mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 00:34:20 +03:00
Add docs [ci skip]
This commit is contained in:
parent
83aff38c59
commit
db9f8896f5
|
@ -117,9 +117,11 @@ Find all token sequences matching the supplied patterns on the `Doc` or `Span`.
|
|||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| ------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `doclike` | The `Doc` or `Span` to match over. ~~Union[Doc, Span]~~ |
|
||||
| **RETURNS** | A list of `(match_id, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end`]. The `match_id` is the ID of the added match pattern. ~~List[Tuple[int, int, int]]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `as_spans` <Tag variant="new">3</Tag> | Instead of tuples, return a list of [`Span`](/api/span) objects of the matches, with the `match_id` assigned as the span label. Defaults to `False`. ~~bool~~ |
|
||||
| **RETURNS** | A list of `(match_id, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end`]. The `match_id` is the ID of the added match pattern. If `as_spans` is set to `True`, a list of `Span` objects is returned instead. ~~Union[List[Tuple[int, int, int]], List[Span]]~~ |
|
||||
|
||||
## Matcher.pipe {#pipe tag="method"}
|
||||
|
||||
|
|
|
@ -58,9 +58,11 @@ Find all token sequences matching the supplied patterns on the `Doc`.
|
|||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ----------------------------------- |
|
||||
| ------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `doc` | The document to match over. ~~Doc~~ |
|
||||
| **RETURNS** | list | A list of `(match_id, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end]`. The `match_id` is the ID of the added match pattern. ~~List[Tuple[int, int, int]]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `as_spans` <Tag variant="new">3</Tag> | Instead of tuples, return a list of [`Span`](/api/span) objects of the matches, with the `match_id` assigned as the span label. Defaults to `False`. ~~bool~~ |
|
||||
| **RETURNS** | A list of `(match_id, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end`]. The `match_id` is the ID of the added match pattern. If `as_spans` is set to `True`, a list of `Span` objects is returned instead. ~~Union[List[Tuple[int, int, int]], List[Span]]~~ |
|
||||
|
||||
<Infobox title="Note on retrieving the string representation of the match_id" variant="warning">
|
||||
|
||||
|
|
|
@ -493,6 +493,39 @@ you prefer.
|
|||
| `i` | Index of the current match (`matches[i`]). ~~int~~ |
|
||||
| `matches` | A list of `(match_id, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end`]. ~~ List[Tuple[int, int int]]~~ |
|
||||
|
||||
### Creating spans from matches {#matcher-spans}
|
||||
|
||||
Creating [`Span`](/api/span) objects from the returned matches is a very common
|
||||
use case. spaCy makes this easy by giving you access to the `start` and `end`
|
||||
token of each match, which you can use to construct a new span with an optional
|
||||
label. As of spaCy v3.0, you can also set `as_spans=True` when calling the
|
||||
matcher on a `Doc`, which will return a list of [`Span`](/api/span) objects
|
||||
using the `match_id` as the span label.
|
||||
|
||||
```python
|
||||
### {executable="true"}
|
||||
import spacy
|
||||
from spacy.matcher import Matcher
|
||||
from spacy.tokens import Span
|
||||
|
||||
nlp = spacy.blank("en")
|
||||
matcher = Matcher(nlp.vocab)
|
||||
matcher.add("PERSON", [[{"lower": "barack"}, {"lower": "obama"}]])
|
||||
doc = nlp("Barack Obama was the 44th president of the United States")
|
||||
|
||||
# 1. Return (match_id, start, end) tuples
|
||||
matches = matcher(doc)
|
||||
for match_id, start, end in matches:
|
||||
# Create the matched span and assign the match_id as a label
|
||||
span = Span(doc, start, end, label=match_id)
|
||||
print(span.text, span.label_)
|
||||
|
||||
# 2. Return Span objects directly
|
||||
matches = matcher(doc, as_spans=True)
|
||||
for span in matches:
|
||||
print(span.text, span.label_)
|
||||
```
|
||||
|
||||
### Using custom pipeline components {#matcher-pipeline}
|
||||
|
||||
Let's say your data also contains some annoying pre-processing artifacts, like
|
||||
|
|
Loading…
Reference in New Issue
Block a user