Merge vectors.pyx doc strings

This commit is contained in:
Matthew Honnibal 2017-10-01 17:05:54 -05:00
commit d90cc917fa
4 changed files with 54 additions and 324 deletions

View File

@ -1,322 +0,0 @@
'''WIP --- Doesn't work well yet'''
import plac
import random
import six
import cProfile
import pstats
import pathlib
import cPickle as pickle
from itertools import izip
import spacy
import cytoolz
import cupy as xp
import cupy.cuda
import chainer.cuda
import chainer.links as L
import chainer.functions as F
from chainer import Chain, Variable, report
import chainer.training
import chainer.optimizers
from chainer.training import extensions
from chainer.iterators import SerialIterator
from chainer.datasets import TupleDataset
class SentimentAnalyser(object):
@classmethod
def load(cls, path, nlp, max_length=100):
raise NotImplementedError
#with (path / 'config.json').open() as file_:
# model = model_from_json(file_.read())
#with (path / 'model').open('rb') as file_:
# lstm_weights = pickle.load(file_)
#embeddings = get_embeddings(nlp.vocab)
#model.set_weights([embeddings] + lstm_weights)
#return cls(model, max_length=max_length)
def __init__(self, model, max_length=100):
self._model = model
self.max_length = max_length
def __call__(self, doc):
X = get_features([doc], self.max_length)
y = self._model.predict(X)
self.set_sentiment(doc, y)
def pipe(self, docs, batch_size=1000, n_threads=2):
for minibatch in cytoolz.partition_all(batch_size, docs):
minibatch = list(minibatch)
sentences = []
for doc in minibatch:
sentences.extend(doc.sents)
Xs = get_features(sentences, self.max_length)
ys = self._model.predict(Xs)
for sent, label in zip(sentences, ys):
sent.doc.sentiment += label - 0.5
for doc in minibatch:
yield doc
def set_sentiment(self, doc, y):
doc.sentiment = float(y[0])
# Sentiment has a native slot for a single float.
# For arbitrary data storage, there's:
# doc.user_data['my_data'] = y
class Classifier(Chain):
def __init__(self, predictor):
super(Classifier, self).__init__(predictor=predictor)
def __call__(self, x, t):
y = self.predictor(x)
loss = F.softmax_cross_entropy(y, t)
accuracy = F.accuracy(y, t)
report({'loss': loss, 'accuracy': accuracy}, self)
return loss
class SentimentModel(Chain):
def __init__(self, nlp, shape, **settings):
Chain.__init__(self,
embed=_Embed(shape['nr_vector'], shape['nr_dim'], shape['nr_hidden'],
set_vectors=lambda arr: set_vectors(arr, nlp.vocab)),
encode=_Encode(shape['nr_hidden'], shape['nr_hidden']),
attend=_Attend(shape['nr_hidden'], shape['nr_hidden']),
predict=_Predict(shape['nr_hidden'], shape['nr_class']))
self.to_gpu(0)
def __call__(self, sentence):
return self.predict(
self.attend(
self.encode(
self.embed(sentence))))
class _Embed(Chain):
def __init__(self, nr_vector, nr_dim, nr_out, set_vectors=None):
Chain.__init__(self,
embed=L.EmbedID(nr_vector, nr_dim, initialW=set_vectors),
project=L.Linear(None, nr_out, nobias=True))
self.embed.W.volatile = False
def __call__(self, sentence):
return [self.project(self.embed(ts)) for ts in F.transpose(sentence)]
class _Encode(Chain):
def __init__(self, nr_in, nr_out):
Chain.__init__(self,
fwd=L.LSTM(nr_in, nr_out),
bwd=L.LSTM(nr_in, nr_out),
mix=L.Bilinear(nr_out, nr_out, nr_out))
def __call__(self, sentence):
self.fwd.reset_state()
fwds = map(self.fwd, sentence)
self.bwd.reset_state()
bwds = reversed(map(self.bwd, reversed(sentence)))
return [F.elu(self.mix(f, b)) for f, b in zip(fwds, bwds)]
class _Attend(Chain):
def __init__(self, nr_in, nr_out):
Chain.__init__(self)
def __call__(self, sentence):
sent = sum(sentence)
return sent
class _Predict(Chain):
def __init__(self, nr_in, nr_out):
Chain.__init__(self,
l1=L.Linear(nr_in, nr_in),
l2=L.Linear(nr_in, nr_out))
def __call__(self, vector):
vector = self.l1(vector)
vector = F.elu(vector)
vector = self.l2(vector)
return vector
class SentenceDataset(TupleDataset):
def __init__(self, nlp, texts, labels, max_length):
self.max_length = max_length
sents, labels = self._get_labelled_sentences(
nlp.pipe(texts, batch_size=5000, n_threads=3),
labels)
TupleDataset.__init__(self,
get_features(sents, max_length),
labels)
def __getitem__(self, index):
batches = [dataset[index] for dataset in self._datasets]
if isinstance(index, slice):
length = len(batches[0])
returns = [tuple([batch[i] for batch in batches])
for i in six.moves.range(length)]
return returns
else:
return tuple(batches)
def _get_labelled_sentences(self, docs, doc_labels):
labels = []
sentences = []
for doc, y in izip(docs, doc_labels):
for sent in doc.sents:
sentences.append(sent)
labels.append(y)
return sentences, xp.asarray(labels, dtype='i')
class DocDataset(TupleDataset):
def __init__(self, nlp, texts, labels):
self.max_length = max_length
DatasetMixin.__init__(self,
get_features(
nlp.pipe(texts, batch_size=5000, n_threads=3), self.max_length),
labels)
def read_data(data_dir, limit=0):
examples = []
for subdir, label in (('pos', 1), ('neg', 0)):
for filename in (data_dir / subdir).iterdir():
with filename.open() as file_:
text = file_.read()
examples.append((text, label))
random.shuffle(examples)
if limit >= 1:
examples = examples[:limit]
return zip(*examples) # Unzips into two lists
def get_features(docs, max_length):
docs = list(docs)
Xs = xp.zeros((len(docs), max_length), dtype='i')
for i, doc in enumerate(docs):
j = 0
for token in doc:
if token.has_vector and not token.is_punct and not token.is_space:
Xs[i, j] = token.norm
j += 1
if j >= max_length:
break
return Xs
def set_vectors(vectors, vocab):
for lex in vocab:
if lex.has_vector and (lex.rank+1) < vectors.shape[0]:
lex.norm = lex.rank+1
vectors[lex.rank + 1] = lex.vector
else:
lex.norm = 0
return vectors
def train(train_texts, train_labels, dev_texts, dev_labels,
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5,
by_sentence=True):
nlp = spacy.load('en', entity=False)
if 'nr_vector' not in lstm_shape:
lstm_shape['nr_vector'] = max(lex.rank+1 for lex in nlp.vocab if lex.has_vector)
if 'nr_dim' not in lstm_shape:
lstm_shape['nr_dim'] = nlp.vocab.vectors_length
print("Make model")
model = Classifier(SentimentModel(nlp, lstm_shape, **lstm_settings))
print("Parsing texts...")
if by_sentence:
train_data = SentenceDataset(nlp, train_texts, train_labels, lstm_shape['max_length'])
dev_data = SentenceDataset(nlp, dev_texts, dev_labels, lstm_shape['max_length'])
else:
train_data = DocDataset(nlp, train_texts, train_labels)
dev_data = DocDataset(nlp, dev_texts, dev_labels)
train_iter = SerialIterator(train_data, batch_size=batch_size,
shuffle=True, repeat=True)
dev_iter = SerialIterator(dev_data, batch_size=batch_size,
shuffle=False, repeat=False)
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
updater = chainer.training.StandardUpdater(train_iter, optimizer, device=0)
trainer = chainer.training.Trainer(updater, (1, 'epoch'), out='result')
trainer.extend(extensions.Evaluator(dev_iter, model, device=0))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport([
'epoch', 'main/accuracy', 'validation/main/accuracy']))
trainer.extend(extensions.ProgressBar())
trainer.run()
def evaluate(model_dir, texts, labels, max_length=100):
def create_pipeline(nlp):
'''
This could be a lambda, but named functions are easier to read in Python.
'''
return [nlp.tagger, nlp.parser, SentimentAnalyser.load(model_dir, nlp,
max_length=max_length)]
nlp = spacy.load('en')
nlp.pipeline = create_pipeline(nlp)
correct = 0
i = 0
for doc in nlp.pipe(texts, batch_size=1000, n_threads=4):
correct += bool(doc.sentiment >= 0.5) == bool(labels[i])
i += 1
return float(correct) / i
@plac.annotations(
train_dir=("Location of training file or directory"),
dev_dir=("Location of development file or directory"),
model_dir=("Location of output model directory",),
is_runtime=("Demonstrate run-time usage", "flag", "r", bool),
nr_hidden=("Number of hidden units", "option", "H", int),
max_length=("Maximum sentence length", "option", "L", int),
dropout=("Dropout", "option", "d", float),
learn_rate=("Learn rate", "option", "e", float),
nb_epoch=("Number of training epochs", "option", "i", int),
batch_size=("Size of minibatches for training LSTM", "option", "b", int),
nr_examples=("Limit to N examples", "option", "n", int)
)
def main(model_dir, train_dir, dev_dir,
is_runtime=False,
nr_hidden=64, max_length=100, # Shape
dropout=0.5, learn_rate=0.001, # General NN config
nb_epoch=5, batch_size=32, nr_examples=-1): # Training params
model_dir = pathlib.Path(model_dir)
train_dir = pathlib.Path(train_dir)
dev_dir = pathlib.Path(dev_dir)
if is_runtime:
dev_texts, dev_labels = read_data(dev_dir)
acc = evaluate(model_dir, dev_texts, dev_labels, max_length=max_length)
print(acc)
else:
print("Read data")
train_texts, train_labels = read_data(train_dir, limit=nr_examples)
dev_texts, dev_labels = read_data(dev_dir, limit=nr_examples)
print("Using GPU 0")
#chainer.cuda.get_device(0).use()
train_labels = xp.asarray(train_labels, dtype='i')
dev_labels = xp.asarray(dev_labels, dtype='i')
lstm = train(train_texts, train_labels, dev_texts, dev_labels,
{'nr_hidden': nr_hidden, 'max_length': max_length, 'nr_class': 2,
'nr_vector': 5000},
{'dropout': 0.5, 'lr': learn_rate},
{},
nb_epoch=nb_epoch, batch_size=batch_size)
if __name__ == '__main__':
#cProfile.runctx("plac.call(main)", globals(), locals(), "Profile.prof")
#s = pstats.Stats("Profile.prof")
#s.strip_dirs().sort_stats("time").print_stats()
plac.call(main)

View File

@ -0,0 +1,30 @@
'''Load vectors for a language trained using FastText
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
'''
from __future__ import unicode_literals
import plac
import numpy
import spacy.language
def main(vectors_loc):
nlp = spacy.language.Language()
with open(vectors_loc, 'rb') as file_:
header = file_.readline()
nr_row, nr_dim = header.split()
nlp.vocab.clear_vectors(int(nr_dim))
for line in file_:
line = line.decode('utf8')
pieces = line.split()
word = pieces[0]
vector = numpy.asarray([float(v) for v in pieces[1:]], dtype='f')
nlp.vocab.set_vector(word, vector)
doc = nlp(u'class colspan')
print(doc[0].similarity(doc[1]))
if __name__ == '__main__':
plac.call(main)

View File

@ -16,7 +16,16 @@ from .compat import basestring_
cdef class Vectors: cdef class Vectors:
'''Store, save and load word vectors.''' '''Store, save and load word vectors.
Vectors data is kept in the vectors.data attribute, which should be an
instance of numpy.ndarray (for CPU vectors)
or cupy.ndarray (for GPU vectors).
vectors.key2row is a dictionary mapping word hashes to rows
in the vectors.data table. The array `vectors.keys` keeps
the keys in order, such that keys[vectors.key2row[key]] == key.
'''
cdef public object data cdef public object data
cdef readonly StringStore strings cdef readonly StringStore strings
cdef public object key2row cdef public object key2row
@ -44,6 +53,11 @@ cdef class Vectors:
return (Vectors, (self.strings, self.data)) return (Vectors, (self.strings, self.data))
def __getitem__(self, key): def __getitem__(self, key):
'''Get a vector by key. If key is a string, it is hashed
to an integer ID using the vectors.strings table.
If the integer key is not found in the table, a KeyError is raised.
'''
if isinstance(key, basestring): if isinstance(key, basestring):
key = self.strings[key] key = self.strings[key]
i = self.key2row[key] i = self.key2row[key]
@ -53,23 +67,30 @@ cdef class Vectors:
return self.data[i] return self.data[i]
def __setitem__(self, key, vector): def __setitem__(self, key, vector):
'''Set a vector for the given key. If key is a string, it is hashed
to an integer ID using the vectors.strings table.
'''
if isinstance(key, basestring): if isinstance(key, basestring):
key = self.strings.add(key) key = self.strings.add(key)
i = self.key2row[key] i = self.key2row[key]
self.data[i] = vector self.data[i] = vector
def __iter__(self): def __iter__(self):
'''Yield vectors from the table.'''
yield from self.data yield from self.data
def __len__(self): def __len__(self):
'''Return the number of vectors that have been assigned.'''
return self.i return self.i
def __contains__(self, key): def __contains__(self, key):
'''Check whether a key has a vector entry in the table.'''
if isinstance(key, basestring_): if isinstance(key, basestring_):
key = self.strings[key] key = self.strings[key]
return key in self.key2row return key in self.key2row
def add(self, key, vector=None): def add(self, key, vector=None):
'''Add a key to the table, optionally setting a vector value as well.'''
if isinstance(key, basestring_): if isinstance(key, basestring_):
key = self.strings.add(key) key = self.strings.add(key)
if key not in self.key2row: if key not in self.key2row:
@ -87,6 +108,7 @@ cdef class Vectors:
return i return i
def items(self): def items(self):
'''Iterate over (string key, vector) pairs, in order.'''
for i, key in enumerate(self.keys): for i, key in enumerate(self.keys):
string = self.strings[key] string = self.strings[key]
yield string, self.data[i] yield string, self.data[i]

View File

@ -262,7 +262,7 @@ cdef class Vocab:
Words can be looked up by string or int ID. Words can be looked up by string or int ID.
RETURNS: RETURNS:
A word vector. Size and shape determed by the A word vector. Size and shape determined by the
vocab.vectors instance. Usually, a numpy ndarray vocab.vectors instance. Usually, a numpy ndarray
of shape (300,) and dtype float32. of shape (300,) and dtype float32.