mirror of
https://github.com/explosion/spaCy.git
synced 2025-06-12 17:13:13 +03:00
remove artificially duplicated test [ci skip]
This commit is contained in:
parent
e680efc7cc
commit
d93cd3b7c0
|
@ -226,54 +226,6 @@ def test_overfitting_IO():
|
||||||
assert_equal(batch_cats_1, no_batch_cats)
|
assert_equal(batch_cats_1, no_batch_cats)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skip(reason="TODO: Can this be removed?")
|
|
||||||
def test_overfitting_IO_multi_old():
|
|
||||||
# Simple test to try and quickly overfit the multi-label textcat component - ensuring the ML models work correctly
|
|
||||||
fix_random_seed(0)
|
|
||||||
nlp = English()
|
|
||||||
# Set exclusive labels to False
|
|
||||||
config = {"model": {"linear_model": {"exclusive_classes": False}}}
|
|
||||||
textcat = nlp.add_pipe("textcat", config=config)
|
|
||||||
train_examples = []
|
|
||||||
for text, annotations in TRAIN_DATA_MULTI_LABEL:
|
|
||||||
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
|
||||||
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
||||||
assert textcat.model.get_dim("nO") == 2
|
|
||||||
|
|
||||||
for i in range(50):
|
|
||||||
losses = {}
|
|
||||||
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
||||||
assert losses["textcat"] < 0.01
|
|
||||||
|
|
||||||
# test the trained model
|
|
||||||
test_text = "I am happy."
|
|
||||||
doc = nlp(test_text)
|
|
||||||
cats = doc.cats
|
|
||||||
assert cats["POSITIVE"] > 0.9
|
|
||||||
|
|
||||||
# Also test the results are still the same after IO
|
|
||||||
with make_tempdir() as tmp_dir:
|
|
||||||
nlp.to_disk(tmp_dir)
|
|
||||||
nlp2 = util.load_model_from_path(tmp_dir)
|
|
||||||
doc2 = nlp2(test_text)
|
|
||||||
cats2 = doc2.cats
|
|
||||||
assert cats2["POSITIVE"] > 0.9
|
|
||||||
|
|
||||||
# Test scoring
|
|
||||||
scores = nlp.evaluate(train_examples)
|
|
||||||
assert scores["cats_micro_f"] == 1.0
|
|
||||||
assert scores["cats_score"] == 1.0
|
|
||||||
assert "cats_score_desc" in scores
|
|
||||||
|
|
||||||
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
|
|
||||||
texts = ["Just a sentence.", "I like green eggs.", "I am happy.", "I eat ham."]
|
|
||||||
batch_cats_1 = [doc.cats for doc in nlp.pipe(texts)]
|
|
||||||
batch_cats_2 = [doc.cats for doc in nlp.pipe(texts)]
|
|
||||||
no_batch_cats = [doc.cats for doc in [nlp(text) for text in texts]]
|
|
||||||
assert_equal(batch_cats_1, batch_cats_2)
|
|
||||||
assert_equal(batch_cats_1, no_batch_cats)
|
|
||||||
|
|
||||||
|
|
||||||
def test_overfitting_IO_multi():
|
def test_overfitting_IO_multi():
|
||||||
# Simple test to try and quickly overfit the multi-label textcat component - ensuring the ML models work correctly
|
# Simple test to try and quickly overfit the multi-label textcat component - ensuring the ML models work correctly
|
||||||
fix_random_seed(0)
|
fix_random_seed(0)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user