remove artificially duplicated test [ci skip]

This commit is contained in:
Sofie Van Landeghem 2021-01-21 10:53:16 +01:00 committed by GitHub
parent e680efc7cc
commit d93cd3b7c0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -226,54 +226,6 @@ def test_overfitting_IO():
assert_equal(batch_cats_1, no_batch_cats)
@pytest.mark.skip(reason="TODO: Can this be removed?")
def test_overfitting_IO_multi_old():
# Simple test to try and quickly overfit the multi-label textcat component - ensuring the ML models work correctly
fix_random_seed(0)
nlp = English()
# Set exclusive labels to False
config = {"model": {"linear_model": {"exclusive_classes": False}}}
textcat = nlp.add_pipe("textcat", config=config)
train_examples = []
for text, annotations in TRAIN_DATA_MULTI_LABEL:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert textcat.model.get_dim("nO") == 2
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["textcat"] < 0.01
# test the trained model
test_text = "I am happy."
doc = nlp(test_text)
cats = doc.cats
assert cats["POSITIVE"] > 0.9
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
cats2 = doc2.cats
assert cats2["POSITIVE"] > 0.9
# Test scoring
scores = nlp.evaluate(train_examples)
assert scores["cats_micro_f"] == 1.0
assert scores["cats_score"] == 1.0
assert "cats_score_desc" in scores
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = ["Just a sentence.", "I like green eggs.", "I am happy.", "I eat ham."]
batch_cats_1 = [doc.cats for doc in nlp.pipe(texts)]
batch_cats_2 = [doc.cats for doc in nlp.pipe(texts)]
no_batch_cats = [doc.cats for doc in [nlp(text) for text in texts]]
assert_equal(batch_cats_1, batch_cats_2)
assert_equal(batch_cats_1, no_batch_cats)
def test_overfitting_IO_multi():
# Simple test to try and quickly overfit the multi-label textcat component - ensuring the ML models work correctly
fix_random_seed(0)