Fix label initialization of textcat component (#6190)

This commit is contained in:
Ines Montani 2020-10-03 17:07:38 +02:00 committed by GitHub
parent 989a96308f
commit dd542ec6a4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 64 additions and 125 deletions

View File

@ -497,8 +497,9 @@ class Errors:
E919 = ("A textcat 'positive_label' '{pos_label}' was provided for training "
"data that does not appear to be a binary classification problem "
"with two labels. Labels found: {labels}")
E920 = ("The textcat's 'positive_label' config setting '{pos_label}' "
"does not match any label in the training data. Labels found: {labels}")
E920 = ("The textcat's 'positive_label' setting '{pos_label}' "
"does not match any label in the training data or provided during "
"initialization. Available labels: {labels}")
E921 = ("The method 'set_output' can only be called on components that have "
"a Model with a 'resize_output' attribute. Otherwise, the output "
"layer can not be dynamically changed.")

View File

@ -71,10 +71,6 @@ class SentenceRecognizer(Tagger):
# are 0
return tuple(["I", "S"])
@property
def label_data(self):
return self.labels
def set_annotations(self, docs, batch_tag_ids):
"""Modify a batch of documents, using pre-computed scores.

View File

@ -56,12 +56,7 @@ subword_features = true
@Language.factory(
"textcat",
assigns=["doc.cats"],
default_config={
"labels": [],
"threshold": 0.5,
"positive_label": None,
"model": DEFAULT_TEXTCAT_MODEL,
},
default_config={"threshold": 0.5, "model": DEFAULT_TEXTCAT_MODEL},
default_score_weights={
"cats_score": 1.0,
"cats_score_desc": None,
@ -75,12 +70,7 @@ subword_features = true
},
)
def make_textcat(
nlp: Language,
name: str,
model: Model[List[Doc], List[Floats2d]],
labels: List[str],
threshold: float,
positive_label: Optional[str],
nlp: Language, name: str, model: Model[List[Doc], List[Floats2d]], threshold: float,
) -> "TextCategorizer":
"""Create a TextCategorizer compoment. The text categorizer predicts categories
over a whole document. It can learn one or more labels, and the labels can
@ -90,19 +80,9 @@ def make_textcat(
model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
scores for each category.
labels (list): A list of categories to learn. If empty, the model infers the
categories from the data.
threshold (float): Cutoff to consider a prediction "positive".
positive_label (Optional[str]): The positive label for a binary task with exclusive classes, None otherwise.
"""
return TextCategorizer(
nlp.vocab,
model,
name,
labels=labels,
threshold=threshold,
positive_label=positive_label,
)
return TextCategorizer(nlp.vocab, model, name, threshold=threshold)
class TextCategorizer(Pipe):
@ -112,14 +92,7 @@ class TextCategorizer(Pipe):
"""
def __init__(
self,
vocab: Vocab,
model: Model,
name: str = "textcat",
*,
labels: List[str],
threshold: float,
positive_label: Optional[str],
self, vocab: Vocab, model: Model, name: str = "textcat", *, threshold: float
) -> None:
"""Initialize a text categorizer.
@ -127,9 +100,7 @@ class TextCategorizer(Pipe):
model (thinc.api.Model): The Thinc Model powering the pipeline component.
name (str): The component instance name, used to add entries to the
losses during training.
labels (List[str]): The labels to use.
threshold (float): Cutoff to consider a prediction "positive".
positive_label (Optional[str]): The positive label for a binary task with exclusive classes, None otherwise.
DOCS: https://nightly.spacy.io/api/textcategorizer#init
"""
@ -137,11 +108,7 @@ class TextCategorizer(Pipe):
self.model = model
self.name = name
self._rehearsal_model = None
cfg = {
"labels": labels,
"threshold": threshold,
"positive_label": positive_label,
}
cfg = {"labels": [], "threshold": threshold, "positive_label": None}
self.cfg = dict(cfg)
@property
@ -348,6 +315,7 @@ class TextCategorizer(Pipe):
*,
nlp: Optional[Language] = None,
labels: Optional[Dict] = None,
positive_label: Optional[str] = None,
):
"""Initialize the pipe for training, using a representative set
of data examples.
@ -369,6 +337,14 @@ class TextCategorizer(Pipe):
else:
for label in labels:
self.add_label(label)
if positive_label is not None:
if positive_label not in self.labels:
err = Errors.E920.format(pos_label=positive_label, labels=self.labels)
raise ValueError(err)
if len(self.labels) != 2:
err = Errors.E919.format(pos_label=positive_label, labels=self.labels)
raise ValueError(err)
self.cfg["positive_label"] = positive_label
subbatch = list(islice(get_examples(), 10))
doc_sample = [eg.reference for eg in subbatch]
label_sample, _ = self._examples_to_truth(subbatch)

View File

@ -10,7 +10,6 @@ from spacy.tokens import Doc
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
from spacy.scorer import Scorer
from spacy.training import Example
from spacy.training.initialize import verify_textcat_config
from ..util import make_tempdir
@ -21,6 +20,17 @@ TRAIN_DATA = [
]
def make_get_examples(nlp):
train_examples = []
for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
def get_examples():
return train_examples
return get_examples
@pytest.mark.skip(reason="Test is flakey when run with others")
def test_simple_train():
nlp = Language()
@ -92,10 +102,7 @@ def test_no_label():
def test_implicit_label():
nlp = Language()
nlp.add_pipe("textcat")
train_examples = []
for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
nlp.initialize(get_examples=lambda: train_examples)
nlp.initialize(get_examples=make_get_examples(nlp))
def test_no_resize():
@ -113,29 +120,26 @@ def test_no_resize():
def test_initialize_examples():
nlp = Language()
textcat = nlp.add_pipe("textcat")
train_examples = []
for text, annotations in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
for label, value in annotations.get("cats").items():
textcat.add_label(label)
# you shouldn't really call this more than once, but for testing it should be fine
nlp.initialize()
nlp.initialize(get_examples=lambda: train_examples)
get_examples = make_get_examples(nlp)
nlp.initialize(get_examples=get_examples)
with pytest.raises(ValueError):
nlp.initialize(get_examples=lambda: None)
with pytest.raises(ValueError):
nlp.initialize(get_examples=train_examples)
nlp.initialize(get_examples=get_examples())
def test_overfitting_IO():
# Simple test to try and quickly overfit the textcat component - ensuring the ML models work correctly
fix_random_seed(0)
nlp = English()
nlp.config["initialize"]["components"]["textcat"] = {"positive_label": "POSITIVE"}
# Set exclusive labels
textcat = nlp.add_pipe(
"textcat",
config={"model": {"exclusive_classes": True}, "positive_label": "POSITIVE"},
)
textcat = nlp.add_pipe("textcat", config={"model": {"exclusive_classes": True}},)
train_examples = []
for text, annotations in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
@ -203,28 +207,26 @@ def test_textcat_configs(textcat_config):
def test_positive_class():
nlp = English()
pipe_config = {"positive_label": "POS", "labels": ["POS", "NEG"]}
textcat = nlp.add_pipe("textcat", config=pipe_config)
textcat = nlp.add_pipe("textcat")
get_examples = make_get_examples(nlp)
textcat.initialize(get_examples, labels=["POS", "NEG"], positive_label="POS")
assert textcat.labels == ("POS", "NEG")
verify_textcat_config(nlp, pipe_config)
def test_positive_class_not_present():
nlp = English()
pipe_config = {"positive_label": "POS", "labels": ["SOME", "THING"]}
textcat = nlp.add_pipe("textcat", config=pipe_config)
assert textcat.labels == ("SOME", "THING")
textcat = nlp.add_pipe("textcat")
get_examples = make_get_examples(nlp)
with pytest.raises(ValueError):
verify_textcat_config(nlp, pipe_config)
textcat.initialize(get_examples, labels=["SOME", "THING"], positive_label="POS")
def test_positive_class_not_binary():
nlp = English()
pipe_config = {"positive_label": "POS", "labels": ["SOME", "THING", "POS"]}
textcat = nlp.add_pipe("textcat", config=pipe_config)
assert textcat.labels == ("SOME", "THING", "POS")
textcat = nlp.add_pipe("textcat")
get_examples = make_get_examples(nlp)
with pytest.raises(ValueError):
verify_textcat_config(nlp, pipe_config)
textcat.initialize(get_examples, labels=["SOME", "THING", "POS"], positive_label="POS")
def test_textcat_evaluation():

View File

@ -136,13 +136,7 @@ def test_serialize_textcat_empty(en_vocab):
# See issue #1105
cfg = {"model": DEFAULT_TEXTCAT_MODEL}
model = registry.resolve(cfg, validate=True)["model"]
textcat = TextCategorizer(
en_vocab,
model,
labels=["ENTITY", "ACTION", "MODIFIER"],
threshold=0.5,
positive_label=None,
)
textcat = TextCategorizer(en_vocab, model, threshold=0.5)
textcat.to_bytes(exclude=["vocab"])

View File

@ -50,9 +50,6 @@ def init_nlp(config: Config, *, use_gpu: int = -1) -> "Language":
with nlp.select_pipes(disable=[*frozen_components, *resume_components]):
nlp.initialize(lambda: train_corpus(nlp), sgd=optimizer)
logger.info("Initialized pipeline components")
# Verify the config after calling 'initialize' to ensure labels
# are properly initialized
verify_config(nlp)
return nlp
@ -152,33 +149,6 @@ def init_tok2vec(
return False
def verify_config(nlp: "Language") -> None:
"""Perform additional checks based on the config, loaded nlp object and training data."""
# TODO: maybe we should validate based on the actual components, the list
# in config["nlp"]["pipeline"] instead?
for pipe_config in nlp.config["components"].values():
# We can't assume that the component name == the factory
factory = pipe_config["factory"]
if factory == "textcat":
verify_textcat_config(nlp, pipe_config)
def verify_textcat_config(nlp: "Language", pipe_config: Dict[str, Any]) -> None:
# if 'positive_label' is provided: double check whether it's in the data and
# the task is binary
if pipe_config.get("positive_label"):
textcat_labels = nlp.get_pipe("textcat").labels
pos_label = pipe_config.get("positive_label")
if pos_label not in textcat_labels:
raise ValueError(
Errors.E920.format(pos_label=pos_label, labels=textcat_labels)
)
if len(list(textcat_labels)) != 2:
raise ValueError(
Errors.E919.format(pos_label=pos_label, labels=textcat_labels)
)
def get_sourced_components(config: Union[Dict[str, Any], Config]) -> List[str]:
"""RETURNS (List[str]): All sourced components in the original config,
e.g. {"source": "en_core_web_sm"}. If the config contains a key

View File

@ -36,9 +36,8 @@ architectures and their arguments and hyperparameters.
> ```
| Setting | Description |
| ---------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| ----------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `threshold` | Cutoff to consider a prediction "positive", relevant when printing accuracy results. ~~float~~ |
| `positive_label` | The positive label for a binary task with exclusive classes, None otherwise and by default. ~~Optional[str]~~ |
| `model` | A model instance that predicts scores for each category. Defaults to [TextCatEnsemble](/api/architectures#TextCatEnsemble). ~~Model[List[Doc], List[Floats2d]]~~ |
```python
@ -59,7 +58,7 @@ architectures and their arguments and hyperparameters.
>
> # Construction from class
> from spacy.pipeline import TextCategorizer
> textcat = TextCategorizer(nlp.vocab, model, threshold=0.5, positive_label="POS")
> textcat = TextCategorizer(nlp.vocab, model, threshold=0.5)
> ```
Create a new pipeline instance. In your application, you would normally use a
@ -67,13 +66,12 @@ shortcut for this and instantiate the component using its string name and
[`nlp.add_pipe`](/api/language#create_pipe).
| Name | Description |
| ---------------- | -------------------------------------------------------------------------------------------------------------------------- |
| -------------- | -------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | The shared vocabulary. ~~Vocab~~ |
| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ |
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
| _keyword-only_ | |
| `threshold` | Cutoff to consider a prediction "positive", relevant when printing accuracy results. ~~float~~ |
| `positive_label` | The positive label for a binary task with exclusive classes, None otherwise. ~~Optional[str]~~ |
## TextCategorizer.\_\_call\_\_ {#call tag="method"}
@ -152,6 +150,7 @@ This method was previously called `begin_training`.
> ```ini
> ### config.cfg
> [initialize.components.textcat]
> positive_label = "POS"
>
> [initialize.components.textcat.labels]
> @readers = "spacy.read_labels.v1"
@ -159,11 +158,12 @@ This method was previously called `begin_training`.
> ```
| Name | Description |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| ---------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
| `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Iterable[str]]~~ |
| `positive_label` | The positive label for a binary task with exclusive classes, None otherwise and by default. ~~Optional[str]~~ |
## TextCategorizer.predict {#predict tag="method"}