
|
||||||
# entity_ruler
|
|
||||||
Language.factory(
|
|
||||||
"entity_ruler",
|
|
||||||
assigns=["doc.ents", "token.ent_type", "token.ent_iob"],
|
|
||||||
default_config={
|
|
||||||
"phrase_matcher_attr": None,
|
|
||||||
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
|
|
||||||
"validate": False,
|
|
||||||
"overwrite_ents": False,
|
|
||||||
"ent_id_sep": DEFAULT_ENT_ID_SEP,
|
|
||||||
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
|
|
||||||
},
|
|
||||||
default_score_weights={
|
|
||||||
"ents_f": 1.0,
|
|
||||||
"ents_p": 0.0,
|
|
||||||
"ents_r": 0.0,
|
|
||||||
"ents_per_type": None,
|
|
||||||
},
|
|
||||||
)(make_entity_ruler)
|
|
||||||
|
|
||||||
# lemmatizer
|
|
||||||
Language.factory(
|
|
||||||
"lemmatizer",
|
|
||||||
assigns=["token.lemma"],
|
|
||||||
default_config={
|
|
||||||
"model": None,
|
|
||||||
"mode": "lookup",
|
|
||||||
"overwrite": False,
|
|
||||||
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
|
|
||||||
},
|
|
||||||
default_score_weights={"lemma_acc": 1.0},
|
|
||||||
)(make_lemmatizer)
|
|
||||||
|
|
||||||
# textcat
|
|
||||||
Language.factory(
|
|
||||||
"textcat",
|
|
||||||
assigns=["doc.cats"],
|
|
||||||
default_config={
|
|
||||||
"threshold": 0.0,
|
|
||||||
"model": DEFAULT_SINGLE_TEXTCAT_MODEL,
|
|
||||||
"scorer": {"@scorers": "spacy.textcat_scorer.v2"},
|
|
||||||
},
|
|
||||||
default_score_weights={
|
|
||||||
"cats_score": 1.0,
|
|
||||||
"cats_score_desc": None,
|
|
||||||
"cats_micro_p": None,
|
|
||||||
"cats_micro_r": None,
|
|
||||||
"cats_micro_f": None,
|
|
||||||
"cats_macro_p": None,
|
|
||||||
"cats_macro_r": None,
|
|
||||||
"cats_macro_f": None,
|
|
||||||
"cats_macro_auc": None,
|
|
||||||
"cats_f_per_type": None,
|
|
||||||
},
|
|
||||||
)(make_textcat)
|
|
||||||
|
|
||||||
# token_splitter
|
|
||||||
Language.factory(
|
|
||||||
"token_splitter",
|
|
||||||
default_config={"min_length": 25, "split_length": 10},
|
|
||||||
retokenizes=True,
|
|
||||||
)(make_token_splitter)
|
|
||||||
|
|
||||||
# doc_cleaner
|
|
||||||
Language.factory(
|
|
||||||
"doc_cleaner",
|
|
||||||
default_config={"attrs": {"tensor": None, "_.trf_data": None}, "silent": True},
|
|
||||||
)(make_doc_cleaner)
|
|
||||||
|
|
||||||
# tok2vec
|
|
||||||
Language.factory(
|
|
||||||
"tok2vec",
|
|
||||||
assigns=["doc.tensor"],
|
|
||||||
default_config={"model": DEFAULT_TOK2VEC_MODEL},
|
|
||||||
)(make_tok2vec)
|
|
||||||
|
|
||||||
# senter
|
|
||||||
Language.factory(
|
|
||||||
"senter",
|
|
||||||
assigns=["token.is_sent_start"],
|
|
||||||
default_config={
|
|
||||||
"model": DEFAULT_SENTER_MODEL,
|
|
||||||
"overwrite": False,
|
|
||||||
"scorer": {"@scorers": "spacy.senter_scorer.v1"},
|
|
||||||
},
|
|
||||||
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
|
||||||
)(make_senter)
|
|
||||||
|
|
||||||
# morphologizer
|
|
||||||
Language.factory(
|
|
||||||
"morphologizer",
|
|
||||||
assigns=["token.morph", "token.pos"],
|
|
||||||
default_config={
|
|
||||||
"model": DEFAULT_MORPH_MODEL,
|
|
||||||
"overwrite": True,
|
|
||||||
"extend": False,
|
|
||||||
"scorer": {"@scorers": "spacy.morphologizer_scorer.v1"},
|
|
||||||
"label_smoothing": 0.0,
|
|
||||||
},
|
|
||||||
default_score_weights={
|
|
||||||
"pos_acc": 0.5,
|
|
||||||
"morph_acc": 0.5,
|
|
||||||
"morph_per_feat": None,
|
|
||||||
},
|
|
||||||
)(make_morphologizer)
|
|
||||||
|
|
||||||
# spancat
|
|
||||||
Language.factory(
|
|
||||||
"spancat",
|
|
||||||
assigns=["doc.spans"],
|
|
||||||
default_config={
|
|
||||||
"threshold": 0.5,
|
|
||||||
"spans_key": DEFAULT_SPANS_KEY,
|
|
||||||
"max_positive": None,
|
|
||||||
"model": DEFAULT_SPANCAT_MODEL,
|
|
||||||
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
|
|
||||||
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
|
|
||||||
},
|
|
||||||
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
|
|
||||||
)(make_spancat)
|
|
||||||
|
|
||||||
# spancat_singlelabel
|
|
||||||
Language.factory(
|
|
||||||
"spancat_singlelabel",
|
|
||||||
assigns=["doc.spans"],
|
|
||||||
default_config={
|
|
||||||
"spans_key": DEFAULT_SPANS_KEY,
|
|
||||||
"model": DEFAULT_SPANCAT_SINGLELABEL_MODEL,
|
|
||||||
"negative_weight": 1.0,
|
|
||||||
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
|
|
||||||
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
|
|
||||||
"allow_overlap": True,
|
|
||||||
},
|
|
||||||
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
|
|
||||||
)(make_spancat_singlelabel)
|
|
||||||
|
|
||||||
# future_entity_ruler
|
|
||||||
Language.factory(
|
|
||||||
"future_entity_ruler",
|
|
||||||
assigns=["doc.ents"],
|
|
||||||
default_config={
|
|
||||||
"phrase_matcher_attr": None,
|
|
||||||
"validate": False,
|
|
||||||
"overwrite_ents": False,
|
|
||||||
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
|
|
||||||
"ent_id_sep": "__unused__",
|
|
||||||
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
|
|
||||||
},
|
|
||||||
default_score_weights={
|
|
||||||
"ents_f": 1.0,
|
|
||||||
"ents_p": 0.0,
|
|
||||||
"ents_r": 0.0,
|
|
||||||
"ents_per_type": None,
|
|
||||||
},
|
|
||||||
)(make_future_entity_ruler)
|
|
||||||
|
|
||||||
# span_ruler
|
|
||||||
Language.factory(
|
|
||||||
"span_ruler",
|
|
||||||
assigns=["doc.spans"],
|
|
||||||
default_config={
|
|
||||||
"spans_key": SPAN_RULER_DEFAULT_SPANS_KEY,
|
|
||||||
"spans_filter": None,
|
|
||||||
"annotate_ents": False,
|
|
||||||
"ents_filter": {"@misc": "spacy.first_longest_spans_filter.v1"},
|
|
||||||
"phrase_matcher_attr": None,
|
|
||||||
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
|
|
||||||
"validate": False,
|
|
||||||
"overwrite": True,
|
|
||||||
"scorer": {
|
|
||||||
"@scorers": "spacy.overlapping_labeled_spans_scorer.v1",
|
|
||||||
"spans_key": SPAN_RULER_DEFAULT_SPANS_KEY,
|
|
||||||
},
|
|
||||||
},
|
|
||||||
default_score_weights={
|
|
||||||
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_f": 1.0,
|
|
||||||
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_p": 0.0,
|
|
||||||
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_r": 0.0,
|
|
||||||
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_per_type": None,
|
|
||||||
},
|
|
||||||
)(make_span_ruler)
|
|
||||||
|
|
||||||
# trainable_lemmatizer
|
|
||||||
Language.factory(
|
|
||||||
"trainable_lemmatizer",
|
|
||||||
assigns=["token.lemma"],
|
|
||||||
requires=[],
|
|
||||||
default_config={
|
|
||||||
"model": DEFAULT_EDIT_TREE_LEMMATIZER_MODEL,
|
|
||||||
"backoff": "orth",
|
|
||||||
"min_tree_freq": 3,
|
|
||||||
"overwrite": False,
|
|
||||||
"top_k": 1,
|
|
||||||
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
|
|
||||||
},
|
|
||||||
default_score_weights={"lemma_acc": 1.0},
|
|
||||||
)(make_edit_tree_lemmatizer)
|
|
||||||
|
|
||||||
# textcat_multilabel
|
|
||||||
Language.factory(
|
|
||||||
"textcat_multilabel",
|
|
||||||
assigns=["doc.cats"],
|
|
||||||
default_config={
|
|
||||||
"threshold": 0.5,
|
|
||||||
"model": DEFAULT_MULTI_TEXTCAT_MODEL,
|
|
||||||
"scorer": {"@scorers": "spacy.textcat_multilabel_scorer.v2"},
|
|
||||||
},
|
|
||||||
default_score_weights={
|
|
||||||
"cats_score": 1.0,
|
|
||||||
"cats_score_desc": None,
|
|
||||||
"cats_micro_p": None,
|
|
||||||
"cats_micro_r": None,
|
|
||||||
"cats_micro_f": None,
|
|
||||||
"cats_macro_p": None,
|
|
||||||
"cats_macro_r": None,
|
|
||||||
"cats_macro_f": None,
|
|
||||||
"cats_macro_auc": None,
|
|
||||||
"cats_f_per_type": None,
|
|
||||||
},
|
|
||||||
)(make_multilabel_textcat)
|
|
||||||
|
|
||||||
# span_finder
|
|
||||||
Language.factory(
|
|
||||||
"span_finder",
|
|
||||||
assigns=["doc.spans"],
|
|
||||||
default_config={
|
|
||||||
"threshold": 0.5,
|
|
||||||
"model": DEFAULT_SPAN_FINDER_MODEL,
|
|
||||||
"spans_key": DEFAULT_SPANS_KEY,
|
|
||||||
"max_length": 25,
|
|
||||||
"min_length": None,
|
|
||||||
"scorer": {"@scorers": "spacy.span_finder_scorer.v1"},
|
|
||||||
},
|
|
||||||
default_score_weights={
|
|
||||||
f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
|
|
||||||
f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
|
|
||||||
f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
|
|
||||||
},
|
|
||||||
)(make_span_finder)
|
|
||||||
|
|
||||||
# ner
|
|
||||||
Language.factory(
|
|
||||||
"ner",
|
|
||||||
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
|
|
||||||
default_config={
|
|
||||||
"moves": None,
|
|
||||||
"update_with_oracle_cut_size": 100,
|
|
||||||
"model": DEFAULT_NER_MODEL,
|
|
||||||
"incorrect_spans_key": None,
|
|
||||||
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
|
|
||||||
},
|
|
||||||
default_score_weights={
|
|
||||||
"ents_f": 1.0,
|
|
||||||
"ents_p": 0.0,
|
|
||||||
"ents_r": 0.0,
|
|
||||||
"ents_per_type": None,
|
|
||||||
},
|
|
||||||
)(make_ner)
|
|
||||||
|
|
||||||
# beam_ner
|
|
||||||
Language.factory(
|
|
||||||
"beam_ner",
|
|
||||||
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
|
|
||||||
default_config={
|
|
||||||
"moves": None,
|
|
||||||
"update_with_oracle_cut_size": 100,
|
|
||||||
"model": DEFAULT_NER_MODEL,
|
|
||||||
"beam_density": 0.01,
|
|
||||||
"beam_update_prob": 0.5,
|
|
||||||
"beam_width": 32,
|
|
||||||
"incorrect_spans_key": None,
|
|
||||||
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
|
|
||||||
},
|
|
||||||
default_score_weights={
|
|
||||||
"ents_f": 1.0,
|
|
||||||
"ents_p": 0.0,
|
|
||||||
"ents_r": 0.0,
|
|
||||||
"ents_per_type": None,
|
|
||||||
},
|
|
||||||
)(make_beam_ner)
|
|
||||||
|
|
||||||
# parser
|
|
||||||
Language.factory(
|
|
||||||
"parser",
|
|
||||||
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
|
|
||||||
default_config={
|
|
||||||
"moves": None,
|
|
||||||
"update_with_oracle_cut_size": 100,
|
|
||||||
"learn_tokens": False,
|
|
||||||
"min_action_freq": 30,
|
|
||||||
"model": DEFAULT_PARSER_MODEL,
|
|
||||||
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
|
|
||||||
},
|
|
||||||
default_score_weights={
|
|
||||||
"dep_uas": 0.5,
|
|
||||||
"dep_las": 0.5,
|
|
||||||
"dep_las_per_type": None,
|
|
||||||
"sents_p": None,
|
|
||||||
"sents_r": None,
|
|
||||||
"sents_f": 0.0,
|
|
||||||
},
|
|
||||||
)(make_parser)
|
|
||||||
|
|
||||||
# beam_parser
|
|
||||||
Language.factory(
|
|
||||||
"beam_parser",
|
|
||||||
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
|
|
||||||
default_config={
|
|
||||||
"moves": None,
|
|
||||||
"update_with_oracle_cut_size": 100,
|
|
||||||
"learn_tokens": False,
|
|
||||||
"min_action_freq": 30,
|
|
||||||
"beam_width": 8,
|
|
||||||
"beam_density": 0.0001,
|
|
||||||
"beam_update_prob": 0.5,
|
|
||||||
"model": DEFAULT_PARSER_MODEL,
|
|
||||||
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
|
|
||||||
},
|
|
||||||
default_score_weights={
|
|
||||||
"dep_uas": 0.5,
|
|
||||||
"dep_las": 0.5,
|
|
||||||
"dep_las_per_type": None,
|
|
||||||
"sents_p": None,
|
|
||||||
"sents_r": None,
|
|
||||||
"sents_f": 0.0,
|
|
||||||
},
|
|
||||||
)(make_beam_parser)
|
|
||||||
|
|
||||||
# tagger
|
|
||||||
Language.factory(
|
|
||||||
"tagger",
|
|
||||||
assigns=["token.tag"],
|
|
||||||
default_config={
|
|
||||||
"model": DEFAULT_TAGGER_MODEL,
|
|
||||||
"overwrite": False,
|
|
||||||
"scorer": {"@scorers": "spacy.tagger_scorer.v1"},
|
|
||||||
"neg_prefix": "!",
|
|
||||||
"label_smoothing": 0.0,
|
|
||||||
},
|
|
||||||
default_score_weights={
|
|
||||||
"tag_acc": 1.0,
|
|
||||||
"pos_acc": 0.0,
|
|
||||||
"tag_micro_p": None,
|
|
||||||
"tag_micro_r": None,
|
|
||||||
"tag_micro_f": None,
|
|
||||||
},
|
|
||||||
)(make_tagger)
|
|
||||||
|
|
||||||
# nn_labeller
|
|
||||||
Language.factory(
|
|
||||||
"nn_labeller",
|
|
||||||
default_config={
|
|
||||||
"labels": None,
|
|
||||||
"target": "dep_tag_offset",
|
|
||||||
"model": DEFAULT_MT_MODEL,
|
|
||||||
},
|
|
||||||
)(make_nn_labeller)
|
|
||||||
|
|
||||||
# sentencizer
|
|
||||||
Language.factory(
|
|
||||||
"sentencizer",
|
|
||||||
assigns=["token.is_sent_start", "doc.sents"],
|
|
||||||
default_config={
|
|
||||||
"punct_chars": None,
|
|
||||||
"overwrite": False,
|
|
||||||
"scorer": {"@scorers": "spacy.senter_scorer.v1"},
|
|
||||||
},
|
|
||||||
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
|
||||||
)(make_sentencizer)
|
|
||||||
|
|
||||||
# Set the flag to indicate that all factories have been registered
|
|
||||||
FACTORIES_REGISTERED = True
|
|
||||||
|
|
|
@ -101,7 +101,11 @@ def test_cat_readers(reader, additional_config):
|
||||||
nlp = load_model_from_config(config, auto_fill=True)
|
nlp = load_model_from_config(config, auto_fill=True)
|
||||||
T = registry.resolve(nlp.config["training"], schema=ConfigSchemaTraining)
|
T = registry.resolve(nlp.config["training"], schema=ConfigSchemaTraining)
|
||||||
dot_names = [T["train_corpus"], T["dev_corpus"]]
|
dot_names = [T["train_corpus"], T["dev_corpus"]]
|
||||||
|
print("T", T)
|
||||||
|
print("dot names", dot_names)
|
||||||
train_corpus, dev_corpus = resolve_dot_names(nlp.config, dot_names)
|
train_corpus, dev_corpus = resolve_dot_names(nlp.config, dot_names)
|
||||||
|
data = list(train_corpus(nlp))
|
||||||
|
print(len(data))
|
||||||
optimizer = T["optimizer"]
|
optimizer = T["optimizer"]
|
||||||
# simulate a training loop
|
# simulate a training loop
|
||||||
nlp.initialize(lambda: train_corpus(nlp), sgd=optimizer)
|
nlp.initialize(lambda: train_corpus(nlp), sgd=optimizer)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user