mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-11 17:56:30 +03:00
Update feature/noshare with recent develop changes
This commit is contained in:
commit
defb68e94f
|
@ -1,4 +1,4 @@
|
|||
cython>=0.24
|
||||
cython>=0.24,<0.27.0
|
||||
pathlib
|
||||
numpy>=1.7
|
||||
cymem>=1.30,<1.32
|
||||
|
|
|
@ -20,6 +20,7 @@ from ..gold import GoldParse, merge_sents
|
|||
from ..gold import GoldCorpus, minibatch
|
||||
from ..util import prints
|
||||
from .. import util
|
||||
from .. import about
|
||||
from .. import displacy
|
||||
from ..compat import json_dumps
|
||||
|
||||
|
@ -40,10 +41,11 @@ numpy.random.seed(0)
|
|||
no_parser=("Don't train parser", "flag", "P", bool),
|
||||
no_entities=("Don't train NER", "flag", "N", bool),
|
||||
gold_preproc=("Use gold preprocessing", "flag", "G", bool),
|
||||
meta_path=("Optional path to meta.json. All relevant properties will be overwritten.", "option", "m", Path)
|
||||
)
|
||||
def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
|
||||
use_gpu=-1, vectors=None, no_tagger=False, no_parser=False, no_entities=False,
|
||||
gold_preproc=False):
|
||||
gold_preproc=False, meta_path=None):
|
||||
"""
|
||||
Train a model. Expects data in spaCy's JSON format.
|
||||
"""
|
||||
|
@ -52,13 +54,19 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
|
|||
output_path = util.ensure_path(output_dir)
|
||||
train_path = util.ensure_path(train_data)
|
||||
dev_path = util.ensure_path(dev_data)
|
||||
meta_path = util.ensure_path(meta_path)
|
||||
if not output_path.exists():
|
||||
output_path.mkdir()
|
||||
if not train_path.exists():
|
||||
prints(train_path, title="Training data not found", exits=1)
|
||||
if dev_path and not dev_path.exists():
|
||||
prints(dev_path, title="Development data not found", exits=1)
|
||||
|
||||
if meta_path is not None and not meta_path.exists():
|
||||
prints(meta_path, title="meta.json not found", exits=1)
|
||||
meta = util.read_json(meta_path) if meta_path else {}
|
||||
if not isinstance(meta, dict):
|
||||
prints("Expected dict but got: {}".format(type(meta)),
|
||||
title="Not a valid meta.json format", exits=1)
|
||||
|
||||
pipeline = ['tags', 'dependencies', 'entities']
|
||||
if no_tagger and 'tags' in pipeline: pipeline.remove('tags')
|
||||
|
@ -112,6 +120,17 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
|
|||
acc_loc =(output_path / ('model%d' % i) / 'accuracy.json')
|
||||
with acc_loc.open('w') as file_:
|
||||
file_.write(json_dumps(scorer.scores))
|
||||
meta_loc = output_path / ('model%d' % i) / 'meta.json'
|
||||
meta['accuracy'] = scorer.scores
|
||||
meta['lang'] = nlp.lang
|
||||
meta['pipeline'] = pipeline
|
||||
meta['spacy_version'] = '>=%s' % about.__version__
|
||||
meta.setdefault('name', 'model%d' % i)
|
||||
meta.setdefault('version', '0.0.0')
|
||||
|
||||
with meta_loc.open('w') as file_:
|
||||
file_.write(json_dumps(meta))
|
||||
>>>>>>> origin/develop
|
||||
util.set_env_log(True)
|
||||
print_progress(i, losses, scorer.scores)
|
||||
finally:
|
||||
|
|
|
@ -48,7 +48,7 @@ from .parts_of_speech import X
|
|||
|
||||
|
||||
class SentenceSegmenter(object):
|
||||
'''A simple spaCy hook, to allow custom sentence boundary detection logic
|
||||
"""A simple spaCy hook, to allow custom sentence boundary detection logic
|
||||
(that doesn't require the dependency parse).
|
||||
|
||||
To change the sentence boundary detection strategy, pass a generator
|
||||
|
@ -57,7 +57,7 @@ class SentenceSegmenter(object):
|
|||
|
||||
Sentence detection strategies should be generators that take `Doc` objects
|
||||
and yield `Span` objects for each sentence.
|
||||
'''
|
||||
"""
|
||||
name = 'sbd'
|
||||
|
||||
def __init__(self, vocab, strategy=None):
|
||||
|
@ -89,17 +89,30 @@ class BaseThincComponent(object):
|
|||
|
||||
@classmethod
|
||||
def Model(cls, *shape, **kwargs):
|
||||
"""Initialize a model for the pipe."""
|
||||
raise NotImplementedError
|
||||
|
||||
def __init__(self, vocab, model=True, **cfg):
|
||||
"""Create a new pipe instance."""
|
||||
raise NotImplementedError
|
||||
|
||||
def __call__(self, doc):
|
||||
"""Apply the pipe to one document. The document is
|
||||
modified in-place, and returned.
|
||||
|
||||
Both __call__ and pipe should delegate to the `predict()`
|
||||
and `set_annotations()` methods.
|
||||
"""
|
||||
scores = self.predict([doc])
|
||||
self.set_annotations([doc], scores)
|
||||
return doc
|
||||
|
||||
def pipe(self, stream, batch_size=128, n_threads=-1):
|
||||
"""Apply the pipe to a stream of documents.
|
||||
|
||||
Both __call__ and pipe should delegate to the `predict()`
|
||||
and `set_annotations()` methods.
|
||||
"""
|
||||
for docs in cytoolz.partition_all(batch_size, stream):
|
||||
docs = list(docs)
|
||||
scores = self.predict(docs)
|
||||
|
@ -107,28 +120,43 @@ class BaseThincComponent(object):
|
|||
yield from docs
|
||||
|
||||
def predict(self, docs):
|
||||
"""Apply the pipeline's model to a batch of docs, without
|
||||
modifying them.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def set_annotations(self, docs, scores):
|
||||
"""Modify a batch of documents, using pre-computed scores."""
|
||||
raise NotImplementedError
|
||||
|
||||
def update(self, docs_tensors, golds, state=None, drop=0., sgd=None, losses=None):
|
||||
def update(self, docs, golds, drop=0., sgd=None, losses=None):
|
||||
"""Learn from a batch of documents and gold-standard information,
|
||||
updating the pipe's model.
|
||||
|
||||
Delegates to predict() and get_loss().
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def get_loss(self, docs, golds, scores):
|
||||
"""Find the loss and gradient of loss for the batch of
|
||||
documents and their predicted scores."""
|
||||
raise NotImplementedError
|
||||
|
||||
def begin_training(self, gold_tuples=tuple(), pipeline=None):
|
||||
token_vector_width = pipeline[0].model.nO
|
||||
"""Initialize the pipe for training, using data exampes if available.
|
||||
If no model has been initialized yet, the model is added."""
|
||||
if self.model is True:
|
||||
self.model = self.Model(1, token_vector_width)
|
||||
self.model = self.Model(**self.cfg)
|
||||
link_vectors_to_models(self.vocab)
|
||||
|
||||
def use_params(self, params):
|
||||
"""Modify the pipe's model, to use the given parameter values.
|
||||
"""
|
||||
with self.model.use_params(params):
|
||||
yield
|
||||
|
||||
def to_bytes(self, **exclude):
|
||||
"""Serialize the pipe to a bytestring."""
|
||||
serialize = OrderedDict((
|
||||
('cfg', lambda: json_dumps(self.cfg)),
|
||||
('model', lambda: self.model.to_bytes()),
|
||||
|
@ -137,6 +165,7 @@ class BaseThincComponent(object):
|
|||
return util.to_bytes(serialize, exclude)
|
||||
|
||||
def from_bytes(self, bytes_data, **exclude):
|
||||
"""Load the pipe from a bytestring."""
|
||||
def load_model(b):
|
||||
if self.model is True:
|
||||
self.cfg['pretrained_dims'] = self.vocab.vectors_length
|
||||
|
@ -152,6 +181,7 @@ class BaseThincComponent(object):
|
|||
return self
|
||||
|
||||
def to_disk(self, path, **exclude):
|
||||
"""Serialize the pipe to disk."""
|
||||
serialize = OrderedDict((
|
||||
('cfg', lambda p: p.open('w').write(json_dumps(self.cfg))),
|
||||
('vocab', lambda p: self.vocab.to_disk(p)),
|
||||
|
@ -160,6 +190,7 @@ class BaseThincComponent(object):
|
|||
util.to_disk(path, serialize, exclude)
|
||||
|
||||
def from_disk(self, path, **exclude):
|
||||
"""Load the pipe from disk."""
|
||||
def load_model(p):
|
||||
if self.model is True:
|
||||
self.cfg['pretrained_dims'] = self.vocab.vectors_length
|
||||
|
@ -610,7 +641,7 @@ class SimilarityHook(BaseThincComponent):
|
|||
return Siamese(Pooling(max_pool, mean_pool), CauchySimilarity(length))
|
||||
|
||||
def __call__(self, doc):
|
||||
'''Install similarity hook'''
|
||||
"""Install similarity hook"""
|
||||
doc.user_hooks['similarity'] = self.predict
|
||||
return doc
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user