mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	debugging
This commit is contained in:
		
							parent
							
								
									400b19353d
								
							
						
					
					
						commit
						dd691d0053
					
				| 
						 | 
					@ -28,13 +28,16 @@ class EL_Model:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    PRINT_LOSS = False
 | 
					    PRINT_LOSS = False
 | 
				
			||||||
    PRINT_F = True
 | 
					    PRINT_F = True
 | 
				
			||||||
 | 
					    PRINT_TRAIN = True
 | 
				
			||||||
    EPS = 0.0000000005
 | 
					    EPS = 0.0000000005
 | 
				
			||||||
    CUTOFF = 0.5
 | 
					    CUTOFF = 0.5
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    INPUT_DIM = 300
 | 
					    INPUT_DIM = 300
 | 
				
			||||||
    ENTITY_WIDTH = 64
 | 
					    ENTITY_WIDTH = 4 # 64
 | 
				
			||||||
    ARTICLE_WIDTH = 128
 | 
					    ARTICLE_WIDTH = 8 #  128
 | 
				
			||||||
    HIDDEN_WIDTH = 64
 | 
					    HIDDEN_WIDTH = 6 # 64
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    DROP = 0.00
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    name = "entity_linker"
 | 
					    name = "entity_linker"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -78,10 +81,19 @@ class EL_Model:
 | 
				
			||||||
            print()
 | 
					            print()
 | 
				
			||||||
            print("Training on", len(train_inst.values()), "articles")
 | 
					            print("Training on", len(train_inst.values()), "articles")
 | 
				
			||||||
            print("Dev test on", len(dev_inst.values()), "articles")
 | 
					            print("Dev test on", len(dev_inst.values()), "articles")
 | 
				
			||||||
 | 
					            print()
 | 
				
			||||||
 | 
					            print(" CUTOFF", self.CUTOFF)
 | 
				
			||||||
 | 
					            print(" INPUT_DIM", self.INPUT_DIM)
 | 
				
			||||||
 | 
					            print(" ENTITY_WIDTH", self.ENTITY_WIDTH)
 | 
				
			||||||
 | 
					            print(" ARTICLE_WIDTH", self.ARTICLE_WIDTH)
 | 
				
			||||||
 | 
					            print(" HIDDEN_WIDTH", self.ARTICLE_WIDTH)
 | 
				
			||||||
 | 
					            print(" DROP", self.DROP)
 | 
				
			||||||
 | 
					            print()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # TODO: proper batches. Currently 1 article at the time
 | 
					        # TODO: proper batches. Currently 1 article at the time
 | 
				
			||||||
        article_count = 0
 | 
					        article_count = 0
 | 
				
			||||||
        for article_id, inst_cluster_set in train_inst.items():
 | 
					        for article_id, inst_cluster_set in train_inst.items():
 | 
				
			||||||
 | 
					            try:
 | 
				
			||||||
                # if to_print:
 | 
					                # if to_print:
 | 
				
			||||||
                    # print()
 | 
					                    # print()
 | 
				
			||||||
                    # print(article_count, "Training on article", article_id)
 | 
					                    # print(article_count, "Training on article", article_id)
 | 
				
			||||||
| 
						 | 
					@ -90,6 +102,7 @@ class EL_Model:
 | 
				
			||||||
                entities = list()
 | 
					                entities = list()
 | 
				
			||||||
                golds = list()
 | 
					                golds = list()
 | 
				
			||||||
                for inst_cluster in inst_cluster_set:
 | 
					                for inst_cluster in inst_cluster_set:
 | 
				
			||||||
 | 
					                    if instance_pos_count < 2:   # TODO remove
 | 
				
			||||||
                        article_docs.append(train_doc[article_id])
 | 
					                        article_docs.append(train_doc[article_id])
 | 
				
			||||||
                        entities.append(train_pos.get(inst_cluster))
 | 
					                        entities.append(train_pos.get(inst_cluster))
 | 
				
			||||||
                        golds.append(float(1.0))
 | 
					                        golds.append(float(1.0))
 | 
				
			||||||
| 
						 | 
					@ -100,18 +113,31 @@ class EL_Model:
 | 
				
			||||||
                            golds.append(float(0.0))
 | 
					                            golds.append(float(0.0))
 | 
				
			||||||
                            instance_neg_count += 1
 | 
					                            instance_neg_count += 1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                for k in range(5):
 | 
				
			||||||
 | 
					                    print()
 | 
				
			||||||
 | 
					                    print("update", k)
 | 
				
			||||||
 | 
					                    print()
 | 
				
			||||||
 | 
					                    # print("article docs", article_docs)
 | 
				
			||||||
 | 
					                    print("entities", entities)
 | 
				
			||||||
 | 
					                    print("golds", golds)
 | 
				
			||||||
 | 
					                    print()
 | 
				
			||||||
                    self.update(article_docs=article_docs, entities=entities, golds=golds)
 | 
					                    self.update(article_docs=article_docs, entities=entities, golds=golds)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                    # dev eval
 | 
					                    # dev eval
 | 
				
			||||||
                    self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_inter", avg=False)
 | 
					                    self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_inter", avg=False)
 | 
				
			||||||
 | 
					                    self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_inter_avg", avg=True)
 | 
				
			||||||
 | 
					            except ValueError as e:
 | 
				
			||||||
 | 
					                print("Error in article id", article_id)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if to_print:
 | 
					        if to_print:
 | 
				
			||||||
            print()
 | 
					            print()
 | 
				
			||||||
            print("Trained on", instance_pos_count, "/", instance_neg_count, "instances pos/neg")
 | 
					            print("Trained on", instance_pos_count, "/", instance_neg_count, "instances pos/neg")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        print()
 | 
					        print()
 | 
				
			||||||
        self._test_dev(train_inst, train_pos, train_neg, train_doc, print_string="train_post", calc_random=False)
 | 
					        self._test_dev(train_inst, train_pos, train_neg, train_doc, print_string="train_post", avg=False)
 | 
				
			||||||
 | 
					        self._test_dev(train_inst, train_pos, train_neg, train_doc, print_string="train_post_avg", avg=True)
 | 
				
			||||||
        self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_post", avg=False)
 | 
					        self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_post", avg=False)
 | 
				
			||||||
 | 
					        self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_post_avg", avg=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def _test_dev(self, instances, pos, neg, doc, print_string, avg=False, calc_random=False):
 | 
					    def _test_dev(self, instances, pos, neg, doc, print_string, avg=False, calc_random=False):
 | 
				
			||||||
        predictions = list()
 | 
					        predictions = list()
 | 
				
			||||||
| 
						 | 
					@ -155,16 +181,24 @@ class EL_Model:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def _predict(self, article_doc, entity, avg=False, apply_threshold=True):
 | 
					    def _predict(self, article_doc, entity, avg=False, apply_threshold=True):
 | 
				
			||||||
        if avg:
 | 
					        if avg:
 | 
				
			||||||
            with self.sgd.use_params(self.model.averages):
 | 
					            with self.article_encoder.use_params(self.sgd_article.averages) \
 | 
				
			||||||
                doc_encoding = self.article_encoder([article_doc])
 | 
					                 and self.entity_encoder.use_params(self.sgd_article.averages):
 | 
				
			||||||
                entity_encoding = self.entity_encoder([entity])
 | 
					 | 
				
			||||||
                return self.model(np.append(entity_encoding, doc_encoding))  # TODO list
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
                doc_encoding = self.article_encoder([article_doc])[0]
 | 
					                doc_encoding = self.article_encoder([article_doc])[0]
 | 
				
			||||||
                entity_encoding = self.entity_encoder([entity])[0]
 | 
					                entity_encoding = self.entity_encoder([entity])[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            doc_encoding = self.article_encoder([article_doc])[0]
 | 
				
			||||||
 | 
					            entity_encoding = self.entity_encoder([entity])[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        concat_encoding = list(entity_encoding) + list(doc_encoding)
 | 
					        concat_encoding = list(entity_encoding) + list(doc_encoding)
 | 
				
			||||||
        np_array = np.asarray([concat_encoding])
 | 
					        np_array = np.asarray([concat_encoding])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if avg:
 | 
				
			||||||
 | 
					           with self.model.use_params(self.sgd.averages):
 | 
				
			||||||
               prediction = self.model(np_array)
 | 
					               prediction = self.model(np_array)
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            prediction = self.model(np_array)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if not apply_threshold:
 | 
					        if not apply_threshold:
 | 
				
			||||||
            return float(prediction)
 | 
					            return float(prediction)
 | 
				
			||||||
        if prediction > self.CUTOFF:
 | 
					        if prediction > self.CUTOFF:
 | 
				
			||||||
| 
						 | 
					@ -199,14 +233,17 @@ class EL_Model:
 | 
				
			||||||
                >> flatten_add_lengths \
 | 
					                >> flatten_add_lengths \
 | 
				
			||||||
                >> ParametricAttention(in_width)\
 | 
					                >> ParametricAttention(in_width)\
 | 
				
			||||||
                >> Pooling(mean_pool) \
 | 
					                >> Pooling(mean_pool) \
 | 
				
			||||||
                >> Residual((ExtractWindow(nW=1) >> LN(Maxout(in_width, in_width * 3))))  \
 | 
					                >> (ExtractWindow(nW=1) >> LN(Maxout(in_width, in_width * 3)))  \
 | 
				
			||||||
                >> zero_init(Affine(hidden_width, in_width, drop_factor=0.0))
 | 
					                >> zero_init(Affine(hidden_width, in_width, drop_factor=0.0))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            # TODO: ReLu instead of LN(Maxout)  ?
 | 
					            # TODO: ReLu instead of LN(Maxout)  ?
 | 
				
			||||||
 | 
					            # TODO: more convolutions ?
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        return encoder
 | 
					        return encoder
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def _begin_training(self):
 | 
					    def _begin_training(self):
 | 
				
			||||||
 | 
					        self.sgd_article = create_default_optimizer(self.article_encoder.ops)
 | 
				
			||||||
 | 
					        self.sgd_entity = create_default_optimizer(self.entity_encoder.ops)
 | 
				
			||||||
        self.sgd = create_default_optimizer(self.model.ops)
 | 
					        self.sgd = create_default_optimizer(self.model.ops)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    @staticmethod
 | 
					    @staticmethod
 | 
				
			||||||
| 
						 | 
					@ -216,34 +253,49 @@ class EL_Model:
 | 
				
			||||||
        loss = (d_scores ** 2).sum()
 | 
					        loss = (d_scores ** 2).sum()
 | 
				
			||||||
        return loss, d_scores
 | 
					        return loss, d_scores
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def update(self, article_docs, entities, golds, drop=0., apply_threshold=True):
 | 
					    def update(self, article_docs, entities, golds, apply_threshold=True):
 | 
				
			||||||
        doc_encodings, bp_doc = self.article_encoder.begin_update(article_docs, drop=drop)
 | 
					        print("article_docs", len(article_docs))
 | 
				
			||||||
        entity_encodings, bp_encoding = self.entity_encoder.begin_update(entities, drop=drop)
 | 
					        for a in article_docs:
 | 
				
			||||||
 | 
					            print(a[0:10], a[-10:])
 | 
				
			||||||
 | 
					            doc_encoding, bp_doc = self.article_encoder.begin_update([a], drop=self.DROP)
 | 
				
			||||||
 | 
					            print(doc_encoding)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        doc_encodings, bp_doc = self.article_encoder.begin_update(article_docs, drop=self.DROP)
 | 
				
			||||||
 | 
					        entity_encodings, bp_encoding = self.entity_encoder.begin_update(entities, drop=self.DROP)
 | 
				
			||||||
        concat_encodings = [list(entity_encodings[i]) + list(doc_encodings[i]) for i in range(len(entities))]
 | 
					        concat_encodings = [list(entity_encodings[i]) + list(doc_encodings[i]) for i in range(len(entities))]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        predictions, bp_model = self.model.begin_update(np.asarray(concat_encodings), drop=drop)
 | 
					        print("doc_encodings", len(doc_encodings), doc_encodings)
 | 
				
			||||||
 | 
					        print("entity_encodings", len(entity_encodings), entity_encodings)
 | 
				
			||||||
 | 
					        print("concat_encodings", len(concat_encodings), concat_encodings)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        predictions, bp_model = self.model.begin_update(np.asarray(concat_encodings), drop=self.DROP)
 | 
				
			||||||
 | 
					        print("predictions", predictions)
 | 
				
			||||||
        predictions = self.model.ops.flatten(predictions)
 | 
					        predictions = self.model.ops.flatten(predictions)
 | 
				
			||||||
        golds = self.model.ops.asarray(golds)
 | 
					        golds = self.model.ops.asarray(golds)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        loss, d_scores = self.get_loss(predictions, golds)
 | 
					        loss, d_scores = self.get_loss(predictions, golds)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # if self.PRINT_LOSS:
 | 
					        if self.PRINT_LOSS and self.PRINT_TRAIN:
 | 
				
			||||||
        #    print("loss train", round(loss, 5))
 | 
					            print("loss train", round(loss, 5))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # if self.PRINT_F:
 | 
					        if self.PRINT_F and self.PRINT_TRAIN:
 | 
				
			||||||
        #    predictions_f = [x for x in predictions]
 | 
					            predictions_f = [x for x in predictions]
 | 
				
			||||||
        #    if apply_threshold:
 | 
					            if apply_threshold:
 | 
				
			||||||
        #        predictions_f = [1.0 if x > self.CUTOFF else 0.0 for x in predictions_f]
 | 
					                predictions_f = [1.0 if x > self.CUTOFF else 0.0 for x in predictions_f]
 | 
				
			||||||
        #    p, r, f = run_el.evaluate(predictions_f, golds, to_print=False)
 | 
					            p, r, f = run_el.evaluate(predictions_f, golds, to_print=False)
 | 
				
			||||||
        #    print("p/r/F train", round(p, 1), round(r, 1), round(f, 1))
 | 
					            print("p/r/F train", round(p, 1), round(r, 1), round(f, 1))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        d_scores = d_scores.reshape((-1, 1))
 | 
					        d_scores = d_scores.reshape((-1, 1))
 | 
				
			||||||
        d_scores = d_scores.astype(np.float32)
 | 
					        d_scores = d_scores.astype(np.float32)
 | 
				
			||||||
 | 
					        print("d_scores", d_scores)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        model_gradient = bp_model(d_scores, sgd=self.sgd)
 | 
					        model_gradient = bp_model(d_scores, sgd=self.sgd)
 | 
				
			||||||
 | 
					        print("model_gradient", model_gradient)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        doc_gradient = [x[0:self.ARTICLE_WIDTH] for x in model_gradient]
 | 
					        doc_gradient = [x[0:self.ARTICLE_WIDTH] for x in model_gradient]
 | 
				
			||||||
 | 
					        print("doc_gradient", doc_gradient)
 | 
				
			||||||
        entity_gradient = [x[self.ARTICLE_WIDTH:] for x in model_gradient]
 | 
					        entity_gradient = [x[self.ARTICLE_WIDTH:] for x in model_gradient]
 | 
				
			||||||
 | 
					        print("entity_gradient", entity_gradient)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        bp_doc(doc_gradient)
 | 
					        bp_doc(doc_gradient)
 | 
				
			||||||
        bp_encoding(entity_gradient)
 | 
					        bp_encoding(entity_gradient)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -111,7 +111,7 @@ if __name__ == "__main__":
 | 
				
			||||||
        print("STEP 6: training", datetime.datetime.now())
 | 
					        print("STEP 6: training", datetime.datetime.now())
 | 
				
			||||||
        my_nlp = spacy.load('en_core_web_md')
 | 
					        my_nlp = spacy.load('en_core_web_md')
 | 
				
			||||||
        trainer = EL_Model(kb=my_kb, nlp=my_nlp)
 | 
					        trainer = EL_Model(kb=my_kb, nlp=my_nlp)
 | 
				
			||||||
        trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=2000, devlimit=200)
 | 
					        trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=1, devlimit=10)
 | 
				
			||||||
        print()
 | 
					        print()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # STEP 7: apply the EL algorithm on the dev dataset
 | 
					    # STEP 7: apply the EL algorithm on the dev dataset
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -293,7 +293,7 @@ class Tensorizer(Pipe):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        docs (iterable): A batch of `Doc` objects.
 | 
					        docs (iterable): A batch of `Doc` objects.
 | 
				
			||||||
        golds (iterable): A batch of `GoldParse` objects.
 | 
					        golds (iterable): A batch of `GoldParse` objects.
 | 
				
			||||||
        drop (float): The droput rate.
 | 
					        drop (float): The dropout rate.
 | 
				
			||||||
        sgd (callable): An optimizer.
 | 
					        sgd (callable): An optimizer.
 | 
				
			||||||
        RETURNS (dict): Results from the update.
 | 
					        RETURNS (dict): Results from the update.
 | 
				
			||||||
        """
 | 
					        """
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user