Tidy up and auto-format

This commit is contained in:
Ines Montani 2020-05-21 14:14:01 +02:00
parent f2a131bd9a
commit d8f3190c0a
45 changed files with 138 additions and 81 deletions

View File

@ -187,12 +187,17 @@ def debug_data(
n_missing_vectors = sum(gold_train_data["words_missing_vectors"].values())
msg.warn(
"{} words in training data without vectors ({:0.2f}%)".format(
n_missing_vectors,
n_missing_vectors / gold_train_data["n_words"],
n_missing_vectors, n_missing_vectors / gold_train_data["n_words"],
),
)
msg.text(
"10 most common words without vectors: {}".format(_format_labels(gold_train_data["words_missing_vectors"].most_common(10), counts=True)), show=verbose,
"10 most common words without vectors: {}".format(
_format_labels(
gold_train_data["words_missing_vectors"].most_common(10),
counts=True,
)
),
show=verbose,
)
else:
msg.info("No word vectors present in the model")

View File

@ -49,7 +49,12 @@ DEFAULT_OOV_PROB = -20
str,
),
model_name=("Optional name for the model meta", "option", "mn", str),
base_model=("Base model (for languages with custom tokenizers)", "option", "b", str),
base_model=(
"Base model (for languages with custom tokenizers)",
"option",
"b",
str,
),
)
def init_model(
lang,

View File

@ -8,7 +8,7 @@ def add_codes(err_cls):
class ErrorsWithCodes(err_cls):
def __getattribute__(self, code):
msg = super().__getattribute__(code)
if code.startswith('__'): # python system attributes like __class__
if code.startswith("__"): # python system attributes like __class__
return msg
else:
return "[{code}] {msg}".format(code=code, msg=msg)
@ -116,6 +116,7 @@ class Warnings(object):
" to check the alignment. Misaligned entities ('-') will be "
"ignored during training.")
@add_codes
class Errors(object):
E001 = ("No component '{name}' found in pipeline. Available names: {opts}")

View File

@ -9,7 +9,6 @@ from .morph_rules import MORPH_RULES
from ..tag_map import TAG_MAP
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ..norm_exceptions import BASE_NORMS
from ...language import Language
from ...attrs import LANG
from ...util import update_exc

View File

@ -197,7 +197,7 @@ for word in ["who", "what", "when", "where", "why", "how", "there", "that"]:
_exc[orth + "d"] = [
{ORTH: orth, LEMMA: word, NORM: word},
{ORTH: "d", NORM: "'d"}
{ORTH: "d", NORM: "'d"},
]
_exc[orth + "'d've"] = [

View File

@ -5,7 +5,6 @@ from ..char_classes import LIST_PUNCT, LIST_ELLIPSES, LIST_QUOTES
from ..char_classes import LIST_ICONS, CURRENCY, LIST_UNITS, PUNCT
from ..char_classes import CONCAT_QUOTES, ALPHA_LOWER, ALPHA_UPPER, ALPHA
from ..char_classes import merge_chars
from ..punctuation import TOKENIZER_PREFIXES as BASE_TOKENIZER_PREFIXES
_list_units = [u for u in LIST_UNITS if u != "%"]

View File

@ -1,11 +1,12 @@
# coding: utf8
from __future__ import unicode_literals
from .stop_words import STOP_WORDS
from .lex_attrs import LEX_ATTRS
from .tag_map import TAG_MAP
from ...attrs import LANG
from ...language import Language
from ...tokens import Doc
class ArmenianDefaults(Language.Defaults):

View File

@ -1,6 +1,6 @@
# coding: utf8
from __future__ import unicode_literals
"""
Example sentences to test spaCy and its language models.
>>> from spacy.lang.hy.examples import sentences

View File

@ -1,3 +1,4 @@
# coding: utf8
from __future__ import unicode_literals
from ...attrs import LIKE_NUM

View File

@ -1,6 +1,6 @@
# coding: utf8
from __future__ import unicode_literals
STOP_WORDS = set(
"""
նա

View File

@ -1,7 +1,7 @@
# coding: utf8
from __future__ import unicode_literals
from ...symbols import POS, SYM, ADJ, NUM, DET, ADV, ADP, X, VERB, NOUN
from ...symbols import POS, ADJ, NUM, DET, ADV, ADP, X, VERB, NOUN
from ...symbols import PROPN, PART, INTJ, PRON, SCONJ, AUX, CCONJ
TAG_MAP = {
@ -716,7 +716,7 @@ TAG_MAP = {
POS: NOUN,
"Animacy": "Nhum",
"Case": "Dat",
"Number": "Coll",
# "Number": "Coll",
"Number": "Sing",
"Person": "1",
},
@ -815,7 +815,7 @@ TAG_MAP = {
"Animacy": "Nhum",
"Case": "Nom",
"Definite": "Def",
"Number": "Plur",
# "Number": "Plur",
"Number": "Sing",
"Poss": "Yes",
},
@ -880,7 +880,7 @@ TAG_MAP = {
POS: NOUN,
"Animacy": "Nhum",
"Case": "Nom",
"Number": "Plur",
# "Number": "Plur",
"Number": "Sing",
"Person": "2",
},
@ -1223,9 +1223,9 @@ TAG_MAP = {
"PRON_Case=Nom|Number=Sing|Number=Plur|Person=3|Person=1|PronType=Emp": {
POS: PRON,
"Case": "Nom",
"Number": "Sing",
# "Number": "Sing",
"Number": "Plur",
"Person": "3",
# "Person": "3",
"Person": "1",
"PronType": "Emp",
},

View File

@ -55,7 +55,7 @@ _num_words = [
"തൊണ്ണൂറ് ",
"നുറ് ",
"ആയിരം ",
"പത്തുലക്ഷം"
"പത്തുലക്ഷം",
]

View File

@ -3,7 +3,6 @@ from __future__ import unicode_literals
STOP_WORDS = set(
"""
അത
ഇത

View File

@ -12,7 +12,7 @@ from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ..norm_exceptions import BASE_NORMS
from ...language import Language
from ...attrs import LANG, NORM
from ...util import update_exc, add_lookups
from ...util import add_lookups
from ...lookups import Lookups

View File

@ -3,7 +3,6 @@ from __future__ import unicode_literals
from ...lemmatizer import Lemmatizer
from ...parts_of_speech import NAMES
from ...errors import Errors
class PolishLemmatizer(Lemmatizer):

View File

@ -8,7 +8,9 @@ from ..punctuation import TOKENIZER_PREFIXES as BASE_TOKENIZER_PREFIXES
_quotes = CONCAT_QUOTES.replace("'", "")
_prefixes = _prefixes = [r"(długo|krótko|jedno|dwu|trzy|cztero)-"] + BASE_TOKENIZER_PREFIXES
_prefixes = _prefixes = [
r"(długo|krótko|jedno|dwu|trzy|cztero)-"
] + BASE_TOKENIZER_PREFIXES
_infixes = (
LIST_ELLIPSES

View File

@ -40,7 +40,7 @@ _num_words = [
"miljard",
"biljon",
"biljard",
"kvadriljon"
"kvadriljon",
]

View File

@ -38,7 +38,6 @@ TAG_MAP = {
"NNPC": {POS: PROPN},
"NNC": {POS: NOUN},
"PSP": {POS: ADP},
".": {POS: PUNCT},
",": {POS: PUNCT},
"-LRB-": {POS: PUNCT},

View File

@ -109,6 +109,7 @@ class ChineseTokenizer(DummyTokenizer):
if reset:
try:
import pkuseg
self.pkuseg_seg.preprocesser = pkuseg.Preprocesser(None)
except ImportError:
if self.use_pkuseg:
@ -118,7 +119,7 @@ class ChineseTokenizer(DummyTokenizer):
)
raise ImportError(msg)
for word in words:
self.pkuseg_seg.preprocesser.insert(word.strip(), '')
self.pkuseg_seg.preprocesser.insert(word.strip(), "")
def _get_config(self):
config = OrderedDict(

View File

@ -79,7 +79,9 @@ class BaseDefaults(object):
lookups=lookups,
)
vocab.lex_attr_getters[NORM] = util.add_lookups(
vocab.lex_attr_getters.get(NORM, LEX_ATTRS[NORM]), BASE_NORMS, vocab.lookups.get_table("lexeme_norm")
vocab.lex_attr_getters.get(NORM, LEX_ATTRS[NORM]),
BASE_NORMS,
vocab.lookups.get_table("lexeme_norm"),
)
for tag_str, exc in cls.morph_rules.items():
for orth_str, attrs in exc.items():
@ -974,7 +976,9 @@ class Language(object):
serializers = OrderedDict()
serializers["vocab"] = lambda: self.vocab.to_bytes()
serializers["tokenizer"] = lambda: self.tokenizer.to_bytes(exclude=["vocab"])
serializers["meta.json"] = lambda: srsly.json_dumps(OrderedDict(sorted(self.meta.items())))
serializers["meta.json"] = lambda: srsly.json_dumps(
OrderedDict(sorted(self.meta.items()))
)
for name, proc in self.pipeline:
if name in exclude:
continue

View File

@ -112,6 +112,7 @@ def ga_tokenizer():
def gu_tokenizer():
return get_lang_class("gu").Defaults.create_tokenizer()
@pytest.fixture(scope="session")
def he_tokenizer():
return get_lang_class("he").Defaults.create_tokenizer()
@ -246,7 +247,9 @@ def yo_tokenizer():
@pytest.fixture(scope="session")
def zh_tokenizer_char():
return get_lang_class("zh").Defaults.create_tokenizer(config={"use_jieba": False, "use_pkuseg": False})
return get_lang_class("zh").Defaults.create_tokenizer(
config={"use_jieba": False, "use_pkuseg": False}
)
@pytest.fixture(scope="session")
@ -258,7 +261,9 @@ def zh_tokenizer_jieba():
@pytest.fixture(scope="session")
def zh_tokenizer_pkuseg():
pytest.importorskip("pkuseg")
return get_lang_class("zh").Defaults.create_tokenizer(config={"pkuseg_model": "default", "use_jieba": False, "use_pkuseg": True})
return get_lang_class("zh").Defaults.create_tokenizer(
config={"pkuseg_model": "default", "use_jieba": False, "use_pkuseg": True}
)
@pytest.fixture(scope="session")

View File

@ -50,7 +50,9 @@ def test_create_from_words_and_text(vocab):
assert [t.text for t in doc] == [" ", "'", "dogs", "'", "\n\n", "run", " "]
assert [t.whitespace_ for t in doc] == ["", "", "", "", "", " ", ""]
assert doc.text == text
assert [t.text for t in doc if not t.text.isspace()] == [word for word in words if not word.isspace()]
assert [t.text for t in doc if not t.text.isspace()] == [
word for word in words if not word.isspace()
]
# partial whitespace in words
words = [" ", "'", "dogs", "'", "\n\n", "run", " "]
@ -60,7 +62,9 @@ def test_create_from_words_and_text(vocab):
assert [t.text for t in doc] == [" ", "'", "dogs", "'", "\n\n", "run", " "]
assert [t.whitespace_ for t in doc] == ["", "", "", "", "", " ", ""]
assert doc.text == text
assert [t.text for t in doc if not t.text.isspace()] == [word for word in words if not word.isspace()]
assert [t.text for t in doc if not t.text.isspace()] == [
word for word in words if not word.isspace()
]
# non-standard whitespace tokens
words = [" ", " ", "'", "dogs", "'", "\n\n", "run"]
@ -70,7 +74,9 @@ def test_create_from_words_and_text(vocab):
assert [t.text for t in doc] == [" ", "'", "dogs", "'", "\n\n", "run", " "]
assert [t.whitespace_ for t in doc] == ["", "", "", "", "", " ", ""]
assert doc.text == text
assert [t.text for t in doc if not t.text.isspace()] == [word for word in words if not word.isspace()]
assert [t.text for t in doc if not t.text.isspace()] == [
word for word in words if not word.isspace()
]
# mismatch between words and text
with pytest.raises(ValueError):

View File

@ -181,6 +181,7 @@ def test_is_sent_start(en_tokenizer):
doc.is_parsed = True
assert len(list(doc.sents)) == 2
def test_is_sent_end(en_tokenizer):
doc = en_tokenizer("This is a sentence. This is another.")
assert doc[4].is_sent_end is None
@ -213,6 +214,7 @@ def test_token0_has_sent_start_true():
assert doc[1].is_sent_start is None
assert not doc.is_sentenced
def test_tokenlast_has_sent_end_true():
doc = Doc(Vocab(), words=["hello", "world"])
assert doc[0].is_sent_end is None

View File

@ -3,17 +3,16 @@ from __future__ import unicode_literals
import pytest
def test_gu_tokenizer_handlers_long_text(gu_tokenizer):
text = """પશ્ચિમ ભારતમાં આવેલું ગુજરાત રાજ્ય જે વ્યક્તિઓની માતૃભૂમિ છે"""
tokens = gu_tokenizer(text)
assert len(tokens) == 9
@pytest.mark.parametrize(
"text,length",
[
("ગુજરાતીઓ ખાવાના શોખીન માનવામાં આવે છે", 6),
("ખેતરની ખેડ કરવામાં આવે છે.", 5),
],
[("ગુજરાતીઓ ખાવાના શોખીન માનવામાં આવે છે", 6), ("ખેતરની ખેડ કરવામાં આવે છે.", 5)],
)
def test_gu_tokenizer_handles_cnts(gu_tokenizer, text, length):
tokens = gu_tokenizer(text)

View File

@ -10,7 +10,16 @@ def test_ml_tokenizer_handles_long_text(ml_tokenizer):
assert len(tokens) == 5
@pytest.mark.parametrize("text,length", [("എന്നാൽ അച്ചടിയുടെ ആവിർഭാവം ലിപിയിൽ കാര്യമായ മാറ്റങ്ങൾ വരുത്തിയത് കൂട്ടക്ഷരങ്ങളെ അണുഅക്ഷരങ്ങളായി പിരിച്ചുകൊണ്ടായിരുന്നു", 10), ("പരമ്പരാഗതമായി മലയാളം ഇടത്തുനിന്ന് വലത്തോട്ടാണ് എഴുതുന്നത്", 5)])
@pytest.mark.parametrize(
"text,length",
[
(
"എന്നാൽ അച്ചടിയുടെ ആവിർഭാവം ലിപിയിൽ കാര്യമായ മാറ്റങ്ങൾ വരുത്തിയത് കൂട്ടക്ഷരങ്ങളെ അണുഅക്ഷരങ്ങളായി പിരിച്ചുകൊണ്ടായിരുന്നു",
10,
),
("പരമ്പരാഗതമായി മലയാളം ഇടത്തുനിന്ന് വലത്തോട്ടാണ് എഴുതുന്നത്", 5),
],
)
def test_ml_tokenizer_handles_cnts(ml_tokenizer, text, length):
tokens = ml_tokenizer(text)
assert len(tokens) == length

View File

@ -34,5 +34,15 @@ def test_zh_tokenizer_serialize_pkuseg(zh_tokenizer_pkuseg):
@pytest.mark.slow
def test_zh_tokenizer_serialize_pkuseg_with_processors(zh_tokenizer_pkuseg):
nlp = Chinese(meta={"tokenizer": {"config": {"use_jieba": False, "use_pkuseg": True, "pkuseg_model": "medicine"}}})
nlp = Chinese(
meta={
"tokenizer": {
"config": {
"use_jieba": False,
"use_pkuseg": True,
"pkuseg_model": "medicine",
}
}
}
)
zh_tokenizer_serialize(nlp.tokenizer)

View File

@ -43,12 +43,16 @@ def test_zh_tokenizer_pkuseg(zh_tokenizer_pkuseg, text, expected_tokens):
def test_zh_tokenizer_pkuseg_user_dict(zh_tokenizer_pkuseg):
user_dict = _get_pkuseg_trie_data(zh_tokenizer_pkuseg.pkuseg_seg.preprocesser.trie)
zh_tokenizer_pkuseg.pkuseg_update_user_dict(["nonsense_asdf"])
updated_user_dict = _get_pkuseg_trie_data(zh_tokenizer_pkuseg.pkuseg_seg.preprocesser.trie)
updated_user_dict = _get_pkuseg_trie_data(
zh_tokenizer_pkuseg.pkuseg_seg.preprocesser.trie
)
assert len(user_dict) == len(updated_user_dict) - 1
# reset user dict
zh_tokenizer_pkuseg.pkuseg_update_user_dict([], reset=True)
reset_user_dict = _get_pkuseg_trie_data(zh_tokenizer_pkuseg.pkuseg_seg.preprocesser.trie)
reset_user_dict = _get_pkuseg_trie_data(
zh_tokenizer_pkuseg.pkuseg_seg.preprocesser.trie
)
assert len(reset_user_dict) == 0

View File

@ -272,8 +272,8 @@ def test_matcher_regex_shape(en_vocab):
(">=", ["a"]),
("<=", ["aaa"]),
(">", ["a", "aa"]),
("<", ["aa", "aaa"])
]
("<", ["aa", "aaa"]),
],
)
def test_matcher_compare_length(en_vocab, cmp, bad):
matcher = Matcher(en_vocab)

View File

@ -106,7 +106,9 @@ def test_sentencizer_complex(en_vocab, words, sent_starts, sent_ends, n_sents):
),
],
)
def test_sentencizer_custom_punct(en_vocab, punct_chars, words, sent_starts, sent_ends, n_sents):
def test_sentencizer_custom_punct(
en_vocab, punct_chars, words, sent_starts, sent_ends, n_sents
):
doc = Doc(en_vocab, words=words)
sentencizer = Sentencizer(punct_chars=punct_chars)
doc = sentencizer(doc)

View File

@ -56,9 +56,13 @@ def test_serialize_vocab_roundtrip_disk(strings1, strings2):
assert strings1 == [s for s in vocab1_d.strings if s != "_SP"]
assert strings2 == [s for s in vocab2_d.strings if s != "_SP"]
if strings1 == strings2:
assert [s for s in vocab1_d.strings if s != "_SP"] == [s for s in vocab2_d.strings if s != "_SP"]
assert [s for s in vocab1_d.strings if s != "_SP"] == [
s for s in vocab2_d.strings if s != "_SP"
]
else:
assert [s for s in vocab1_d.strings if s != "_SP"] != [s for s in vocab2_d.strings if s != "_SP"]
assert [s for s in vocab1_d.strings if s != "_SP"] != [
s for s in vocab2_d.strings if s != "_SP"
]
@pytest.mark.parametrize("strings,lex_attr", test_strings_attrs)
@ -76,7 +80,6 @@ def test_serialize_vocab_lex_attrs_bytes(strings, lex_attr):
def test_deserialize_vocab_seen_entries(strings, lex_attr):
# Reported in #2153
vocab = Vocab(strings=strings)
length = len(vocab)
vocab.from_bytes(vocab.to_bytes())
assert len(vocab.strings) == len(strings) + 1 # adds _SP
@ -130,6 +133,7 @@ def test_serialize_stringstore_roundtrip_disk(strings1, strings2):
else:
assert list(sstore1_d) != list(sstore2_d)
@pytest.mark.parametrize("strings,lex_attr", test_strings_attrs)
def test_pickle_vocab(strings, lex_attr):
vocab = Vocab(strings=strings)

View File

@ -112,7 +112,7 @@ def test_gold_biluo_different_tokenization(en_vocab, en_tokenizer):
data = (
"I'll return the ₹54 amount",
{
"words": ["I", "'ll", "return", "the", "", "54", "amount",],
"words": ["I", "'ll", "return", "the", "", "54", "amount"],
"entities": [(16, 19, "MONEY")],
},
)
@ -122,7 +122,7 @@ def test_gold_biluo_different_tokenization(en_vocab, en_tokenizer):
data = (
"I'll return the $54 amount",
{
"words": ["I", "'ll", "return", "the", "$", "54", "amount",],
"words": ["I", "'ll", "return", "the", "$", "54", "amount"],
"entities": [(16, 19, "MONEY")],
},
)

View File

@ -366,6 +366,7 @@ def test_vectors_serialize():
assert row == row_r
assert_equal(v.data, v_r.data)
def test_vector_is_oov():
vocab = Vocab(vectors_name="test_vocab_is_oov")
data = numpy.ndarray((5, 3), dtype="f")

View File

@ -774,7 +774,7 @@ def get_words_and_spaces(words, text):
except ValueError:
raise ValueError(Errors.E194.format(text=text, words=words))
if word_start > 0:
text_words.append(text[text_pos:text_pos+word_start])
text_words.append(text[text_pos : text_pos + word_start])
text_spaces.append(False)
text_pos += word_start
text_words.append(word)