mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 10:16:27 +03:00
Tidy up and auto-format [ci skip]
This commit is contained in:
parent
cd90752193
commit
dad5621166
|
@ -16,9 +16,9 @@ class KerasSimilarityShim(object):
|
||||||
if get_features is None:
|
if get_features is None:
|
||||||
get_features = get_word_ids
|
get_features = get_word_ids
|
||||||
|
|
||||||
with (path / 'config.json').open() as file_:
|
with (path / "config.json").open() as file_:
|
||||||
model = model_from_json(file_.read())
|
model = model_from_json(file_.read())
|
||||||
with (path / 'model').open('rb') as file_:
|
with (path / "model").open("rb") as file_:
|
||||||
weights = pickle.load(file_)
|
weights = pickle.load(file_)
|
||||||
|
|
||||||
embeddings = get_embeddings(nlp.vocab)
|
embeddings = get_embeddings(nlp.vocab)
|
||||||
|
@ -33,8 +33,8 @@ class KerasSimilarityShim(object):
|
||||||
self.max_length = max_length
|
self.max_length = max_length
|
||||||
|
|
||||||
def __call__(self, doc):
|
def __call__(self, doc):
|
||||||
doc.user_hooks['similarity'] = self.predict
|
doc.user_hooks["similarity"] = self.predict
|
||||||
doc.user_span_hooks['similarity'] = self.predict
|
doc.user_span_hooks["similarity"] = self.predict
|
||||||
|
|
||||||
return doc
|
return doc
|
||||||
|
|
||||||
|
@ -54,8 +54,8 @@ def get_embeddings(vocab, nr_unk=100):
|
||||||
oov = np.random.normal(size=(nr_unk, vocab.vectors_length))
|
oov = np.random.normal(size=(nr_unk, vocab.vectors_length))
|
||||||
oov = oov / oov.sum(axis=1, keepdims=True)
|
oov = oov / oov.sum(axis=1, keepdims=True)
|
||||||
|
|
||||||
vectors = np.zeros((num_vectors + nr_unk, vocab.vectors_length), dtype='float32')
|
vectors = np.zeros((num_vectors + nr_unk, vocab.vectors_length), dtype="float32")
|
||||||
vectors[1:(nr_unk + 1), ] = oov
|
vectors[1 : (nr_unk + 1),] = oov
|
||||||
for lex in vocab:
|
for lex in vocab:
|
||||||
if lex.has_vector and lex.vector_norm > 0:
|
if lex.has_vector and lex.vector_norm > 0:
|
||||||
vectors[nr_unk + lex.rank + 1] = lex.vector / lex.vector_norm
|
vectors[nr_unk + lex.rank + 1] = lex.vector / lex.vector_norm
|
||||||
|
@ -64,7 +64,7 @@ def get_embeddings(vocab, nr_unk=100):
|
||||||
|
|
||||||
|
|
||||||
def get_word_ids(docs, max_length=100, nr_unk=100):
|
def get_word_ids(docs, max_length=100, nr_unk=100):
|
||||||
Xs = np.zeros((len(docs), max_length), dtype='int32')
|
Xs = np.zeros((len(docs), max_length), dtype="int32")
|
||||||
|
|
||||||
for i, doc in enumerate(docs):
|
for i, doc in enumerate(docs):
|
||||||
for j, token in enumerate(doc):
|
for j, token in enumerate(doc):
|
||||||
|
|
|
@ -80,7 +80,7 @@ def main(model_name, unlabelled_loc):
|
||||||
nlp.rehearse(raw_batch, sgd=optimizer, losses=r_losses)
|
nlp.rehearse(raw_batch, sgd=optimizer, losses=r_losses)
|
||||||
print("Losses", losses)
|
print("Losses", losses)
|
||||||
print("R. Losses", r_losses)
|
print("R. Losses", r_losses)
|
||||||
print(nlp.get_pipe('ner').model.unseen_classes)
|
print(nlp.get_pipe("ner").model.unseen_classes)
|
||||||
test_text = "Do you like horses?"
|
test_text = "Do you like horses?"
|
||||||
doc = nlp(test_text)
|
doc = nlp(test_text)
|
||||||
print("Entities in '%s'" % test_text)
|
print("Entities in '%s'" % test_text)
|
||||||
|
@ -88,7 +88,5 @@ def main(model_name, unlabelled_loc):
|
||||||
print(ent.label_, ent.text)
|
print(ent.label_, ent.text)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
plac.call(main)
|
plac.call(main)
|
||||||
|
|
|
@ -24,7 +24,7 @@ from spacy.util import minibatch, compounding
|
||||||
output_dir=("Optional output directory", "option", "o", Path),
|
output_dir=("Optional output directory", "option", "o", Path),
|
||||||
n_texts=("Number of texts to train from", "option", "t", int),
|
n_texts=("Number of texts to train from", "option", "t", int),
|
||||||
n_iter=("Number of training iterations", "option", "n", int),
|
n_iter=("Number of training iterations", "option", "n", int),
|
||||||
init_tok2vec=("Pretrained tok2vec weights", "option", "t2v", Path)
|
init_tok2vec=("Pretrained tok2vec weights", "option", "t2v", Path),
|
||||||
)
|
)
|
||||||
def main(model=None, output_dir=None, n_iter=20, n_texts=2000, init_tok2vec=None):
|
def main(model=None, output_dir=None, n_iter=20, n_texts=2000, init_tok2vec=None):
|
||||||
if output_dir is not None:
|
if output_dir is not None:
|
||||||
|
@ -43,11 +43,7 @@ def main(model=None, output_dir=None, n_iter=20, n_texts=2000, init_tok2vec=None
|
||||||
# nlp.create_pipe works for built-ins that are registered with spaCy
|
# nlp.create_pipe works for built-ins that are registered with spaCy
|
||||||
if "textcat" not in nlp.pipe_names:
|
if "textcat" not in nlp.pipe_names:
|
||||||
textcat = nlp.create_pipe(
|
textcat = nlp.create_pipe(
|
||||||
"textcat",
|
"textcat", config={"exclusive_classes": True, "architecture": "simple_cnn"}
|
||||||
config={
|
|
||||||
"exclusive_classes": True,
|
|
||||||
"architecture": "simple_cnn",
|
|
||||||
}
|
|
||||||
)
|
)
|
||||||
nlp.add_pipe(textcat, last=True)
|
nlp.add_pipe(textcat, last=True)
|
||||||
# otherwise, get it, so we can add labels to it
|
# otherwise, get it, so we can add labels to it
|
||||||
|
|
Loading…
Reference in New Issue
Block a user