mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-24 17:06:29 +03:00
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
commit
dbbfe595a5
|
@ -57,7 +57,7 @@ cdef class ParserBeam(object):
|
|||
for state in states:
|
||||
beam = Beam(self.moves.n_moves, width, density)
|
||||
beam.initialize(self.moves.init_beam_state, state.c.length, state.c._sent)
|
||||
for i in range(beam.size):
|
||||
for i in range(beam.width):
|
||||
st = <StateClass>beam.at(i)
|
||||
st.c.offset = state.c.offset
|
||||
self.beams.append(beam)
|
||||
|
@ -81,7 +81,7 @@ cdef class ParserBeam(object):
|
|||
def advance(self, scores, follow_gold=False):
|
||||
cdef Beam beam
|
||||
for i, beam in enumerate(self.beams):
|
||||
if beam.is_done:
|
||||
if beam.is_done or not scores[i].size:
|
||||
continue
|
||||
self._set_scores(beam, scores[i])
|
||||
if self.golds is not None:
|
||||
|
@ -92,6 +92,12 @@ cdef class ParserBeam(object):
|
|||
else:
|
||||
beam.advance(_transition_state, _hash_state, <void*>self.moves.c)
|
||||
beam.check_done(_check_final_state, NULL)
|
||||
if beam.is_done:
|
||||
for j in range(beam.size):
|
||||
if is_gold(<StateClass>beam.at(j), self.golds[i], self.moves.strings):
|
||||
beam._states[j].loss = 0.0
|
||||
elif beam._states[j].loss == 0.0:
|
||||
beam._states[j].loss = 1.0
|
||||
|
||||
def _set_scores(self, Beam beam, float[:, ::1] scores):
|
||||
cdef float* c_scores = &scores[0, 0]
|
||||
|
@ -152,32 +158,49 @@ def update_beam(TransitionSystem moves, int nr_feature, int max_steps,
|
|||
width=width, density=density)
|
||||
gbeam = ParserBeam(moves, states, golds,
|
||||
width=width, density=0.0)
|
||||
cdef StateClass state
|
||||
beam_maps = []
|
||||
backprops = []
|
||||
violns = [MaxViolation() for _ in range(len(states))]
|
||||
for t in range(max_steps):
|
||||
# The beam maps let us find the right row in the flattened scores
|
||||
# arrays for each state. States are identified by (example id, history).
|
||||
# We keep a different beam map for each step (since we'll have a flat
|
||||
# scores array for each step). The beam map will let us take the per-state
|
||||
# losses, and compute the gradient for each (step, state, class).
|
||||
beam_maps.append({})
|
||||
# Gather all states from the two beams in a list. Some stats may occur
|
||||
# in both beams. To figure out which beam each state belonged to,
|
||||
# we keep two lists of indices, p_indices and g_indices
|
||||
states, p_indices, g_indices = get_states(pbeam, gbeam, beam_maps[-1], nr_update)
|
||||
if not states:
|
||||
break
|
||||
# Now that we have our flat list of states, feed them through the model
|
||||
token_ids = get_token_ids(states, nr_feature)
|
||||
vectors, bp_vectors = state2vec.begin_update(token_ids, drop=drop)
|
||||
scores, bp_scores = vec2scores.begin_update(vectors, drop=drop)
|
||||
|
||||
# Store the callbacks for the backward pass
|
||||
backprops.append((token_ids, bp_vectors, bp_scores))
|
||||
|
||||
# Unpack the flat scores into lists for the two beams. The indices arrays
|
||||
# tell us which example and state the scores-row refers to.
|
||||
p_scores = [numpy.ascontiguousarray(scores[indices], dtype='f') for indices in p_indices]
|
||||
g_scores = [numpy.ascontiguousarray(scores[indices], dtype='f') for indices in g_indices]
|
||||
# Now advance the states in the beams. The gold beam is contrained to
|
||||
# to follow only gold analyses.
|
||||
pbeam.advance(p_scores)
|
||||
gbeam.advance(g_scores, follow_gold=True)
|
||||
|
||||
# Track the "maximum violation", to use in the update.
|
||||
for i, violn in enumerate(violns):
|
||||
violn.check_crf(pbeam[i], gbeam[i])
|
||||
|
||||
histories = [(v.p_hist + v.g_hist) for v in violns]
|
||||
losses = [(v.p_probs + v.g_probs) for v in violns]
|
||||
# Only make updates if we have non-gold states
|
||||
histories = [((v.p_hist + v.g_hist) if v.p_hist else []) for v in violns]
|
||||
losses = [((v.p_probs + v.g_probs) if v.p_probs else []) for v in violns]
|
||||
states_d_scores = get_gradient(moves.n_moves, beam_maps,
|
||||
histories, losses)
|
||||
assert len(states_d_scores) == len(backprops), (len(states_d_scores), len(backprops))
|
||||
return states_d_scores, backprops
|
||||
|
||||
|
||||
|
@ -187,17 +210,20 @@ def get_states(pbeams, gbeams, beam_map, nr_update):
|
|||
p_indices = []
|
||||
g_indices = []
|
||||
cdef Beam pbeam, gbeam
|
||||
assert len(pbeams) == len(gbeams)
|
||||
for eg_id, (pbeam, gbeam) in enumerate(zip(pbeams, gbeams)):
|
||||
p_indices.append([])
|
||||
g_indices.append([])
|
||||
if pbeam.loss > 0 and pbeam.min_score > gbeam.score:
|
||||
continue
|
||||
for i in range(pbeam.size):
|
||||
state = <StateClass>pbeam.at(i)
|
||||
if not state.is_final():
|
||||
key = tuple([eg_id] + pbeam.histories[i])
|
||||
seen[key] = len(states)
|
||||
p_indices[-1].append(len(states))
|
||||
states.append(<StateClass>pbeam.at(i))
|
||||
states.append(state)
|
||||
beam_map.update(seen)
|
||||
g_indices.append([])
|
||||
for i in range(gbeam.size):
|
||||
state = <StateClass>gbeam.at(i)
|
||||
if not state.is_final():
|
||||
|
@ -207,10 +233,10 @@ def get_states(pbeams, gbeams, beam_map, nr_update):
|
|||
else:
|
||||
g_indices[-1].append(len(states))
|
||||
beam_map[key] = len(states)
|
||||
states.append(<StateClass>gbeam.at(i))
|
||||
p_indices = [numpy.asarray(idx, dtype='i') for idx in p_indices]
|
||||
g_indices = [numpy.asarray(idx, dtype='i') for idx in g_indices]
|
||||
return states, p_indices, g_indices
|
||||
states.append(state)
|
||||
p_idx = [numpy.asarray(idx, dtype='i') for idx in p_indices]
|
||||
g_idx = [numpy.asarray(idx, dtype='i') for idx in g_indices]
|
||||
return states, p_idx, g_idx
|
||||
|
||||
|
||||
def get_gradient(nr_class, beam_maps, histories, losses):
|
||||
|
@ -230,20 +256,17 @@ def get_gradient(nr_class, beam_maps, histories, losses):
|
|||
nr_step = len(beam_maps)
|
||||
grads = []
|
||||
for beam_map in beam_maps:
|
||||
grads.append(numpy.zeros((max(beam_map.values())+1, nr_class), dtype='f'))
|
||||
if beam_map:
|
||||
grads.append(numpy.zeros((max(beam_map.values())+1, nr_class), dtype='f'))
|
||||
assert len(histories) == len(losses)
|
||||
for eg_id, hists in enumerate(histories):
|
||||
for loss, hist in zip(losses[eg_id], hists):
|
||||
key = tuple([eg_id])
|
||||
for j, clas in enumerate(hist):
|
||||
try:
|
||||
i = beam_maps[j][key]
|
||||
except:
|
||||
print(sorted(beam_maps[j].items()))
|
||||
raise
|
||||
i = beam_maps[j][key]
|
||||
# In step j, at state i action clas
|
||||
# resulted in loss
|
||||
grads[j][i, clas] += loss
|
||||
grads[j][i, clas] += loss / len(histories)
|
||||
key = key + tuple([clas])
|
||||
return grads
|
||||
|
||||
|
|
|
@ -557,20 +557,20 @@ cdef class Parser:
|
|||
my_tokvecs = self.model[0].ops.flatten(my_tokvecs)
|
||||
tokvecs += my_tokvecs
|
||||
|
||||
states, golds, max_moves = self._init_gold_batch(docs, golds)
|
||||
states = self.moves.init_batch(docs)
|
||||
for gold in golds:
|
||||
self.moves.preprocess_gold(gold)
|
||||
|
||||
cuda_stream = get_cuda_stream()
|
||||
state2vec, vec2scores = self.get_batch_model(len(states), tokvecs, cuda_stream, 0.0)
|
||||
|
||||
states_d_scores, backprops = _beam_utils.update_beam(self.moves, self.nr_feature, max_moves,
|
||||
states_d_scores, backprops = _beam_utils.update_beam(self.moves, self.nr_feature, 500,
|
||||
states, tokvecs, golds,
|
||||
state2vec, vec2scores,
|
||||
drop, sgd, losses,
|
||||
width=8)
|
||||
backprop_lower = []
|
||||
for i, d_scores in enumerate(states_d_scores):
|
||||
if d_scores is None:
|
||||
continue
|
||||
if losses is not None:
|
||||
losses[self.name] += (d_scores**2).sum()
|
||||
ids, bp_vectors, bp_scores = backprops[i]
|
||||
|
|
Loading…
Reference in New Issue
Block a user