Add model-last saving mechanism to pretraining (#12459)

* Adjust pretrain command

* chane naming and add finally block

* Add unit test

* Add unit test assertions

* Update spacy/training/pretrain.py

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* change finally block

* Add to docs

* Update website/docs/usage/embeddings-transformers.mdx

* Add flag to skip saving model-last

---------

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
This commit is contained in:
Edward 2023-04-03 15:24:03 +02:00 committed by GitHub
parent 4a1ec332de
commit de32011e4c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 53 additions and 32 deletions

View File

@ -23,6 +23,7 @@ def pretrain_cli(
resume_path: Optional[Path] = Opt(None, "--resume-path", "-r", help="Path to pretrained weights from which to resume pretraining"),
epoch_resume: Optional[int] = Opt(None, "--epoch-resume", "-er", help="The epoch to resume counting from when using --resume-path. Prevents unintended overwriting of existing weight files."),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
skip_last: bool = Opt(False, "--skip-last", "-L", help="Skip saving model-last.bin"),
# fmt: on
):
"""
@ -74,6 +75,7 @@ def pretrain_cli(
epoch_resume=epoch_resume,
use_gpu=use_gpu,
silent=False,
skip_last=skip_last,
)
msg.good("Successfully finished pretrain")

View File

@ -165,7 +165,8 @@ def test_pretraining_default():
@pytest.mark.parametrize("objective", CHAR_OBJECTIVES)
def test_pretraining_tok2vec_characters(objective):
@pytest.mark.parametrize("skip_last", (True, False))
def test_pretraining_tok2vec_characters(objective, skip_last):
"""Test that pretraining works with the character objective"""
config = Config().from_str(pretrain_string_listener)
config["pretraining"]["objective"] = objective
@ -178,10 +179,14 @@ def test_pretraining_tok2vec_characters(objective):
filled["paths"]["raw_text"] = file_path
filled = filled.interpolate()
assert filled["pretraining"]["component"] == "tok2vec"
pretrain(filled, tmp_dir)
pretrain(filled, tmp_dir, skip_last=skip_last)
assert Path(tmp_dir / "model0.bin").exists()
assert Path(tmp_dir / "model4.bin").exists()
assert not Path(tmp_dir / "model5.bin").exists()
if skip_last:
assert not Path(tmp_dir / "model-last.bin").exists()
else:
assert Path(tmp_dir / "model-last.bin").exists()
@pytest.mark.parametrize("objective", VECTOR_OBJECTIVES)
@ -237,6 +242,7 @@ def test_pretraining_tagger_tok2vec(config):
pretrain(filled, tmp_dir)
assert Path(tmp_dir / "model0.bin").exists()
assert Path(tmp_dir / "model4.bin").exists()
assert Path(tmp_dir / "model-last.bin").exists()
assert not Path(tmp_dir / "model5.bin").exists()

View File

@ -24,6 +24,7 @@ def pretrain(
epoch_resume: Optional[int] = None,
use_gpu: int = -1,
silent: bool = True,
skip_last: bool = False,
):
msg = Printer(no_print=silent)
if config["training"]["seed"] is not None:
@ -60,10 +61,14 @@ def pretrain(
row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")}
msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings)
def _save_model(epoch, is_temp=False):
def _save_model(epoch, is_temp=False, is_last=False):
is_temp_str = ".temp" if is_temp else ""
with model.use_params(optimizer.averages):
with (output_dir / f"model{epoch}{is_temp_str}.bin").open("wb") as file_:
if is_last:
save_path = output_dir / f"model-last.bin"
else:
save_path = output_dir / f"model{epoch}{is_temp_str}.bin"
with (save_path).open("wb") as file_:
file_.write(model.get_ref("tok2vec").to_bytes())
log = {
"nr_word": tracker.nr_word,
@ -76,6 +81,7 @@ def pretrain(
# TODO: I think we probably want this to look more like the
# 'create_train_batches' function?
try:
for epoch in range(epoch_resume, P["max_epochs"]):
for batch_id, batch in enumerate(batcher(corpus(nlp))):
docs = ensure_docs(batch)
@ -92,6 +98,9 @@ def pretrain(
else:
_save_model(epoch)
tracker.epoch_loss = 0.0
finally:
if not skip_last:
_save_model(P["max_epochs"], is_last=True)
def ensure_docs(examples_or_docs: Iterable[Union[Doc, Example]]) -> List[Doc]:

View File

@ -1123,13 +1123,14 @@ $ python -m spacy pretrain [config_path] [output_dir] [--code] [--resume-path] [
```
| Name | Description |
| ----------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| -------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. If `-`, the data will be [read from stdin](/usage/training#config-stdin). ~~Union[Path, str] \(positional)~~ |
| `output_dir` | Directory to save binary weights to on each epoch. ~~Path (positional)~~ |
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
| `--resume-path`, `-r` | Path to pretrained weights from which to resume pretraining. ~~Optional[Path] \(option)~~ |
| `--epoch-resume`, `-er` | The epoch to resume counting from when using `--resume-path`. Prevents unintended overwriting of existing weight files. ~~Optional[int] \(option)~~ |
| `--gpu-id`, `-g` | GPU ID or `-1` for CPU. Defaults to `-1`. ~~int (option)~~ |
| `--skip-last`, `-L` <Tag variant="new">3.5.2</Tag> | Skip saving `model-last.bin`. Defaults to `False`. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--training.dropout 0.2`. ~~Any (option/flag)~~ |
| **CREATES** | The pretrained weights that can be used to initialize `spacy train`. |

View File

@ -746,13 +746,16 @@ this by setting `initialize.init_tok2vec` to the filename of the `.bin` file
that you want to use from pretraining.
A pretraining step that runs for 5 epochs with an output path of `pretrain/`, as
an example, produces `pretrain/model0.bin` through `pretrain/model4.bin`. To
make use of the final output, you could fill in this value in your config file:
an example, produces `pretrain/model0.bin` through `pretrain/model4.bin` plus a
copy of the last iteration as `pretrain/model-last.bin`. Additionally, you can
configure `n_save_epoch` to tell pretraining in which epoch interval it should
save the current training progress. To use the final output to initialize your
`tok2vec` layer, you could fill in this value in your config file:
```ini {title="config.cfg"}
[paths]
init_tok2vec = "pretrain/model4.bin"
init_tok2vec = "pretrain/model-last.bin"
[initialize]
init_tok2vec = ${paths.init_tok2vec}