WIP on resume

This commit is contained in:
Matthew Honnibal 2020-09-25 20:09:55 +02:00
parent 3d8388969e
commit db3815aa24

View File

@ -135,9 +135,14 @@ def train(
layer.from_bytes(weights_data)
msg.info(f"Loaded pretrained weights into component '{tok2vec_component}'")
# Create iterator, which yields out info after each optimization step.
msg.info("Start training")
score_weights = T_cfg["score_weights"]
if resume_training and has_checkpoint(output_path):
nlp, optimizer, resumed_from = load_checkpoint(output_path, nlp, optimizer)
msg.info(f"Resuming training from step {nr_step}")
else:
msg.info("Start training")
resumed_from = None
# Create iterator, which yields out info after each optimization step.
training_step_iterator = train_while_improving(
nlp,
optimizer,
@ -150,6 +155,7 @@ def train(
eval_frequency=T_cfg["eval_frequency"],
raw_text=None,
exclude=frozen_components,
resumed_from=resumed_from
)
msg.info(f"Training. Initial learn rate: {optimizer.learn_rate}")
with nlp.select_pipes(disable=frozen_components):
@ -161,6 +167,7 @@ def train(
for batch, info, is_best_checkpoint in training_step_iterator:
progress.update(1)
if is_best_checkpoint is not None:
save_checkpoint(output_path, nlp, optimizer, info)
progress.close()
print_row(info)
if is_best_checkpoint and output_path is not None:
@ -171,22 +178,10 @@ def train(
nlp.to_disk(output_path / "model-best")
progress = tqdm.tqdm(total=T_cfg["eval_frequency"], leave=False)
progress.set_description(f"Epoch {info['epoch']}")
except Exception as e:
finalize_logger()
if output_path is not None:
# We don't want to swallow the traceback if we don't have a
# specific error.
msg.warn(
f"Aborting and saving the final best model. "
f"Encountered exception: {str(e)}"
)
nlp = before_to_disk(nlp)
nlp.to_disk(output_path / "model-final")
raise e
finally:
finalize_logger()
if output_path is not None:
final_model_path = output_path / "model-final"
final_model_path = output_path / "model-last"
if optimizer.averages:
with nlp.use_params(optimizer.averages):
nlp.to_disk(final_model_path)
@ -263,6 +258,7 @@ def train_while_improving(
max_steps: int,
raw_text: List[Dict[str, str]],
exclude: List[str],
resumed_from: Optional[Dict]=None
):
"""Train until an evaluation stops improving. Works as a generator,
with each iteration yielding a tuple `(batch, info, is_best_checkpoint)`,
@ -306,8 +302,17 @@ def train_while_improving(
dropouts = thinc.schedules.constant(dropout)
else:
dropouts = dropout
if resumed_from:
results = resumed_from["results"]
losses = resumed_from["losses"]
step = resumed_from["step"]
prev_seconds = resumed_from["seconds"]
else:
results = []
losses = {}
step = 0
words_seen = 0
prev_seconds = 0
if raw_text:
random.shuffle(raw_text)
raw_examples = [
@ -315,9 +320,14 @@ def train_while_improving(
]
raw_batches = util.minibatch(raw_examples, size=8)
words_seen = 0
for _, (epoch, batch) in zip(range(step), train_data):
# If we're resuming, allow the generators to advance for the steps we
# did before. It's hard to otherwise restore the generator state.
dropout = next(dropouts)
optimizer.step_schedules()
start_time = timer()
for step, (epoch, batch) in enumerate(train_data):
for epoch, batch in train_data:
dropout = next(dropouts)
for subbatch in subdivide_batch(batch, accumulate_gradient):
@ -338,7 +348,7 @@ def train_while_improving(
):
proc.model.finish_update(optimizer)
optimizer.step_schedules()
if not (step % eval_frequency):
if step % eval_frequency:
if optimizer.averages:
with nlp.use_params(optimizer.averages):
score, other_scores = evaluate()
@ -346,9 +356,6 @@ def train_while_improving(
score, other_scores = evaluate()
results.append((score, step))
is_best_checkpoint = score == max(results)[0]
else:
score, other_scores = (None, None)
is_best_checkpoint = None
words_seen += sum(len(eg) for eg in batch)
info = {
"epoch": epoch,
@ -357,10 +364,13 @@ def train_while_improving(
"other_scores": other_scores,
"losses": losses,
"checkpoints": results,
"seconds": int(timer() - start_time),
"seconds": int(timer() - start_time) + prev_seconds,
"words": words_seen,
}
yield batch, info, is_best_checkpoint
else:
score, other_scores = (None, None)
is_best_checkpoint = None
if is_best_checkpoint is not None:
losses = {}
# Stop if no improvement in `patience` updates (if specified)
@ -370,6 +380,7 @@ def train_while_improving(
# Stop if we've exhausted our max steps (if specified)
if max_steps and step >= max_steps:
break
step += 1
def subdivide_batch(batch, accumulate_gradient):