mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 10:16:27 +03:00
Update comment syntax in MDX
This commit is contained in:
parent
94aa3629bb
commit
dd047abb5f
|
@ -12,7 +12,7 @@ spaCy pipeline. See the docs on
|
|||
[writing trainable components](/usage/processing-pipelines#trainable-components)
|
||||
for how to use the `TrainablePipe` base class to implement custom components.
|
||||
|
||||
<!-- TODO: Pipe vs TrainablePipe, check methods below (all renamed to TrainablePipe for now) -->
|
||||
{/* TODO: Pipe vs TrainablePipe, check methods below (all renamed to TrainablePipe for now) */}
|
||||
|
||||
> #### Why is it implemented in Cython?
|
||||
>
|
||||
|
|
|
@ -7,7 +7,7 @@ menu:
|
|||
- ['Pipeline Design', 'design']
|
||||
---
|
||||
|
||||
<!-- TODO: include interactive demo -->
|
||||
{/* TODO: include interactive demo */}
|
||||
|
||||
### Quickstart {hidden="true"}
|
||||
|
||||
|
|
|
@ -170,7 +170,7 @@ factory = "ner"
|
|||
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
||||
```
|
||||
|
||||
<!-- TODO: Once rehearsal is tested, mention it here. -->
|
||||
{/* TODO: Once rehearsal is tested, mention it here. */}
|
||||
|
||||
## Using transformer models {id="transformers"}
|
||||
|
||||
|
@ -309,14 +309,13 @@ of objects by referring to creation functions, including functions you register
|
|||
yourself. For details on how to get started with training your own model, check
|
||||
out the [training quickstart](/usage/training#quickstart).
|
||||
|
||||
<!-- TODO: <Project id="pipelines/transformers">
|
||||
{/* TODO: <Project id="pipelines/transformers"> */}
|
||||
|
||||
The easiest way to get started is to clone a transformers-based project
|
||||
template. Swap in your data, edit the settings and hyperparameters and train,
|
||||
evaluate, package and visualize your model.
|
||||
{/* The easiest way to get started is to clone a transformers-based project */}
|
||||
{/* template. Swap in your data, edit the settings and hyperparameters and train, */}
|
||||
{/* evaluate, package and visualize your model. */}
|
||||
|
||||
</Project>
|
||||
-->
|
||||
{/* </Project> */}
|
||||
|
||||
The `[components]` section in the [`config.cfg`](/api/data-formats#config)
|
||||
describes the pipeline components and the settings used to construct them,
|
||||
|
|
|
@ -57,7 +57,7 @@ spaCy v3.0 introduces transformer-based pipelines that bring spaCy's accuracy
|
|||
right up to **current state-of-the-art**. You can also use a CPU-optimized
|
||||
pipeline, which is less accurate but much cheaper to run.
|
||||
|
||||
<!-- TODO: update benchmarks and intro -->
|
||||
{/* TODO: update benchmarks and intro */}
|
||||
|
||||
> #### Evaluation details
|
||||
>
|
||||
|
@ -117,6 +117,4 @@ comments.
|
|||
|
||||
</figure>
|
||||
|
||||
<!-- TODO: ## Citing spaCy {id="citation"}
|
||||
|
||||
-->
|
||||
{/* TODO: ## Citing spaCy {id="citation"} */}
|
||||
|
|
|
@ -392,7 +392,7 @@ For example, a command for training a pipeline may depend on a
|
|||
it will export a directory `model-best`, which you can then re-use in other
|
||||
commands.
|
||||
|
||||
<!-- prettier-ignore -->
|
||||
{/* prettier-ignore */}
|
||||
```yaml
|
||||
### project.yml
|
||||
commands:
|
||||
|
@ -445,7 +445,7 @@ directory:
|
|||
|
||||
> #### project.yml
|
||||
>
|
||||
> <!-- prettier-ignore -->
|
||||
> {/* prettier-ignore */}
|
||||
> ```yaml
|
||||
> directories: ['assets', 'configs', 'corpus', 'metas', 'metrics', 'notebooks', 'packages', 'scripts', 'training']
|
||||
> ```
|
||||
|
@ -549,7 +549,7 @@ override settings on the command line – for example using `--vars.batch_size`.
|
|||
> everything with the same Python (not some other Python installed on your
|
||||
> system). It also normalizes references to `python3`, `pip3` and `pip`.
|
||||
|
||||
<!-- prettier-ignore -->
|
||||
{/* prettier-ignore */}
|
||||
```yaml
|
||||
### project.yml
|
||||
vars:
|
||||
|
@ -618,7 +618,7 @@ up to date.
|
|||
|
||||
Note that the contents of an existing file will be **replaced** if no existing
|
||||
auto-generated docs are found. If you want spaCy to ignore a file and not update
|
||||
it, you can add the comment marker `<!-- SPACY PROJECT: IGNORE -->` anywhere in
|
||||
it, you can add the comment marker `{/* SPACY PROJECT: IGNORE */}` anywhere in
|
||||
your markup.
|
||||
|
||||
</Infobox>
|
||||
|
@ -691,9 +691,9 @@ according to a hash of the command string and the command's dependencies.
|
|||
Finally, within those directories are files, named according to an MD5 hash of
|
||||
their contents.
|
||||
|
||||
<!-- TODO: update with actual real example? -->
|
||||
{/* TODO: update with actual real example? */}
|
||||
|
||||
<!-- prettier-ignore -->
|
||||
{/* prettier-ignore */}
|
||||
```yaml
|
||||
└── urlencoded_file_path # Path of original file
|
||||
├── some_command_hash # Hash of command you ran
|
||||
|
@ -818,9 +818,7 @@ workflows, but only one can be tracked by DVC.
|
|||
|
||||
</Infobox>
|
||||
|
||||
<!-- TODO: <Project id="integrations/dvc">
|
||||
|
||||
</Project> -->
|
||||
{/* { TODO: <Project id="integrations/dvc"></Project>} */}
|
||||
|
||||
---
|
||||
|
||||
|
@ -853,7 +851,7 @@ collected with Prodigy and training a spaCy pipeline:
|
|||
> $ python -m spacy project run all
|
||||
> ```
|
||||
|
||||
<!-- prettier-ignore -->
|
||||
{/* prettier-ignore */}
|
||||
```yaml
|
||||
### project.yml
|
||||
vars:
|
||||
|
@ -895,7 +893,7 @@ different portions of the data, e.g. 25%, 50%, 75% and 100%. As a rule of thumb,
|
|||
if accuracy increases in the last segment, this could indicate that collecting
|
||||
more annotations of the same type might improve the model further.
|
||||
|
||||
<!-- prettier-ignore -->
|
||||
{/* prettier-ignore */}
|
||||
```yaml
|
||||
### project.yml (excerpt)
|
||||
- name: "train_curve"
|
||||
|
@ -934,7 +932,7 @@ package helps you integrate spaCy visualizations into your Streamlit apps and
|
|||
quickly spin up demos to explore your pipelines interactively. It includes a
|
||||
full embedded visualizer, as well as individual components.
|
||||
|
||||
<!-- TODO: update once version is stable -->
|
||||
{/* TODO: update once version is stable */}
|
||||
|
||||
> #### Installation
|
||||
>
|
||||
|
@ -963,7 +961,7 @@ and explore your own custom trained pipelines.
|
|||
> $ python -m spacy project run visualize
|
||||
> ```
|
||||
|
||||
<!-- prettier-ignore -->
|
||||
{/* prettier-ignore */}
|
||||
```yaml
|
||||
### project.yml
|
||||
commands:
|
||||
|
@ -1008,7 +1006,7 @@ query your API from Python and JavaScript (Vanilla JS and React).
|
|||
> $ python -m spacy project run serve
|
||||
> ```
|
||||
|
||||
<!-- prettier-ignore -->
|
||||
{/* prettier-ignore */}
|
||||
```yaml
|
||||
### project.yml
|
||||
- name: "serve"
|
||||
|
@ -1114,7 +1112,7 @@ packaged pipeline to the hub. You can either run this as a manual step, or
|
|||
automatically as part of a workflow. Make sure to set `--build wheel` when
|
||||
running `spacy package` to build a wheel file for your pipeline package.
|
||||
|
||||
<!-- prettier-ignore -->
|
||||
{/* prettier-ignore */}
|
||||
```yaml
|
||||
### project.yml
|
||||
- name: "push_to_hub"
|
||||
|
|
|
@ -1429,7 +1429,7 @@ rules included!
|
|||
|
||||
### Using a large number of phrase patterns {id="entityruler-large-phrase-patterns",version="2.2.4"}
|
||||
|
||||
<!-- TODO: double-check that this still works if the ruler is added to the pipeline on creation, and include suggestion if needed -->
|
||||
{/* TODO: double-check that this still works if the ruler is added to the pipeline on creation, and include suggestion if needed */}
|
||||
|
||||
When using a large amount of **phrase patterns** (roughly > 10000) it's useful
|
||||
to understand how the `add_patterns` function of the entity ruler works. For
|
||||
|
|
|
@ -292,7 +292,7 @@ custom components to spaCy automatically.
|
|||
|
||||
</Infobox>
|
||||
|
||||
<!-- ## Initializing components with data {id="initialization",version="3"} -->
|
||||
{/* ## Initializing components with data {id="initialization",version="3"} */}
|
||||
|
||||
## Using entry points {id="entry-points",version="2.1"}
|
||||
|
||||
|
|
|
@ -1439,10 +1439,7 @@ def filter_batch(size: int) -> Callable[[Iterable[Example]], Iterator[List[Examp
|
|||
return create_filtered_batches
|
||||
```
|
||||
|
||||
<!-- TODO:
|
||||
* Custom corpus class
|
||||
* Minibatching
|
||||
-->
|
||||
{/* TODO: Custom corpus class, Minibatching */}
|
||||
|
||||
### Data augmentation {id="data-augmentation"}
|
||||
|
||||
|
@ -1483,7 +1480,6 @@ typically loaded from a JSON file. There are two types of orth variant rules:
|
|||
`"single"` for single tokens that should be replaced (e.g. hyphens) and
|
||||
`"paired"` for pairs of tokens (e.g. quotes).
|
||||
|
||||
<!-- prettier-ignore -->
|
||||
```json
|
||||
### orth_variants.json
|
||||
{
|
||||
|
|
|
@ -116,7 +116,7 @@ train_doc.spans["incorrect_spans"] = [
|
|||
]
|
||||
```
|
||||
|
||||
<!-- TODO: more details and/or example project? -->
|
||||
{/* TODO: more details and/or example project? */}
|
||||
|
||||
### New pipeline packages for Catalan and Danish {id="pipeline-packages"}
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user