Add code for Keras NLI example

This commit is contained in:
Matthew Honnibal 2016-10-31 23:54:28 +01:00
parent d563f1eadb
commit de32b6e5b8
3 changed files with 384 additions and 0 deletions

105
examples/nli/__main__.py Normal file
View File

@ -0,0 +1,105 @@
from __future__ import division, unicode_literals, print_function
import spacy
import plac
from pathlib import Path
from spacy_hook import get_embeddings, get_word_ids
from spacy_hook import create_similarity_pipeline
def train(model_dir, train_loc, dev_loc, shape, settings):
print("Loading spaCy")
nlp = spacy.load('en', tagger=False, parser=False, entity=False, matcher=False)
print("Compiling network")
model = build_model(get_embeddings(nlp.vocab), shape, settings)
print("Processing texts...")
train_X = get_features(list(nlp.pipe(train_texts)))
dev_X = get_features(list(nlp.pipe(dev_texts)))
model.fit(
train_X,
train_labels,
validation_data=(dev_X, dev_labels),
nb_epoch=settings['nr_epoch'],
batch_size=settings['batch_size'])
def evaluate(model_dir, dev_loc):
nlp = spacy.load('en', path=model_dir,
tagger=False, parser=False, entity=False, matcher=False,
create_pipeline=create_similarity_pipeline)
n = 0
correct = 0
for (text1, text2), label in zip(dev_texts, dev_labels):
doc1 = nlp(text1)
doc2 = nlp(text2)
sim = doc1.similarity(doc2)
if bool(sim >= 0.5) == label:
correct += 1
n += 1
return correct, total
def demo(model_dir):
nlp = spacy.load('en', path=model_dir,
tagger=False, parser=False, entity=False, matcher=False,
create_pipeline=create_similarity_pipeline)
doc1 = nlp(u'Worst fries ever! Greasy and horrible...')
doc2 = nlp(u'The milkshakes are good. The fries are bad.')
print('doc1.similarity(doc2)', doc1.similarity(doc2))
sent1a, sent1b = doc1.sents
print('sent1a.similarity(sent1b)', sent1a.similarity(sent1b))
print('sent1a.similarity(doc2)', sent1a.similarity(doc2))
print('sent1b.similarity(doc2)', sent1b.similarity(doc2))
LABELS = {'entailment': 0, 'contradiction': 1, 'neutral': 2}
def read_snli(loc):
with open(loc) as file_:
for line in file_:
eg = json.loads(line)
label = eg['gold_label']
if label == '-':
continue
text1 = eg['sentence1']
text2 = eg['sentence2']
yield text1, text2, LABELS[label]
@plac.annotations(
mode=("Mode to execute", "positional", None, str, ["train", "evaluate", "demo"]),
model_dir=("Path to spaCy model directory", "positional", None, Path),
train_loc=("Path to training data", "positional", None, Path),
dev_loc=("Path to development data", "positional", None, Path),
max_length=("Length to truncate sentences", "option", "L", int),
nr_hidden=("Number of hidden units", "option", "H", int),
dropout=("Dropout level", "option", "d", float),
learn_rate=("Learning rate", "option", "e", float),
batch_size=("Batch size for neural network training", "option", "b", float),
nr_epoch=("Number of training epochs", "option", "i", float)
)
def main(mode, model_dir, train_loc, dev_loc,
max_length=100,
nr_hidden=100,
dropout=0.2,
learn_rate=0.001,
batch_size=100,
nr_epoch=5):
shape = (max_length, nr_hidden, 3)
settings = {
'lr': learn_rate,
'dropout': dropout,
'batch_size': batch_size,
'nr_epoch': nr_epoch
}
if mode == 'train':
train(model_dir, train_loc, dev_loc, shape, settings)
elif mode == 'evaluate':
evaluate(model_dir, dev_loc)
else:
demo(model_dir)
if __name__ == '__main__':
plac.call(main)

View File

@ -0,0 +1,217 @@
# Semantic similarity with decomposable attention (using spaCy and Keras)
# Practical state-of-the-art text similarity with spaCy and Keras
import numpy
from keras.layers import InputSpec, Layer, Input, Dense, merge
from keras.layers import Activation, Dropout, Embedding, TimeDistributed
import keras.backend as K
import theano.tensor as T
from keras.models import Sequential, Model, model_from_json
from keras.regularizers import l2
from keras.optimizers import Adam
from keras.layers.normalization import BatchNormalization
def build_model(vectors, shape, settings):
'''Compile the model.'''
max_length, nr_hidden, nr_class = shape
# Declare inputs.
ids1 = Input(shape=(max_length,), dtype='int32', name='words1')
ids2 = Input(shape=(max_length,), dtype='int32', name='words2')
# Construct operations, which we'll chain together.
embed = _StaticEmbedding(vectors, max_length, nr_hidden)
attend = _Attention(max_length, nr_hidden)
align = _SoftAlignment(max_length, nr_hidden)
compare = _Comparison(max_length, nr_hidden)
entail = _Entailment(nr_hidden, nr_class)
# Declare the model as a computational graph.
sent1 = embed(ids1) # Shape: (i, n)
sent2 = embed(ids2) # Shape: (j, n)
attention = attend(sent1, sent2) # Shape: (i, j)
align1 = align(sent2, attention)
align2 = align(sent1, attention, transpose=True)
feats1 = compare(sent1, align1)
feats2 = compare(sent2, align2)
scores = entail(feats1, feats2)
# Now that we have the input/output, we can construct the Model object...
model = Model(input=[ids1, ids2], output=[scores])
# ...Compile it...
model.compile(
optimizer=Adam(lr=settings['lr']),
loss='categorical_crossentropy',
metrics=['accuracy'])
# ...And return it for training.
return model
class _StaticEmbedding(object):
def __init__(self, vectors, max_length, nr_out):
self.embed = Embedding(
vectors.shape[0],
vectors.shape[1],
input_length=max_length,
weights=[vectors],
name='embed',
trainable=False,
dropout=0.0)
self.project = TimeDistributed(
Dense(
nr_out,
activation=None,
bias=False,
name='project'))
def __call__(self, sentence):
return self.project(self.embed(sentence))
class _Attention(object):
def __init__(self, max_length, nr_hidden, dropout=0.0, L2=1e-4, activation='relu'):
self.max_length = max_length
self.model = Sequential()
self.model.add(
Dense(nr_hidden, name='attend1',
init='he_normal', W_regularizer=l2(L2),
input_shape=(nr_hidden,), activation='relu'))
self.model.add(Dropout(dropout))
self.model.add(Dense(nr_hidden, name='attend2',
init='he_normal', W_regularizer=l2(L2), activation='relu'))
self.model = TimeDistributed(self.model)
def __call__(self, sent1, sent2):
def _outer((A, B)):
att_ji = T.batched_dot(B, A.dimshuffle((0, 2, 1)))
return att_ji.dimshuffle((0, 2, 1))
return merge(
[self.model(sent1), self.model(sent2)],
mode=_outer,
output_shape=(self.max_length, self.max_length))
class _SoftAlignment(object):
def __init__(self, max_length, nr_hidden):
self.max_length = max_length
self.nr_hidden = nr_hidden
def __call__(self, sentence, attention, transpose=False):
def _normalize_attention((att, mat)):
if transpose:
att = att.dimshuffle((0, 2, 1))
# 3d softmax
e = K.exp(att - K.max(att, axis=-1, keepdims=True))
s = K.sum(e, axis=-1, keepdims=True)
sm_att = e / s
return T.batched_dot(sm_att, mat)
return merge([attention, sentence], mode=_normalize_attention,
output_shape=(self.max_length, self.nr_hidden)) # Shape: (i, n)
class _Comparison(object):
def __init__(self, words, nr_hidden, L2=1e-6, dropout=0.2):
self.words = words
self.model = Sequential()
self.model.add(Dense(nr_hidden, name='compare1',
init='he_normal', W_regularizer=l2(L2),
input_shape=(nr_hidden*2,)))
self.model.add(Activation('relu'))
self.model.add(Dropout(dropout))
self.model.add(Dense(nr_hidden, name='compare2',
W_regularizer=l2(L2), init='he_normal'))
self.model.add(Activation('relu'))
self.model.add(Dropout(dropout))
self.model = TimeDistributed(self.model)
def __call__(self, sent, align, **kwargs):
result = self.model(merge([sent, align], mode='concat')) # Shape: (i, n)
result = _GlobalSumPooling1D()(result, mask=self.words)
return result
class _Entailment(object):
def __init__(self, nr_hidden, nr_out, dropout=0.2, L2=1e-4):
self.model = Sequential()
self.model.add(Dense(nr_hidden, name='entail1',
init='he_normal', W_regularizer=l2(L2),
input_shape=(nr_hidden*2,)))
self.model.add(Activation('relu'))
self.model.add(Dropout(dropout))
self.model.add(Dense(nr_out, name='entail_out', activation='softmax',
W_regularizer=l2(L2), init='zero'))
def __call__(self, feats1, feats2):
features = merge([feats1, feats2], mode='concat')
return self.model(features)
class _GlobalSumPooling1D(Layer):
'''Global sum pooling operation for temporal data.
# Input shape
3D tensor with shape: `(samples, steps, features)`.
# Output shape
2D tensor with shape: `(samples, features)`.
'''
def __init__(self, **kwargs):
super(_GlobalSumPooling1D, self).__init__(**kwargs)
self.input_spec = [InputSpec(ndim=3)]
def get_output_shape_for(self, input_shape):
return (input_shape[0], input_shape[2])
def call(self, x, mask=None):
if mask is not None:
return K.sum(x * T.clip(mask, 0, 1), axis=1)
else:
return K.sum(x, axis=1)
def test_build_model():
vectors = numpy.ndarray((100, 8), dtype='float32')
shape = (10, 16, 3)
settings = {'lr': 0.001, 'dropout': 0.2}
model = build_model(vectors, shape, settings)
def test_fit_model():
def _generate_X(nr_example, length, nr_vector):
X1 = numpy.ndarray((nr_example, length), dtype='int32')
X1 *= X1 < nr_vector
X1 *= 0 <= X1
X2 = numpy.ndarray((nr_example, length), dtype='int32')
X2 *= X2 < nr_vector
X2 *= 0 <= X2
return [X1, X2]
def _generate_Y(nr_example, nr_class):
ys = numpy.zeros((nr_example, nr_class), dtype='int32')
for i in range(nr_example):
ys[i, i % nr_class] = 1
return ys
vectors = numpy.ndarray((100, 8), dtype='float32')
shape = (10, 16, 3)
settings = {'lr': 0.001, 'dropout': 0.2}
model = build_model(vectors, shape, settings)
train_X = _generate_X(20, shape[0], vectors.shape[1])
train_Y = _generate_Y(20, shape[2])
dev_X = _generate_X(15, shape[0], vectors.shape[1])
dev_Y = _generate_Y(15, shape[2])
model.fit(train_X, train_Y, validation_data=(dev_X, dev_Y), nb_epoch=5,
batch_size=4)
__all__ = [build_model]

View File

@ -0,0 +1,62 @@
from keras.models import model_from_json
class KerasSimilarityShim(object):
@classmethod
def load(cls, path, nlp, get_features=None):
if get_features is None:
get_features = doc2ids
with (path / 'config.json').open() as file_:
config = json.load(file_)
model = model_from_json(config['model'])
with (path / 'model').open('rb') as file_:
weights = pickle.load(file_)
embeddings = get_embeddings(nlp.vocab)
model.set_weights([embeddings] + weights)
return cls(model, get_features=get_features)
def __init__(self, model, get_features=None):
self.model = model
self.get_features = get_features
def __call__(self, doc):
doc.user_hooks['similarity'] = self.predict
doc.user_span_hooks['similarity'] = self.predict
def predict(self, doc1, doc2):
x1 = self.get_features(doc1)
x2 = self.get_features(doc2)
scores = self.model.predict([x1, x2])
return scores[0]
def get_embeddings(cls, vocab):
max_rank = max(lex.rank+1 for lex in vocab if lex.has_vector)
vectors = numpy.ndarray((max_rank+1, vocab.vectors_length), dtype='float32')
for lex in vocab:
if lex.has_vector:
vectors[lex.rank + 1] = lex.vector
return vectors
def get_word_ids(docs, max_length=100):
Xs = numpy.zeros((len(docs), max_length), dtype='int32')
for i, doc in enumerate(docs):
j = 0
for token in doc:
if token.has_vector and not token.is_punct and not token.is_space:
Xs[i, j] = token.rank + 1
j += 1
if j >= max_length:
break
return Xs
def create_similarity_pipeline(nlp):
return [SimilarityModel.load(
nlp.path / 'similarity',
nlp,
feature_extracter=get_features)]