Merge pull request #13046 from explosion/docs/llm_main

Sync `docs/llm_develop` with `docs/llm_main`
This commit is contained in:
Raphael Mitsch 2023-10-05 16:31:20 +02:00 committed by GitHub
commit df07c4734b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
103 changed files with 2015 additions and 2404 deletions

View File

@ -58,10 +58,8 @@ jobs:
fail-fast: true fail-fast: true
matrix: matrix:
os: [ubuntu-latest, windows-latest, macos-latest] os: [ubuntu-latest, windows-latest, macos-latest]
python_version: ["3.11"] python_version: ["3.11", "3.12.0-rc.2"]
include: include:
- os: ubuntu-20.04
python_version: "3.6"
- os: windows-latest - os: windows-latest
python_version: "3.7" python_version: "3.7"
- os: macos-latest - os: macos-latest
@ -95,7 +93,7 @@ jobs:
- name: Run mypy - name: Run mypy
run: | run: |
python -m mypy spacy python -m mypy spacy
if: matrix.python_version != '3.6' if: matrix.python_version != '3.7'
- name: Delete source directory and .egg-info - name: Delete source directory and .egg-info
run: | run: |

View File

@ -16,7 +16,7 @@ model packaging, deployment and workflow management. spaCy is commercial
open-source software, released under the open-source software, released under the
[MIT license](https://github.com/explosion/spaCy/blob/master/LICENSE). [MIT license](https://github.com/explosion/spaCy/blob/master/LICENSE).
💫 **Version 3.6 out now!** 💫 **Version 3.7 out now!**
[Check out the release notes here.](https://github.com/explosion/spaCy/releases) [Check out the release notes here.](https://github.com/explosion/spaCy/releases)
[![tests](https://github.com/explosion/spaCy/actions/workflows/tests.yml/badge.svg)](https://github.com/explosion/spaCy/actions/workflows/tests.yml) [![tests](https://github.com/explosion/spaCy/actions/workflows/tests.yml/badge.svg)](https://github.com/explosion/spaCy/actions/workflows/tests.yml)
@ -108,7 +108,7 @@ For detailed installation instructions, see the
- **Operating system**: macOS / OS X · Linux · Windows (Cygwin, MinGW, Visual - **Operating system**: macOS / OS X · Linux · Windows (Cygwin, MinGW, Visual
Studio) Studio)
- **Python version**: Python 3.6+ (only 64 bit) - **Python version**: Python 3.7+ (only 64 bit)
- **Package managers**: [pip] · [conda] (via `conda-forge`) - **Package managers**: [pip] · [conda] (via `conda-forge`)
[pip]: https://pypi.org/project/spacy/ [pip]: https://pypi.org/project/spacy/

View File

@ -1,9 +1,6 @@
# build version constraints for use with wheelwright + multibuild # build version constraints for use with wheelwright
numpy==1.15.0; python_version<='3.7' and platform_machine!='aarch64' numpy==1.15.0; python_version=='3.7' and platform_machine!='aarch64'
numpy==1.19.2; python_version<='3.7' and platform_machine=='aarch64' numpy==1.19.2; python_version=='3.7' and platform_machine=='aarch64'
numpy==1.17.3; python_version=='3.8' and platform_machine!='aarch64' numpy==1.17.3; python_version=='3.8' and platform_machine!='aarch64'
numpy==1.19.2; python_version=='3.8' and platform_machine=='aarch64' numpy==1.19.2; python_version=='3.8' and platform_machine=='aarch64'
numpy==1.19.3; python_version=='3.9' numpy>=1.25.0; python_version>='3.9'
numpy==1.21.3; python_version=='3.10'
numpy==1.23.2; python_version=='3.11'
numpy; python_version>='3.12'

View File

@ -1,14 +1,17 @@
# Listeners # Listeners
1. [Overview](#1-overview) - [1. Overview](#1-overview)
2. [Initialization](#2-initialization) - [2. Initialization](#2-initialization)
- [A. Linking listeners to the embedding component](#2a-linking-listeners-to-the-embedding-component) - [2A. Linking listeners to the embedding component](#2a-linking-listeners-to-the-embedding-component)
- [B. Shape inference](#2b-shape-inference) - [2B. Shape inference](#2b-shape-inference)
3. [Internal communication](#3-internal-communication) - [3. Internal communication](#3-internal-communication)
- [A. During prediction](#3a-during-prediction) - [3A. During prediction](#3a-during-prediction)
- [B. During training](#3b-during-training) - [3B. During training](#3b-during-training)
- [C. Frozen components](#3c-frozen-components) - [Training with multiple listeners](#training-with-multiple-listeners)
4. [Replacing listener with standalone](#4-replacing-listener-with-standalone) - [3C. Frozen components](#3c-frozen-components)
- [The Tok2Vec or Transformer is frozen](#the-tok2vec-or-transformer-is-frozen)
- [The upstream component is frozen](#the-upstream-component-is-frozen)
- [4. Replacing listener with standalone](#4-replacing-listener-with-standalone)
## 1. Overview ## 1. Overview
@ -62,7 +65,7 @@ of this `find_listener()` method will specifically identify sublayers of a model
If it's a Transformer-based pipeline, a If it's a Transformer-based pipeline, a
[`transformer` component](https://github.com/explosion/spacy-transformers/blob/master/spacy_transformers/pipeline_component.py) [`transformer` component](https://github.com/explosion/spacy-transformers/blob/master/spacy_transformers/pipeline_component.py)
has a similar implementation but its `find_listener()` function will specifically look for `TransformerListener` has a similar implementation but its `find_listener()` function will specifically look for `TransformerListener`
sublayers of downstream components. sublayers of downstream components.
### 2B. Shape inference ### 2B. Shape inference
@ -154,7 +157,7 @@ as a tagger or a parser. This used to be impossible before 3.1, but has become s
embedding component in the [`annotating_components`](https://spacy.io/usage/training#annotating-components) embedding component in the [`annotating_components`](https://spacy.io/usage/training#annotating-components)
list of the config. This works like any other "annotating component" because it relies on the `Doc` attributes. list of the config. This works like any other "annotating component" because it relies on the `Doc` attributes.
However, if the `Tok2Vec` or `Transformer` is frozen, and not present in `annotating_components`, and a related However, if the `Tok2Vec` or `Transformer` is frozen, and not present in `annotating_components`, and a related
listener isn't frozen, then a `W086` warning is shown and further training of the pipeline will likely end with `E954`. listener isn't frozen, then a `W086` warning is shown and further training of the pipeline will likely end with `E954`.
#### The upstream component is frozen #### The upstream component is frozen
@ -216,5 +219,17 @@ new_model = tok2vec_model.attrs["replace_listener"](new_model)
``` ```
The new config and model are then properly stored on the `nlp` object. The new config and model are then properly stored on the `nlp` object.
Note that this functionality (running the replacement for a transformer listener) was broken prior to Note that this functionality (running the replacement for a transformer listener) was broken prior to
`spacy-transformers` 1.0.5. `spacy-transformers` 1.0.5.
In spaCy 3.7, `Language.replace_listeners` was updated to pass the following additional arguments to the `replace_listener` callback:
the listener to be replaced and the `tok2vec`/`transformer` pipe from which the new model was copied. To maintain backwards-compatiblity,
the method only passes these extra arguments for callbacks that support them:
```
def replace_listener_pre_37(copied_tok2vec_model):
...
def replace_listener_post_37(copied_tok2vec_model, replaced_listener, tok2vec_pipe):
...
```

View File

@ -5,8 +5,9 @@ requires = [
"cymem>=2.0.2,<2.1.0", "cymem>=2.0.2,<2.1.0",
"preshed>=3.0.2,<3.1.0", "preshed>=3.0.2,<3.1.0",
"murmurhash>=0.28.0,<1.1.0", "murmurhash>=0.28.0,<1.1.0",
"thinc>=8.1.8,<8.2.0", "thinc>=8.1.8,<8.3.0",
"numpy>=1.15.0", "numpy>=1.15.0; python_version < '3.9'",
"numpy>=1.25.0; python_version >= '3.9'",
] ]
build-backend = "setuptools.build_meta" build-backend = "setuptools.build_meta"

View File

@ -3,17 +3,18 @@ spacy-legacy>=3.0.11,<3.1.0
spacy-loggers>=1.0.0,<2.0.0 spacy-loggers>=1.0.0,<2.0.0
cymem>=2.0.2,<2.1.0 cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0 preshed>=3.0.2,<3.1.0
thinc>=8.1.8,<8.2.0 thinc>=8.1.8,<8.3.0
ml_datasets>=0.2.0,<0.3.0 ml_datasets>=0.2.0,<0.3.0
murmurhash>=0.28.0,<1.1.0 murmurhash>=0.28.0,<1.1.0
wasabi>=0.9.1,<1.2.0 wasabi>=0.9.1,<1.2.0
srsly>=2.4.3,<3.0.0 srsly>=2.4.3,<3.0.0
catalogue>=2.0.6,<2.1.0 catalogue>=2.0.6,<2.1.0
typer>=0.3.0,<0.10.0 typer>=0.3.0,<0.10.0
pathy>=0.10.0
smart-open>=5.2.1,<7.0.0 smart-open>=5.2.1,<7.0.0
weasel>=0.1.0,<0.4.0
# Third party dependencies # Third party dependencies
numpy>=1.15.0 numpy>=1.15.0; python_version < "3.9"
numpy>=1.19.0; python_version >= "3.9"
requests>=2.13.0,<3.0.0 requests>=2.13.0,<3.0.0
tqdm>=4.38.0,<5.0.0 tqdm>=4.38.0,<5.0.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<3.0.0 pydantic>=1.7.4,!=1.8,!=1.8.1,<3.0.0
@ -31,12 +32,11 @@ pytest-timeout>=1.3.0,<2.0.0
mock>=2.0.0,<3.0.0 mock>=2.0.0,<3.0.0
flake8>=3.8.0,<6.0.0 flake8>=3.8.0,<6.0.0
hypothesis>=3.27.0,<7.0.0 hypothesis>=3.27.0,<7.0.0
mypy>=0.990,<1.1.0; platform_machine != "aarch64" and python_version >= "3.7" mypy>=1.5.0,<1.6.0; platform_machine != "aarch64" and python_version >= "3.8"
types-dataclasses>=0.1.3; python_version < "3.7"
types-mock>=0.1.1 types-mock>=0.1.1
types-setuptools>=57.0.0 types-setuptools>=57.0.0
types-requests types-requests
types-setuptools>=57.0.0 types-setuptools>=57.0.0
black==22.3.0 black==22.3.0
cython-lint>=0.15.0; python_version >= "3.7" cython-lint>=0.15.0
isort>=5.0,<6.0 isort>=5.0,<6.0

View File

@ -17,7 +17,6 @@ classifiers =
Operating System :: Microsoft :: Windows Operating System :: Microsoft :: Windows
Programming Language :: Cython Programming Language :: Cython
Programming Language :: Python :: 3 Programming Language :: Python :: 3
Programming Language :: Python :: 3.6
Programming Language :: Python :: 3.7 Programming Language :: Python :: 3.7
Programming Language :: Python :: 3.8 Programming Language :: Python :: 3.8
Programming Language :: Python :: 3.9 Programming Language :: Python :: 3.9
@ -31,15 +30,18 @@ project_urls =
[options] [options]
zip_safe = false zip_safe = false
include_package_data = true include_package_data = true
python_requires = >=3.6 python_requires = >=3.7
# NOTE: This section is superseded by pyproject.toml and will be removed in
# spaCy v4
setup_requires = setup_requires =
cython>=0.25,<3.0 cython>=0.25,<3.0
numpy>=1.15.0 numpy>=1.15.0; python_version < "3.9"
numpy>=1.19.0; python_version >= "3.9"
# We also need our Cython packages here to compile against # We also need our Cython packages here to compile against
cymem>=2.0.2,<2.1.0 cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0 preshed>=3.0.2,<3.1.0
murmurhash>=0.28.0,<1.1.0 murmurhash>=0.28.0,<1.1.0
thinc>=8.1.8,<8.2.0 thinc>=8.1.8,<8.3.0
install_requires = install_requires =
# Our libraries # Our libraries
spacy-legacy>=3.0.11,<3.1.0 spacy-legacy>=3.0.11,<3.1.0
@ -47,16 +49,17 @@ install_requires =
murmurhash>=0.28.0,<1.1.0 murmurhash>=0.28.0,<1.1.0
cymem>=2.0.2,<2.1.0 cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0 preshed>=3.0.2,<3.1.0
thinc>=8.1.8,<8.2.0 thinc>=8.1.8,<8.3.0
wasabi>=0.9.1,<1.2.0 wasabi>=0.9.1,<1.2.0
srsly>=2.4.3,<3.0.0 srsly>=2.4.3,<3.0.0
catalogue>=2.0.6,<2.1.0 catalogue>=2.0.6,<2.1.0
weasel>=0.1.0,<0.4.0
# Third-party dependencies # Third-party dependencies
typer>=0.3.0,<0.10.0 typer>=0.3.0,<0.10.0
pathy>=0.10.0
smart-open>=5.2.1,<7.0.0 smart-open>=5.2.1,<7.0.0
tqdm>=4.38.0,<5.0.0 tqdm>=4.38.0,<5.0.0
numpy>=1.15.0 numpy>=1.15.0; python_version < "3.9"
numpy>=1.19.0; python_version >= "3.9"
requests>=2.13.0,<3.0.0 requests>=2.13.0,<3.0.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<3.0.0 pydantic>=1.7.4,!=1.8,!=1.8.1,<3.0.0
jinja2 jinja2
@ -74,9 +77,7 @@ console_scripts =
lookups = lookups =
spacy_lookups_data>=1.0.3,<1.1.0 spacy_lookups_data>=1.0.3,<1.1.0
transformers = transformers =
spacy_transformers>=1.1.2,<1.3.0 spacy_transformers>=1.1.2,<1.4.0
ray =
spacy_ray>=0.1.0,<1.0.0
cuda = cuda =
cupy>=5.0.0b4,<13.0.0 cupy>=5.0.0b4,<13.0.0
cuda80 = cuda80 =

View File

@ -78,6 +78,7 @@ COMPILER_DIRECTIVES = {
"language_level": -3, "language_level": -3,
"embedsignature": True, "embedsignature": True,
"annotation_typing": False, "annotation_typing": False,
"profile": sys.version_info < (3, 12),
} }
# Files to copy into the package that are otherwise not included # Files to copy into the package that are otherwise not included
COPY_FILES = { COPY_FILES = {

View File

@ -1,7 +1,5 @@
# fmt: off # fmt: off
__title__ = "spacy" __title__ = "spacy"
__version__ = "3.6.1" __version__ = "3.7.1"
__download_url__ = "https://github.com/explosion/spacy-models/releases/download" __download_url__ = "https://github.com/explosion/spacy-models/releases/download"
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json" __compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"
__projects__ = "https://github.com/explosion/projects"
__projects_branch__ = "v3"

View File

@ -1,3 +1,4 @@
# cython: profile=False
from .errors import Errors from .errors import Errors
IOB_STRINGS = ("", "I", "O", "B") IOB_STRINGS = ("", "I", "O", "B")

View File

@ -22,13 +22,6 @@ from .init_pipeline import init_pipeline_cli # noqa: F401
from .package import package # noqa: F401 from .package import package # noqa: F401
from .pretrain import pretrain # noqa: F401 from .pretrain import pretrain # noqa: F401
from .profile import profile # noqa: F401 from .profile import profile # noqa: F401
from .project.assets import project_assets # noqa: F401
from .project.clone import project_clone # noqa: F401
from .project.document import project_document # noqa: F401
from .project.dvc import project_update_dvc # noqa: F401
from .project.pull import project_pull # noqa: F401
from .project.push import project_push # noqa: F401
from .project.run import project_run # noqa: F401
from .train import train_cli # noqa: F401 from .train import train_cli # noqa: F401
from .validate import validate # noqa: F401 from .validate import validate # noqa: F401

View File

@ -25,10 +25,11 @@ from thinc.api import Config, ConfigValidationError, require_gpu
from thinc.util import gpu_is_available from thinc.util import gpu_is_available
from typer.main import get_command from typer.main import get_command
from wasabi import Printer, msg from wasabi import Printer, msg
from weasel import app as project_cli
from .. import about from .. import about
from ..compat import Literal from ..compat import Literal
from ..schemas import ProjectConfigSchema, validate from ..schemas import validate
from ..util import ( from ..util import (
ENV_VARS, ENV_VARS,
SimpleFrozenDict, SimpleFrozenDict,
@ -40,15 +41,10 @@ from ..util import (
run_command, run_command,
) )
if TYPE_CHECKING:
from pathy import FluidPath # noqa: F401
SDIST_SUFFIX = ".tar.gz" SDIST_SUFFIX = ".tar.gz"
WHEEL_SUFFIX = "-py3-none-any.whl" WHEEL_SUFFIX = "-py3-none-any.whl"
PROJECT_FILE = "project.yml" PROJECT_FILE = "project.yml"
PROJECT_LOCK = "project.lock"
COMMAND = "python -m spacy" COMMAND = "python -m spacy"
NAME = "spacy" NAME = "spacy"
HELP = """spaCy Command-line Interface HELP = """spaCy Command-line Interface
@ -74,11 +70,10 @@ Opt = typer.Option
app = typer.Typer(name=NAME, help=HELP) app = typer.Typer(name=NAME, help=HELP)
benchmark_cli = typer.Typer(name="benchmark", help=BENCHMARK_HELP, no_args_is_help=True) benchmark_cli = typer.Typer(name="benchmark", help=BENCHMARK_HELP, no_args_is_help=True)
project_cli = typer.Typer(name="project", help=PROJECT_HELP, no_args_is_help=True)
debug_cli = typer.Typer(name="debug", help=DEBUG_HELP, no_args_is_help=True) debug_cli = typer.Typer(name="debug", help=DEBUG_HELP, no_args_is_help=True)
init_cli = typer.Typer(name="init", help=INIT_HELP, no_args_is_help=True) init_cli = typer.Typer(name="init", help=INIT_HELP, no_args_is_help=True)
app.add_typer(project_cli) app.add_typer(project_cli, name="project", help=PROJECT_HELP, no_args_is_help=True)
app.add_typer(debug_cli) app.add_typer(debug_cli)
app.add_typer(benchmark_cli) app.add_typer(benchmark_cli)
app.add_typer(init_cli) app.add_typer(init_cli)
@ -153,148 +148,6 @@ def _parse_override(value: Any) -> Any:
return str(value) return str(value)
def load_project_config(
path: Path, interpolate: bool = True, overrides: Dict[str, Any] = SimpleFrozenDict()
) -> Dict[str, Any]:
"""Load the project.yml file from a directory and validate it. Also make
sure that all directories defined in the config exist.
path (Path): The path to the project directory.
interpolate (bool): Whether to substitute project variables.
overrides (Dict[str, Any]): Optional config overrides.
RETURNS (Dict[str, Any]): The loaded project.yml.
"""
config_path = path / PROJECT_FILE
if not config_path.exists():
msg.fail(f"Can't find {PROJECT_FILE}", config_path, exits=1)
invalid_err = f"Invalid {PROJECT_FILE}. Double-check that the YAML is correct."
try:
config = srsly.read_yaml(config_path)
except ValueError as e:
msg.fail(invalid_err, e, exits=1)
errors = validate(ProjectConfigSchema, config)
if errors:
msg.fail(invalid_err)
print("\n".join(errors))
sys.exit(1)
validate_project_version(config)
validate_project_commands(config)
if interpolate:
err = f"{PROJECT_FILE} validation error"
with show_validation_error(title=err, hint_fill=False):
config = substitute_project_variables(config, overrides)
# Make sure directories defined in config exist
for subdir in config.get("directories", []):
dir_path = path / subdir
if not dir_path.exists():
dir_path.mkdir(parents=True)
return config
def substitute_project_variables(
config: Dict[str, Any],
overrides: Dict[str, Any] = SimpleFrozenDict(),
key: str = "vars",
env_key: str = "env",
) -> Dict[str, Any]:
"""Interpolate variables in the project file using the config system.
config (Dict[str, Any]): The project config.
overrides (Dict[str, Any]): Optional config overrides.
key (str): Key containing variables in project config.
env_key (str): Key containing environment variable mapping in project config.
RETURNS (Dict[str, Any]): The interpolated project config.
"""
config.setdefault(key, {})
config.setdefault(env_key, {})
# Substitute references to env vars with their values
for config_var, env_var in config[env_key].items():
config[env_key][config_var] = _parse_override(os.environ.get(env_var, ""))
# Need to put variables in the top scope again so we can have a top-level
# section "project" (otherwise, a list of commands in the top scope wouldn't)
# be allowed by Thinc's config system
cfg = Config({"project": config, key: config[key], env_key: config[env_key]})
cfg = Config().from_str(cfg.to_str(), overrides=overrides)
interpolated = cfg.interpolate()
return dict(interpolated["project"])
def validate_project_version(config: Dict[str, Any]) -> None:
"""If the project defines a compatible spaCy version range, chec that it's
compatible with the current version of spaCy.
config (Dict[str, Any]): The loaded config.
"""
spacy_version = config.get("spacy_version", None)
if spacy_version and not is_compatible_version(about.__version__, spacy_version):
err = (
f"The {PROJECT_FILE} specifies a spaCy version range ({spacy_version}) "
f"that's not compatible with the version of spaCy you're running "
f"({about.__version__}). You can edit version requirement in the "
f"{PROJECT_FILE} to load it, but the project may not run as expected."
)
msg.fail(err, exits=1)
def validate_project_commands(config: Dict[str, Any]) -> None:
"""Check that project commands and workflows are valid, don't contain
duplicates, don't clash and only refer to commands that exist.
config (Dict[str, Any]): The loaded config.
"""
command_names = [cmd["name"] for cmd in config.get("commands", [])]
workflows = config.get("workflows", {})
duplicates = set([cmd for cmd in command_names if command_names.count(cmd) > 1])
if duplicates:
err = f"Duplicate commands defined in {PROJECT_FILE}: {', '.join(duplicates)}"
msg.fail(err, exits=1)
for workflow_name, workflow_steps in workflows.items():
if workflow_name in command_names:
err = f"Can't use workflow name '{workflow_name}': name already exists as a command"
msg.fail(err, exits=1)
for step in workflow_steps:
if step not in command_names:
msg.fail(
f"Unknown command specified in workflow '{workflow_name}': {step}",
f"Workflows can only refer to commands defined in the 'commands' "
f"section of the {PROJECT_FILE}.",
exits=1,
)
def get_hash(data, exclude: Iterable[str] = tuple()) -> str:
"""Get the hash for a JSON-serializable object.
data: The data to hash.
exclude (Iterable[str]): Top-level keys to exclude if data is a dict.
RETURNS (str): The hash.
"""
if isinstance(data, dict):
data = {k: v for k, v in data.items() if k not in exclude}
data_str = srsly.json_dumps(data, sort_keys=True).encode("utf8")
return hashlib.md5(data_str).hexdigest()
def get_checksum(path: Union[Path, str]) -> str:
"""Get the checksum for a file or directory given its file path. If a
directory path is provided, this uses all files in that directory.
path (Union[Path, str]): The file or directory path.
RETURNS (str): The checksum.
"""
path = Path(path)
if not (path.is_file() or path.is_dir()):
msg.fail(f"Can't get checksum for {path}: not a file or directory", exits=1)
if path.is_file():
return hashlib.md5(Path(path).read_bytes()).hexdigest()
else:
# TODO: this is currently pretty slow
dir_checksum = hashlib.md5()
for sub_file in sorted(fp for fp in path.rglob("*") if fp.is_file()):
dir_checksum.update(sub_file.read_bytes())
return dir_checksum.hexdigest()
@contextmanager @contextmanager
def show_validation_error( def show_validation_error(
file_path: Optional[Union[str, Path]] = None, file_path: Optional[Union[str, Path]] = None,
@ -352,166 +205,10 @@ def import_code(code_path: Optional[Union[Path, str]]) -> None:
msg.fail(f"Couldn't load Python code: {code_path}", e, exits=1) msg.fail(f"Couldn't load Python code: {code_path}", e, exits=1)
def upload_file(src: Path, dest: Union[str, "FluidPath"]) -> None:
"""Upload a file.
src (Path): The source path.
url (str): The destination URL to upload to.
"""
import smart_open
# Create parent directories for local paths
if isinstance(dest, Path):
if not dest.parent.exists():
dest.parent.mkdir(parents=True)
dest = str(dest)
with smart_open.open(dest, mode="wb") as output_file:
with src.open(mode="rb") as input_file:
output_file.write(input_file.read())
def download_file(
src: Union[str, "FluidPath"], dest: Path, *, force: bool = False
) -> None:
"""Download a file using smart_open.
url (str): The URL of the file.
dest (Path): The destination path.
force (bool): Whether to force download even if file exists.
If False, the download will be skipped.
"""
import smart_open
if dest.exists() and not force:
return None
src = str(src)
with smart_open.open(src, mode="rb", compression="disable") as input_file:
with dest.open(mode="wb") as output_file:
shutil.copyfileobj(input_file, output_file)
def ensure_pathy(path):
"""Temporary helper to prevent importing Pathy globally (which can cause
slow and annoying Google Cloud warning)."""
from pathy import Pathy # noqa: F811
return Pathy.fluid(path)
def git_checkout(
repo: str, subpath: str, dest: Path, *, branch: str = "master", sparse: bool = False
):
git_version = get_git_version()
if dest.exists():
msg.fail("Destination of checkout must not exist", exits=1)
if not dest.parent.exists():
msg.fail("Parent of destination of checkout must exist", exits=1)
if sparse and git_version >= (2, 22):
return git_sparse_checkout(repo, subpath, dest, branch)
elif sparse:
# Only show warnings if the user explicitly wants sparse checkout but
# the Git version doesn't support it
err_old = (
f"You're running an old version of Git (v{git_version[0]}.{git_version[1]}) "
f"that doesn't fully support sparse checkout yet."
)
err_unk = "You're running an unknown version of Git, so sparse checkout has been disabled."
msg.warn(
f"{err_unk if git_version == (0, 0) else err_old} "
f"This means that more files than necessary may be downloaded "
f"temporarily. To only download the files needed, make sure "
f"you're using Git v2.22 or above."
)
with make_tempdir() as tmp_dir:
cmd = f"git -C {tmp_dir} clone {repo} . -b {branch}"
run_command(cmd, capture=True)
# We need Path(name) to make sure we also support subdirectories
try:
source_path = tmp_dir / Path(subpath)
if not is_subpath_of(tmp_dir, source_path):
err = f"'{subpath}' is a path outside of the cloned repository."
msg.fail(err, repo, exits=1)
shutil.copytree(str(source_path), str(dest))
except FileNotFoundError:
err = f"Can't clone {subpath}. Make sure the directory exists in the repo (branch '{branch}')"
msg.fail(err, repo, exits=1)
def git_sparse_checkout(repo, subpath, dest, branch):
# We're using Git, partial clone and sparse checkout to
# only clone the files we need
# This ends up being RIDICULOUS. omg.
# So, every tutorial and SO post talks about 'sparse checkout'...But they
# go and *clone* the whole repo. Worthless. And cloning part of a repo
# turns out to be completely broken. The only way to specify a "path" is..
# a path *on the server*? The contents of which, specifies the paths. Wat.
# Obviously this is hopelessly broken and insecure, because you can query
# arbitrary paths on the server! So nobody enables this.
# What we have to do is disable *all* files. We could then just checkout
# the path, and it'd "work", but be hopelessly slow...Because it goes and
# transfers every missing object one-by-one. So the final piece is that we
# need to use some weird git internals to fetch the missings in bulk, and
# *that* we can do by path.
# We're using Git and sparse checkout to only clone the files we need
with make_tempdir() as tmp_dir:
# This is the "clone, but don't download anything" part.
cmd = (
f"git clone {repo} {tmp_dir} --no-checkout --depth 1 "
f"-b {branch} --filter=blob:none"
)
run_command(cmd)
# Now we need to find the missing filenames for the subpath we want.
# Looking for this 'rev-list' command in the git --help? Hah.
cmd = f"git -C {tmp_dir} rev-list --objects --all --missing=print -- {subpath}"
ret = run_command(cmd, capture=True)
git_repo = _http_to_git(repo)
# Now pass those missings into another bit of git internals
missings = " ".join([x[1:] for x in ret.stdout.split() if x.startswith("?")])
if not missings:
err = (
f"Could not find any relevant files for '{subpath}'. "
f"Did you specify a correct and complete path within repo '{repo}' "
f"and branch {branch}?"
)
msg.fail(err, exits=1)
cmd = f"git -C {tmp_dir} fetch-pack {git_repo} {missings}"
run_command(cmd, capture=True)
# And finally, we can checkout our subpath
cmd = f"git -C {tmp_dir} checkout {branch} {subpath}"
run_command(cmd, capture=True)
# Get a subdirectory of the cloned path, if appropriate
source_path = tmp_dir / Path(subpath)
if not is_subpath_of(tmp_dir, source_path):
err = f"'{subpath}' is a path outside of the cloned repository."
msg.fail(err, repo, exits=1)
shutil.move(str(source_path), str(dest))
def git_repo_branch_exists(repo: str, branch: str) -> bool:
"""Uses 'git ls-remote' to check if a repository and branch exists
repo (str): URL to get repo.
branch (str): Branch on repo to check.
RETURNS (bool): True if repo:branch exists.
"""
get_git_version()
cmd = f"git ls-remote {repo} {branch}"
# We might be tempted to use `--exit-code` with `git ls-remote`, but
# `run_command` handles the `returncode` for us, so we'll rely on
# the fact that stdout returns '' if the requested branch doesn't exist
ret = run_command(cmd, capture=True)
exists = ret.stdout != ""
return exists
def get_git_version( def get_git_version(
error: str = "Could not run 'git'. Make sure it's installed and the executable is available.", error: str = "Could not run 'git'. Make sure it's installed and the executable is available.",
) -> Tuple[int, int]: ) -> Tuple[int, int]:
"""Get the version of git and raise an error if calling 'git --version' fails. """Get the version of git and raise an error if calling 'git --version' fails.
error (str): The error message to show. error (str): The error message to show.
RETURNS (Tuple[int, int]): The version as a (major, minor) tuple. Returns RETURNS (Tuple[int, int]): The version as a (major, minor) tuple. Returns
(0, 0) if the version couldn't be determined. (0, 0) if the version couldn't be determined.
@ -527,30 +224,6 @@ def get_git_version(
return int(version[0]), int(version[1]) return int(version[0]), int(version[1])
def _http_to_git(repo: str) -> str:
if repo.startswith("http://"):
repo = repo.replace(r"http://", r"https://")
if repo.startswith(r"https://"):
repo = repo.replace("https://", "git@").replace("/", ":", 1)
if repo.endswith("/"):
repo = repo[:-1]
repo = f"{repo}.git"
return repo
def is_subpath_of(parent, child):
"""
Check whether `child` is a path contained within `parent`.
"""
# Based on https://stackoverflow.com/a/37095733 .
# In Python 3.9, the `Path.is_relative_to()` method will supplant this, so
# we can stop using crusty old os.path functions.
parent_realpath = os.path.realpath(parent)
child_realpath = os.path.realpath(child)
return os.path.commonpath([parent_realpath, child_realpath]) == parent_realpath
@overload @overload
def string_to_list(value: str, intify: Literal[False] = ...) -> List[str]: def string_to_list(value: str, intify: Literal[False] = ...) -> List[str]:
... ...

View File

@ -133,7 +133,9 @@ def apply(
if len(text_files) > 0: if len(text_files) > 0:
streams.append(_stream_texts(text_files)) streams.append(_stream_texts(text_files))
datagen = cast(DocOrStrStream, chain(*streams)) datagen = cast(DocOrStrStream, chain(*streams))
for doc in tqdm.tqdm(nlp.pipe(datagen, batch_size=batch_size, n_process=n_process)): for doc in tqdm.tqdm(
nlp.pipe(datagen, batch_size=batch_size, n_process=n_process), disable=None
):
docbin.add(doc) docbin.add(doc)
if output_file.suffix == "": if output_file.suffix == "":
output_file = output_file.with_suffix(".spacy") output_file = output_file.with_suffix(".spacy")

View File

@ -89,7 +89,7 @@ class Quartiles:
def annotate( def annotate(
nlp: Language, docs: List[Doc], batch_size: Optional[int] nlp: Language, docs: List[Doc], batch_size: Optional[int]
) -> numpy.ndarray: ) -> numpy.ndarray:
docs = nlp.pipe(tqdm(docs, unit="doc"), batch_size=batch_size) docs = nlp.pipe(tqdm(docs, unit="doc", disable=None), batch_size=batch_size)
wps = [] wps = []
while True: while True:
with time_context() as elapsed: with time_context() as elapsed:

View File

@ -28,6 +28,7 @@ def evaluate_cli(
displacy_path: Optional[Path] = Opt(None, "--displacy-path", "-dp", help="Directory to output rendered parses as HTML", exists=True, file_okay=False), displacy_path: Optional[Path] = Opt(None, "--displacy-path", "-dp", help="Directory to output rendered parses as HTML", exists=True, file_okay=False),
displacy_limit: int = Opt(25, "--displacy-limit", "-dl", help="Limit of parses to render as HTML"), displacy_limit: int = Opt(25, "--displacy-limit", "-dl", help="Limit of parses to render as HTML"),
per_component: bool = Opt(False, "--per-component", "-P", help="Return scores per component, only applicable when an output JSON file is specified."), per_component: bool = Opt(False, "--per-component", "-P", help="Return scores per component, only applicable when an output JSON file is specified."),
spans_key: str = Opt("sc", "--spans-key", "-sk", help="Spans key to use when evaluating Doc.spans"),
# fmt: on # fmt: on
): ):
""" """
@ -53,6 +54,7 @@ def evaluate_cli(
displacy_limit=displacy_limit, displacy_limit=displacy_limit,
per_component=per_component, per_component=per_component,
silent=False, silent=False,
spans_key=spans_key,
) )

View File

@ -71,7 +71,7 @@ def profile(model: str, inputs: Optional[Path] = None, n_texts: int = 10000) ->
def parse_texts(nlp: Language, texts: Sequence[str]) -> None: def parse_texts(nlp: Language, texts: Sequence[str]) -> None:
for doc in nlp.pipe(tqdm.tqdm(texts), batch_size=16): for doc in nlp.pipe(tqdm.tqdm(texts, disable=None), batch_size=16):
pass pass

View File

@ -1,217 +0,0 @@
import os
import re
import shutil
from pathlib import Path
from typing import Any, Dict, Optional
import requests
import typer
from wasabi import msg
from ...util import ensure_path, working_dir
from .._util import (
PROJECT_FILE,
Arg,
Opt,
SimpleFrozenDict,
download_file,
get_checksum,
get_git_version,
git_checkout,
load_project_config,
parse_config_overrides,
project_cli,
)
# Whether assets are extra if `extra` is not set.
EXTRA_DEFAULT = False
@project_cli.command(
"assets",
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
)
def project_assets_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
project_dir: Path = Arg(Path.cwd(), help="Path to cloned project. Defaults to current working directory.", exists=True, file_okay=False),
sparse_checkout: bool = Opt(False, "--sparse", "-S", help="Use sparse checkout for assets provided via Git, to only check out and clone the files needed. Requires Git v22.2+."),
extra: bool = Opt(False, "--extra", "-e", help="Download all assets, including those marked as 'extra'.")
# fmt: on
):
"""Fetch project assets like datasets and pretrained weights. Assets are
defined in the "assets" section of the project.yml. If a checksum is
provided in the project.yml, the file is only downloaded if no local file
with the same checksum exists.
DOCS: https://spacy.io/api/cli#project-assets
"""
overrides = parse_config_overrides(ctx.args)
project_assets(
project_dir,
overrides=overrides,
sparse_checkout=sparse_checkout,
extra=extra,
)
def project_assets(
project_dir: Path,
*,
overrides: Dict[str, Any] = SimpleFrozenDict(),
sparse_checkout: bool = False,
extra: bool = False,
) -> None:
"""Fetch assets for a project using DVC if possible.
project_dir (Path): Path to project directory.
sparse_checkout (bool): Use sparse checkout for assets provided via Git, to only check out and clone the files
needed.
extra (bool): Whether to download all assets, including those marked as 'extra'.
"""
project_path = ensure_path(project_dir)
config = load_project_config(project_path, overrides=overrides)
assets = [
asset
for asset in config.get("assets", [])
if extra or not asset.get("extra", EXTRA_DEFAULT)
]
if not assets:
msg.warn(
f"No assets specified in {PROJECT_FILE} (if assets are marked as extra, download them with --extra)",
exits=0,
)
msg.info(f"Fetching {len(assets)} asset(s)")
for asset in assets:
dest = (project_dir / asset["dest"]).resolve()
checksum = asset.get("checksum")
if "git" in asset:
git_err = (
f"Cloning spaCy project templates requires Git and the 'git' command. "
f"Make sure it's installed and that the executable is available."
)
get_git_version(error=git_err)
if dest.exists():
# If there's already a file, check for checksum
if checksum and checksum == get_checksum(dest):
msg.good(
f"Skipping download with matching checksum: {asset['dest']}"
)
continue
else:
if dest.is_dir():
shutil.rmtree(dest)
else:
dest.unlink()
if "repo" not in asset["git"] or asset["git"]["repo"] is None:
msg.fail(
"A git asset must include 'repo', the repository address.", exits=1
)
if "path" not in asset["git"] or asset["git"]["path"] is None:
msg.fail(
"A git asset must include 'path' - use \"\" to get the entire repository.",
exits=1,
)
git_checkout(
asset["git"]["repo"],
asset["git"]["path"],
dest,
branch=asset["git"].get("branch"),
sparse=sparse_checkout,
)
msg.good(f"Downloaded asset {dest}")
else:
url = asset.get("url")
if not url:
# project.yml defines asset without URL that the user has to place
check_private_asset(dest, checksum)
continue
fetch_asset(project_path, url, dest, checksum)
def check_private_asset(dest: Path, checksum: Optional[str] = None) -> None:
"""Check and validate assets without a URL (private assets that the user
has to provide themselves) and give feedback about the checksum.
dest (Path): Destination path of the asset.
checksum (Optional[str]): Optional checksum of the expected file.
"""
if not Path(dest).exists():
err = f"No URL provided for asset. You need to add this file yourself: {dest}"
msg.warn(err)
else:
if not checksum:
msg.good(f"Asset already exists: {dest}")
elif checksum == get_checksum(dest):
msg.good(f"Asset exists with matching checksum: {dest}")
else:
msg.fail(f"Asset available but with incorrect checksum: {dest}")
def fetch_asset(
project_path: Path, url: str, dest: Path, checksum: Optional[str] = None
) -> None:
"""Fetch an asset from a given URL or path. If a checksum is provided and a
local file exists, it's only re-downloaded if the checksum doesn't match.
project_path (Path): Path to project directory.
url (str): URL or path to asset.
checksum (Optional[str]): Optional expected checksum of local file.
RETURNS (Optional[Path]): The path to the fetched asset or None if fetching
the asset failed.
"""
dest_path = (project_path / dest).resolve()
if dest_path.exists():
# If there's already a file, check for checksum
if checksum:
if checksum == get_checksum(dest_path):
msg.good(f"Skipping download with matching checksum: {dest}")
return
else:
# If there's not a checksum, make sure the file is a possibly valid size
if os.path.getsize(dest_path) == 0:
msg.warn(f"Asset exists but with size of 0 bytes, deleting: {dest}")
os.remove(dest_path)
# We might as well support the user here and create parent directories in
# case the asset dir isn't listed as a dir to create in the project.yml
if not dest_path.parent.exists():
dest_path.parent.mkdir(parents=True)
with working_dir(project_path):
url = convert_asset_url(url)
try:
download_file(url, dest_path)
msg.good(f"Downloaded asset {dest}")
except requests.exceptions.RequestException as e:
if Path(url).exists() and Path(url).is_file():
# If it's a local file, copy to destination
shutil.copy(url, str(dest_path))
msg.good(f"Copied local asset {dest}")
else:
msg.fail(f"Download failed: {dest}", e)
if checksum and checksum != get_checksum(dest_path):
msg.fail(f"Checksum doesn't match value defined in {PROJECT_FILE}: {dest}")
def convert_asset_url(url: str) -> str:
"""Check and convert the asset URL if needed.
url (str): The asset URL.
RETURNS (str): The converted URL.
"""
# If the asset URL is a regular GitHub URL it's likely a mistake
if (
re.match(r"(http(s?)):\/\/github.com", url)
and "releases/download" not in url
and "/raw/" not in url
):
converted = url.replace("github.com", "raw.githubusercontent.com")
converted = re.sub(r"/(tree|blob)/", "/", converted)
msg.warn(
"Downloading from a regular GitHub URL. This will only download "
"the source of the page, not the actual file. Converting the URL "
"to a raw URL.",
converted,
)
return converted
return url

View File

@ -1,124 +0,0 @@
import re
import subprocess
from pathlib import Path
from typing import Optional
from wasabi import msg
from ... import about
from ...util import ensure_path
from .._util import (
COMMAND,
PROJECT_FILE,
Arg,
Opt,
get_git_version,
git_checkout,
git_repo_branch_exists,
project_cli,
)
DEFAULT_REPO = about.__projects__
DEFAULT_PROJECTS_BRANCH = about.__projects_branch__
DEFAULT_BRANCHES = ["main", "master"]
@project_cli.command("clone")
def project_clone_cli(
# fmt: off
name: str = Arg(..., help="The name of the template to clone"),
dest: Optional[Path] = Arg(None, help="Where to clone the project. Defaults to current working directory", exists=False),
repo: str = Opt(DEFAULT_REPO, "--repo", "-r", help="The repository to clone from"),
branch: Optional[str] = Opt(None, "--branch", "-b", help=f"The branch to clone from. If not provided, will attempt {', '.join(DEFAULT_BRANCHES)}"),
sparse_checkout: bool = Opt(False, "--sparse", "-S", help="Use sparse Git checkout to only check out and clone the files needed. Requires Git v22.2+.")
# fmt: on
):
"""Clone a project template from a repository. Calls into "git" and will
only download the files from the given subdirectory. The GitHub repo
defaults to the official spaCy template repo, but can be customized
(including using a private repo).
DOCS: https://spacy.io/api/cli#project-clone
"""
if dest is None:
dest = Path.cwd() / Path(name).parts[-1]
if repo == DEFAULT_REPO and branch is None:
branch = DEFAULT_PROJECTS_BRANCH
if branch is None:
for default_branch in DEFAULT_BRANCHES:
if git_repo_branch_exists(repo, default_branch):
branch = default_branch
break
if branch is None:
default_branches_msg = ", ".join(f"'{b}'" for b in DEFAULT_BRANCHES)
msg.fail(
"No branch provided and attempted default "
f"branches {default_branches_msg} do not exist.",
exits=1,
)
else:
if not git_repo_branch_exists(repo, branch):
msg.fail(f"repo: {repo} (branch: {branch}) does not exist.", exits=1)
assert isinstance(branch, str)
project_clone(name, dest, repo=repo, branch=branch, sparse_checkout=sparse_checkout)
def project_clone(
name: str,
dest: Path,
*,
repo: str = about.__projects__,
branch: str = about.__projects_branch__,
sparse_checkout: bool = False,
) -> None:
"""Clone a project template from a repository.
name (str): Name of subdirectory to clone.
dest (Path): Destination path of cloned project.
repo (str): URL of Git repo containing project templates.
branch (str): The branch to clone from
"""
dest = ensure_path(dest)
check_clone(name, dest, repo)
project_dir = dest.resolve()
repo_name = re.sub(r"(http(s?)):\/\/github.com/", "", repo)
try:
git_checkout(repo, name, dest, branch=branch, sparse=sparse_checkout)
except subprocess.CalledProcessError:
err = f"Could not clone '{name}' from repo '{repo_name}' (branch '{branch}')"
msg.fail(err, exits=1)
msg.good(f"Cloned '{name}' from '{repo_name}' (branch '{branch}')", project_dir)
if not (project_dir / PROJECT_FILE).exists():
msg.warn(f"No {PROJECT_FILE} found in directory")
else:
msg.good(f"Your project is now ready!")
print(f"To fetch the assets, run:\n{COMMAND} project assets {dest}")
def check_clone(name: str, dest: Path, repo: str) -> None:
"""Check and validate that the destination path can be used to clone. Will
check that Git is available and that the destination path is suitable.
name (str): Name of the directory to clone from the repo.
dest (Path): Local destination of cloned directory.
repo (str): URL of the repo to clone from.
"""
git_err = (
f"Cloning spaCy project templates requires Git and the 'git' command. "
f"To clone a project without Git, copy the files from the '{name}' "
f"directory in the {repo} to {dest} manually."
)
get_git_version(error=git_err)
if not dest:
msg.fail(f"Not a valid directory to clone project: {dest}", exits=1)
if dest.exists():
# Directory already exists (not allowed, clone needs to create it)
msg.fail(f"Can't clone project, directory already exists: {dest}", exits=1)
if not dest.parent.exists():
# We're not creating parents, parent dir should exist
msg.fail(
f"Can't clone project, parent directory doesn't exist: {dest.parent}. "
f"Create the necessary folder(s) first before continuing.",
exits=1,
)

View File

@ -1,115 +0,0 @@
from pathlib import Path
from wasabi import MarkdownRenderer, msg
from ...util import working_dir
from .._util import PROJECT_FILE, Arg, Opt, load_project_config, project_cli
DOCS_URL = "https://spacy.io"
INTRO_PROJECT = f"""The [`{PROJECT_FILE}`]({PROJECT_FILE}) defines the data assets required by the
project, as well as the available commands and workflows. For details, see the
[spaCy projects documentation]({DOCS_URL}/usage/projects)."""
INTRO_COMMANDS = f"""The following commands are defined by the project. They
can be executed using [`spacy project run [name]`]({DOCS_URL}/api/cli#project-run).
Commands are only re-run if their inputs have changed."""
INTRO_WORKFLOWS = f"""The following workflows are defined by the project. They
can be executed using [`spacy project run [name]`]({DOCS_URL}/api/cli#project-run)
and will run the specified commands in order. Commands are only re-run if their
inputs have changed."""
INTRO_ASSETS = f"""The following assets are defined by the project. They can
be fetched by running [`spacy project assets`]({DOCS_URL}/api/cli#project-assets)
in the project directory."""
# These markers are added to the Markdown and can be used to update the file in
# place if it already exists. Only the auto-generated part will be replaced.
MARKER_START = "<!-- SPACY PROJECT: AUTO-GENERATED DOCS START (do not remove) -->"
MARKER_END = "<!-- SPACY PROJECT: AUTO-GENERATED DOCS END (do not remove) -->"
# If this marker is used in an existing README, it's ignored and not replaced
MARKER_IGNORE = "<!-- SPACY PROJECT: IGNORE -->"
@project_cli.command("document")
def project_document_cli(
# fmt: off
project_dir: Path = Arg(Path.cwd(), help="Path to cloned project. Defaults to current working directory.", exists=True, file_okay=False),
output_file: Path = Opt("-", "--output", "-o", help="Path to output Markdown file for output. Defaults to - for standard output"),
no_emoji: bool = Opt(False, "--no-emoji", "-NE", help="Don't use emoji")
# fmt: on
):
"""
Auto-generate a README.md for a project. If the content is saved to a file,
hidden markers are added so you can add custom content before or after the
auto-generated section and only the auto-generated docs will be replaced
when you re-run the command.
DOCS: https://spacy.io/api/cli#project-document
"""
project_document(project_dir, output_file, no_emoji=no_emoji)
def project_document(
project_dir: Path, output_file: Path, *, no_emoji: bool = False
) -> None:
is_stdout = str(output_file) == "-"
config = load_project_config(project_dir)
md = MarkdownRenderer(no_emoji=no_emoji)
md.add(MARKER_START)
title = config.get("title")
description = config.get("description")
md.add(md.title(1, f"spaCy Project{f': {title}' if title else ''}", "🪐"))
if description:
md.add(description)
md.add(md.title(2, PROJECT_FILE, "📋"))
md.add(INTRO_PROJECT)
# Commands
cmds = config.get("commands", [])
data = [(md.code(cmd["name"]), cmd.get("help", "")) for cmd in cmds]
if data:
md.add(md.title(3, "Commands", ""))
md.add(INTRO_COMMANDS)
md.add(md.table(data, ["Command", "Description"]))
# Workflows
wfs = config.get("workflows", {}).items()
data = [(md.code(n), " &rarr; ".join(md.code(w) for w in stp)) for n, stp in wfs]
if data:
md.add(md.title(3, "Workflows", ""))
md.add(INTRO_WORKFLOWS)
md.add(md.table(data, ["Workflow", "Steps"]))
# Assets
assets = config.get("assets", [])
data = []
for a in assets:
source = "Git" if a.get("git") else "URL" if a.get("url") else "Local"
dest_path = a["dest"]
dest = md.code(dest_path)
if source == "Local":
# Only link assets if they're in the repo
with working_dir(project_dir) as p:
if (p / dest_path).exists():
dest = md.link(dest, dest_path)
data.append((dest, source, a.get("description", "")))
if data:
md.add(md.title(3, "Assets", "🗂"))
md.add(INTRO_ASSETS)
md.add(md.table(data, ["File", "Source", "Description"]))
md.add(MARKER_END)
# Output result
if is_stdout:
print(md.text)
else:
content = md.text
if output_file.exists():
with output_file.open("r", encoding="utf8") as f:
existing = f.read()
if MARKER_IGNORE in existing:
msg.warn("Found ignore marker in existing file: skipping", output_file)
return
if MARKER_START in existing and MARKER_END in existing:
msg.info("Found existing file: only replacing auto-generated docs")
before = existing.split(MARKER_START)[0]
after = existing.split(MARKER_END)[1]
content = f"{before}{content}{after}"
else:
msg.warn("Replacing existing file")
with output_file.open("w", encoding="utf8") as f:
f.write(content)
msg.good("Saved project documentation", output_file)

View File

@ -1,220 +0,0 @@
"""This module contains helpers and subcommands for integrating spaCy projects
with Data Version Controk (DVC). https://dvc.org"""
import subprocess
from pathlib import Path
from typing import Any, Dict, Iterable, List, Optional
from wasabi import msg
from ...util import (
SimpleFrozenList,
join_command,
run_command,
split_command,
working_dir,
)
from .._util import (
COMMAND,
NAME,
PROJECT_FILE,
Arg,
Opt,
get_hash,
load_project_config,
project_cli,
)
DVC_CONFIG = "dvc.yaml"
DVC_DIR = ".dvc"
UPDATE_COMMAND = "dvc"
DVC_CONFIG_COMMENT = f"""# This file is auto-generated by spaCy based on your {PROJECT_FILE}. If you've
# edited your {PROJECT_FILE}, you can regenerate this file by running:
# {COMMAND} project {UPDATE_COMMAND}"""
@project_cli.command(UPDATE_COMMAND)
def project_update_dvc_cli(
# fmt: off
project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False),
workflow: Optional[str] = Arg(None, help=f"Name of workflow defined in {PROJECT_FILE}. Defaults to first workflow if not set."),
verbose: bool = Opt(False, "--verbose", "-V", help="Print more info"),
quiet: bool = Opt(False, "--quiet", "-q", help="Print less info"),
force: bool = Opt(False, "--force", "-F", help="Force update DVC config"),
# fmt: on
):
"""Auto-generate Data Version Control (DVC) config. A DVC
project can only define one pipeline, so you need to specify one workflow
defined in the project.yml. If no workflow is specified, the first defined
workflow is used. The DVC config will only be updated if the project.yml
changed.
DOCS: https://spacy.io/api/cli#project-dvc
"""
project_update_dvc(project_dir, workflow, verbose=verbose, quiet=quiet, force=force)
def project_update_dvc(
project_dir: Path,
workflow: Optional[str] = None,
*,
verbose: bool = False,
quiet: bool = False,
force: bool = False,
) -> None:
"""Update the auto-generated Data Version Control (DVC) config file. A DVC
project can only define one pipeline, so you need to specify one workflow
defined in the project.yml. Will only update the file if the checksum changed.
project_dir (Path): The project directory.
workflow (Optional[str]): Optional name of workflow defined in project.yml.
If not set, the first workflow will be used.
verbose (bool): Print more info.
quiet (bool): Print less info.
force (bool): Force update DVC config.
"""
config = load_project_config(project_dir)
updated = update_dvc_config(
project_dir, config, workflow, verbose=verbose, quiet=quiet, force=force
)
help_msg = "To execute the workflow with DVC, run: dvc repro"
if updated:
msg.good(f"Updated DVC config from {PROJECT_FILE}", help_msg)
else:
msg.info(f"No changes found in {PROJECT_FILE}, no update needed", help_msg)
def update_dvc_config(
path: Path,
config: Dict[str, Any],
workflow: Optional[str] = None,
verbose: bool = False,
quiet: bool = False,
force: bool = False,
) -> bool:
"""Re-run the DVC commands in dry mode and update dvc.yaml file in the
project directory. The file is auto-generated based on the config. The
first line of the auto-generated file specifies the hash of the config
dict, so if any of the config values change, the DVC config is regenerated.
path (Path): The path to the project directory.
config (Dict[str, Any]): The loaded project.yml.
verbose (bool): Whether to print additional info (via DVC).
quiet (bool): Don't output anything (via DVC).
force (bool): Force update, even if hashes match.
RETURNS (bool): Whether the DVC config file was updated.
"""
ensure_dvc(path)
workflows = config.get("workflows", {})
workflow_names = list(workflows.keys())
check_workflows(workflow_names, workflow)
if not workflow:
workflow = workflow_names[0]
config_hash = get_hash(config)
path = path.resolve()
dvc_config_path = path / DVC_CONFIG
if dvc_config_path.exists():
# Check if the file was generated using the current config, if not, redo
with dvc_config_path.open("r", encoding="utf8") as f:
ref_hash = f.readline().strip().replace("# ", "")
if ref_hash == config_hash and not force:
return False # Nothing has changed in project.yml, don't need to update
dvc_config_path.unlink()
dvc_commands = []
config_commands = {cmd["name"]: cmd for cmd in config.get("commands", [])}
# some flags that apply to every command
flags = []
if verbose:
flags.append("--verbose")
if quiet:
flags.append("--quiet")
for name in workflows[workflow]:
command = config_commands[name]
deps = command.get("deps", [])
outputs = command.get("outputs", [])
outputs_no_cache = command.get("outputs_no_cache", [])
if not deps and not outputs and not outputs_no_cache:
continue
# Default to the working dir as the project path since dvc.yaml is auto-generated
# and we don't want arbitrary paths in there
project_cmd = ["python", "-m", NAME, "project", "run", name]
deps_cmd = [c for cl in [["-d", p] for p in deps] for c in cl]
outputs_cmd = [c for cl in [["-o", p] for p in outputs] for c in cl]
outputs_nc_cmd = [c for cl in [["-O", p] for p in outputs_no_cache] for c in cl]
dvc_cmd = ["run", *flags, "-n", name, "-w", str(path), "--no-exec"]
if command.get("no_skip"):
dvc_cmd.append("--always-changed")
full_cmd = [*dvc_cmd, *deps_cmd, *outputs_cmd, *outputs_nc_cmd, *project_cmd]
dvc_commands.append(join_command(full_cmd))
if not dvc_commands:
# If we don't check for this, then there will be an error when reading the
# config, since DVC wouldn't create it.
msg.fail(
"No usable commands for DVC found. This can happen if none of your "
"commands have dependencies or outputs.",
exits=1,
)
with working_dir(path):
for c in dvc_commands:
dvc_command = "dvc " + c
run_command(dvc_command)
with dvc_config_path.open("r+", encoding="utf8") as f:
content = f.read()
f.seek(0, 0)
f.write(f"# {config_hash}\n{DVC_CONFIG_COMMENT}\n{content}")
return True
def check_workflows(workflows: List[str], workflow: Optional[str] = None) -> None:
"""Validate workflows provided in project.yml and check that a given
workflow can be used to generate a DVC config.
workflows (List[str]): Names of the available workflows.
workflow (Optional[str]): The name of the workflow to convert.
"""
if not workflows:
msg.fail(
f"No workflows defined in {PROJECT_FILE}. To generate a DVC config, "
f"define at least one list of commands.",
exits=1,
)
if workflow is not None and workflow not in workflows:
msg.fail(
f"Workflow '{workflow}' not defined in {PROJECT_FILE}. "
f"Available workflows: {', '.join(workflows)}",
exits=1,
)
if not workflow:
msg.warn(
f"No workflow specified for DVC pipeline. Using the first workflow "
f"defined in {PROJECT_FILE}: '{workflows[0]}'"
)
def ensure_dvc(project_dir: Path) -> None:
"""Ensure that the "dvc" command is available and that the current project
directory is an initialized DVC project.
"""
try:
subprocess.run(["dvc", "--version"], stdout=subprocess.DEVNULL)
except Exception:
msg.fail(
"To use spaCy projects with DVC (Data Version Control), DVC needs "
"to be installed and the 'dvc' command needs to be available",
"You can install the Python package from pip (pip install dvc) or "
"conda (conda install -c conda-forge dvc). For more details, see the "
"documentation: https://dvc.org/doc/install",
exits=1,
)
if not (project_dir / ".dvc").exists():
msg.fail(
"Project not initialized as a DVC project",
"To initialize a DVC project, you can run 'dvc init' in the project "
"directory. For more details, see the documentation: "
"https://dvc.org/doc/command-reference/init",
exits=1,
)

View File

@ -1,67 +0,0 @@
from pathlib import Path
from wasabi import msg
from .._util import Arg, load_project_config, logger, project_cli
from .remote_storage import RemoteStorage, get_command_hash
from .run import update_lockfile
@project_cli.command("pull")
def project_pull_cli(
# fmt: off
remote: str = Arg("default", help="Name or path of remote storage"),
project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False),
# fmt: on
):
"""Retrieve available precomputed outputs from a remote storage.
You can alias remotes in your project.yml by mapping them to storage paths.
A storage can be anything that the smart-open library can upload to, e.g.
AWS, Google Cloud Storage, SSH, local directories etc.
DOCS: https://spacy.io/api/cli#project-pull
"""
for url, output_path in project_pull(project_dir, remote):
if url is not None:
msg.good(f"Pulled {output_path} from {url}")
def project_pull(project_dir: Path, remote: str, *, verbose: bool = False):
# TODO: We don't have tests for this :(. It would take a bit of mockery to
# set up. I guess see if it breaks first?
config = load_project_config(project_dir)
if remote in config.get("remotes", {}):
remote = config["remotes"][remote]
storage = RemoteStorage(project_dir, remote)
commands = list(config.get("commands", []))
# We use a while loop here because we don't know how the commands
# will be ordered. A command might need dependencies from one that's later
# in the list.
while commands:
for i, cmd in enumerate(list(commands)):
logger.debug("CMD: %s.", cmd["name"])
deps = [project_dir / dep for dep in cmd.get("deps", [])]
if all(dep.exists() for dep in deps):
cmd_hash = get_command_hash("", "", deps, cmd["script"])
for output_path in cmd.get("outputs", []):
url = storage.pull(output_path, command_hash=cmd_hash)
logger.debug(
"URL: %s for %s with command hash %s",
url,
output_path,
cmd_hash,
)
yield url, output_path
out_locs = [project_dir / out for out in cmd.get("outputs", [])]
if all(loc.exists() for loc in out_locs):
update_lockfile(project_dir, cmd)
# We remove the command from the list here, and break, so that
# we iterate over the loop again.
commands.pop(i)
break
else:
logger.debug("Dependency missing. Skipping %s outputs.", cmd["name"])
else:
# If we didn't break the for loop, break the while loop.
break

View File

@ -1,69 +0,0 @@
from pathlib import Path
from wasabi import msg
from .._util import Arg, load_project_config, logger, project_cli
from .remote_storage import RemoteStorage, get_command_hash, get_content_hash
@project_cli.command("push")
def project_push_cli(
# fmt: off
remote: str = Arg("default", help="Name or path of remote storage"),
project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False),
# fmt: on
):
"""Persist outputs to a remote storage. You can alias remotes in your
project.yml by mapping them to storage paths. A storage can be anything that
the smart-open library can upload to, e.g. AWS, Google Cloud Storage, SSH,
local directories etc.
DOCS: https://spacy.io/api/cli#project-push
"""
for output_path, url in project_push(project_dir, remote):
if url is None:
msg.info(f"Skipping {output_path}")
else:
msg.good(f"Pushed {output_path} to {url}")
def project_push(project_dir: Path, remote: str):
"""Persist outputs to a remote storage. You can alias remotes in your project.yml
by mapping them to storage paths. A storage can be anything that the smart-open
library can upload to, e.g. gcs, aws, ssh, local directories etc
"""
config = load_project_config(project_dir)
if remote in config.get("remotes", {}):
remote = config["remotes"][remote]
storage = RemoteStorage(project_dir, remote)
for cmd in config.get("commands", []):
logger.debug("CMD: %s", cmd["name"])
deps = [project_dir / dep for dep in cmd.get("deps", [])]
if any(not dep.exists() for dep in deps):
logger.debug("Dependency missing. Skipping %s outputs", cmd["name"])
continue
cmd_hash = get_command_hash(
"", "", [project_dir / dep for dep in cmd.get("deps", [])], cmd["script"]
)
logger.debug("CMD_HASH: %s", cmd_hash)
for output_path in cmd.get("outputs", []):
output_loc = project_dir / output_path
if output_loc.exists() and _is_not_empty_dir(output_loc):
url = storage.push(
output_path,
command_hash=cmd_hash,
content_hash=get_content_hash(output_loc),
)
logger.debug(
"URL: %s for output %s with cmd_hash %s", url, output_path, cmd_hash
)
yield output_path, url
def _is_not_empty_dir(loc: Path):
if not loc.is_dir():
return True
elif any(_is_not_empty_dir(child) for child in loc.iterdir()):
return True
else:
return False

View File

@ -1,212 +0,0 @@
import hashlib
import os
import site
import tarfile
import urllib.parse
from pathlib import Path
from typing import TYPE_CHECKING, Dict, List, Optional
from wasabi import msg
from ... import about
from ...errors import Errors
from ...git_info import GIT_VERSION
from ...util import ENV_VARS, check_bool_env_var, get_minor_version
from .._util import (
download_file,
ensure_pathy,
get_checksum,
get_hash,
make_tempdir,
upload_file,
)
if TYPE_CHECKING:
from pathy import FluidPath # noqa: F401
class RemoteStorage:
"""Push and pull outputs to and from a remote file storage.
Remotes can be anything that `smart-open` can support: AWS, GCS, file system,
ssh, etc.
"""
def __init__(self, project_root: Path, url: str, *, compression="gz"):
self.root = project_root
self.url = ensure_pathy(url)
self.compression = compression
def push(self, path: Path, command_hash: str, content_hash: str) -> "FluidPath":
"""Compress a file or directory within a project and upload it to a remote
storage. If an object exists at the full URL, nothing is done.
Within the remote storage, files are addressed by their project path
(url encoded) and two user-supplied hashes, representing their creation
context and their file contents. If the URL already exists, the data is
not uploaded. Paths are archived and compressed prior to upload.
"""
loc = self.root / path
if not loc.exists():
raise IOError(f"Cannot push {loc}: does not exist.")
url = self.make_url(path, command_hash, content_hash)
if url.exists():
return url
tmp: Path
with make_tempdir() as tmp:
tar_loc = tmp / self.encode_name(str(path))
mode_string = f"w:{self.compression}" if self.compression else "w"
with tarfile.open(tar_loc, mode=mode_string) as tar_file:
tar_file.add(str(loc), arcname=str(path))
upload_file(tar_loc, url)
return url
def pull(
self,
path: Path,
*,
command_hash: Optional[str] = None,
content_hash: Optional[str] = None,
) -> Optional["FluidPath"]:
"""Retrieve a file from the remote cache. If the file already exists,
nothing is done.
If the command_hash and/or content_hash are specified, only matching
results are returned. If no results are available, an error is raised.
"""
dest = self.root / path
if dest.exists():
return None
url = self.find(path, command_hash=command_hash, content_hash=content_hash)
if url is None:
return url
else:
# Make sure the destination exists
if not dest.parent.exists():
dest.parent.mkdir(parents=True)
tmp: Path
with make_tempdir() as tmp:
tar_loc = tmp / url.parts[-1]
download_file(url, tar_loc)
mode_string = f"r:{self.compression}" if self.compression else "r"
with tarfile.open(tar_loc, mode=mode_string) as tar_file:
# This requires that the path is added correctly, relative
# to root. This is how we set things up in push()
# Disallow paths outside the current directory for the tar
# file (CVE-2007-4559, directory traversal vulnerability)
def is_within_directory(directory, target):
abs_directory = os.path.abspath(directory)
abs_target = os.path.abspath(target)
prefix = os.path.commonprefix([abs_directory, abs_target])
return prefix == abs_directory
def safe_extract(tar, path):
for member in tar.getmembers():
member_path = os.path.join(path, member.name)
if not is_within_directory(path, member_path):
raise ValueError(Errors.E852)
tar.extractall(path)
safe_extract(tar_file, self.root)
return url
def find(
self,
path: Path,
*,
command_hash: Optional[str] = None,
content_hash: Optional[str] = None,
) -> Optional["FluidPath"]:
"""Find the best matching version of a file within the storage,
or `None` if no match can be found. If both the creation and content hash
are specified, only exact matches will be returned. Otherwise, the most
recent matching file is preferred.
"""
name = self.encode_name(str(path))
urls = []
if command_hash is not None and content_hash is not None:
url = self.url / name / command_hash / content_hash
urls = [url] if url.exists() else []
elif command_hash is not None:
if (self.url / name / command_hash).exists():
urls = list((self.url / name / command_hash).iterdir())
else:
if (self.url / name).exists():
for sub_dir in (self.url / name).iterdir():
urls.extend(sub_dir.iterdir())
if content_hash is not None:
urls = [url for url in urls if url.parts[-1] == content_hash]
if len(urls) >= 2:
try:
urls.sort(key=lambda x: x.stat().last_modified) # type: ignore
except Exception:
msg.warn(
"Unable to sort remote files by last modified. The file(s) "
"pulled from the cache may not be the most recent."
)
return urls[-1] if urls else None
def make_url(self, path: Path, command_hash: str, content_hash: str) -> "FluidPath":
"""Construct a URL from a subpath, a creation hash and a content hash."""
return self.url / self.encode_name(str(path)) / command_hash / content_hash
def encode_name(self, name: str) -> str:
"""Encode a subpath into a URL-safe name."""
return urllib.parse.quote_plus(name)
def get_content_hash(loc: Path) -> str:
return get_checksum(loc)
def get_command_hash(
site_hash: str, env_hash: str, deps: List[Path], cmd: List[str]
) -> str:
"""Create a hash representing the execution of a command. This includes the
currently installed packages, whatever environment variables have been marked
as relevant, and the command.
"""
if check_bool_env_var(ENV_VARS.PROJECT_USE_GIT_VERSION):
spacy_v = GIT_VERSION
else:
spacy_v = str(get_minor_version(about.__version__) or "")
dep_checksums = [get_checksum(dep) for dep in sorted(deps)]
hashes = [spacy_v, site_hash, env_hash] + dep_checksums
hashes.extend(cmd)
creation_bytes = "".join(hashes).encode("utf8")
return hashlib.md5(creation_bytes).hexdigest()
def get_site_hash():
"""Hash the current Python environment's site-packages contents, including
the name and version of the libraries. The list we're hashing is what
`pip freeze` would output.
"""
site_dirs = site.getsitepackages()
if site.ENABLE_USER_SITE:
site_dirs.extend(site.getusersitepackages())
packages = set()
for site_dir in site_dirs:
site_dir = Path(site_dir)
for subpath in site_dir.iterdir():
if subpath.parts[-1].endswith("dist-info"):
packages.add(subpath.parts[-1].replace(".dist-info", ""))
package_bytes = "".join(sorted(packages)).encode("utf8")
return hashlib.md5sum(package_bytes).hexdigest()
def get_env_hash(env: Dict[str, str]) -> str:
"""Construct a hash of the environment variables that will be passed into
the commands.
Values in the env dict may be references to the current os.environ, using
the syntax $ENV_VAR to mean os.environ[ENV_VAR]
"""
env_vars = {}
for key, value in env.items():
if value.startswith("$"):
env_vars[key] = os.environ.get(value[1:], "")
else:
env_vars[key] = value
return get_hash(env_vars)

View File

@ -1,379 +0,0 @@
import os.path
import sys
from pathlib import Path
from typing import Any, Dict, Iterable, List, Optional, Sequence, Tuple
import srsly
import typer
from wasabi import msg
from wasabi.util import locale_escape
from ... import about
from ...git_info import GIT_VERSION
from ...util import (
ENV_VARS,
SimpleFrozenDict,
SimpleFrozenList,
check_bool_env_var,
is_cwd,
is_minor_version_match,
join_command,
run_command,
split_command,
working_dir,
)
from .._util import (
COMMAND,
PROJECT_FILE,
PROJECT_LOCK,
Arg,
Opt,
get_checksum,
get_hash,
load_project_config,
parse_config_overrides,
project_cli,
)
@project_cli.command(
"run", context_settings={"allow_extra_args": True, "ignore_unknown_options": True}
)
def project_run_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
subcommand: str = Arg(None, help=f"Name of command defined in the {PROJECT_FILE}"),
project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False),
force: bool = Opt(False, "--force", "-F", help="Force re-running steps, even if nothing changed"),
dry: bool = Opt(False, "--dry", "-D", help="Perform a dry run and don't execute scripts"),
show_help: bool = Opt(False, "--help", help="Show help message and available subcommands")
# fmt: on
):
"""Run a named command or workflow defined in the project.yml. If a workflow
name is specified, all commands in the workflow are run, in order. If
commands define dependencies and/or outputs, they will only be re-run if
state has changed.
DOCS: https://spacy.io/api/cli#project-run
"""
if show_help or not subcommand:
print_run_help(project_dir, subcommand)
else:
overrides = parse_config_overrides(ctx.args)
project_run(project_dir, subcommand, overrides=overrides, force=force, dry=dry)
def project_run(
project_dir: Path,
subcommand: str,
*,
overrides: Dict[str, Any] = SimpleFrozenDict(),
force: bool = False,
dry: bool = False,
capture: bool = False,
skip_requirements_check: bool = False,
) -> None:
"""Run a named script defined in the project.yml. If the script is part
of the default pipeline (defined in the "run" section), DVC is used to
execute the command, so it can determine whether to rerun it. It then
calls into "exec" to execute it.
project_dir (Path): Path to project directory.
subcommand (str): Name of command to run.
overrides (Dict[str, Any]): Optional config overrides.
force (bool): Force re-running, even if nothing changed.
dry (bool): Perform a dry run and don't execute commands.
capture (bool): Whether to capture the output and errors of individual commands.
If False, the stdout and stderr will not be redirected, and if there's an error,
sys.exit will be called with the return code. You should use capture=False
when you want to turn over execution to the command, and capture=True
when you want to run the command more like a function.
skip_requirements_check (bool): Whether to skip the requirements check.
"""
config = load_project_config(project_dir, overrides=overrides)
commands = {cmd["name"]: cmd for cmd in config.get("commands", [])}
workflows = config.get("workflows", {})
validate_subcommand(list(commands.keys()), list(workflows.keys()), subcommand)
req_path = project_dir / "requirements.txt"
if not skip_requirements_check:
if config.get("check_requirements", True) and os.path.exists(req_path):
with req_path.open() as requirements_file:
_check_requirements([req.strip() for req in requirements_file])
if subcommand in workflows:
msg.info(f"Running workflow '{subcommand}'")
for cmd in workflows[subcommand]:
project_run(
project_dir,
cmd,
overrides=overrides,
force=force,
dry=dry,
capture=capture,
skip_requirements_check=True,
)
else:
cmd = commands[subcommand]
for dep in cmd.get("deps", []):
if not (project_dir / dep).exists():
err = f"Missing dependency specified by command '{subcommand}': {dep}"
err_help = "Maybe you forgot to run the 'project assets' command or a previous step?"
err_exits = 1 if not dry else None
msg.fail(err, err_help, exits=err_exits)
check_spacy_commit = check_bool_env_var(ENV_VARS.PROJECT_USE_GIT_VERSION)
with working_dir(project_dir) as current_dir:
msg.divider(subcommand)
rerun = check_rerun(current_dir, cmd, check_spacy_commit=check_spacy_commit)
if not rerun and not force:
msg.info(f"Skipping '{cmd['name']}': nothing changed")
else:
run_commands(cmd["script"], dry=dry, capture=capture)
if not dry:
update_lockfile(current_dir, cmd)
def print_run_help(project_dir: Path, subcommand: Optional[str] = None) -> None:
"""Simulate a CLI help prompt using the info available in the project.yml.
project_dir (Path): The project directory.
subcommand (Optional[str]): The subcommand or None. If a subcommand is
provided, the subcommand help is shown. Otherwise, the top-level help
and a list of available commands is printed.
"""
config = load_project_config(project_dir)
config_commands = config.get("commands", [])
commands = {cmd["name"]: cmd for cmd in config_commands}
workflows = config.get("workflows", {})
project_loc = "" if is_cwd(project_dir) else project_dir
if subcommand:
validate_subcommand(list(commands.keys()), list(workflows.keys()), subcommand)
print(f"Usage: {COMMAND} project run {subcommand} {project_loc}")
if subcommand in commands:
help_text = commands[subcommand].get("help")
if help_text:
print(f"\n{help_text}\n")
elif subcommand in workflows:
steps = workflows[subcommand]
print(f"\nWorkflow consisting of {len(steps)} commands:")
steps_data = [
(f"{i + 1}. {step}", commands[step].get("help", ""))
for i, step in enumerate(steps)
]
msg.table(steps_data)
help_cmd = f"{COMMAND} project run [COMMAND] {project_loc} --help"
print(f"For command details, run: {help_cmd}")
else:
print("")
title = config.get("title")
if title:
print(f"{locale_escape(title)}\n")
if config_commands:
print(f"Available commands in {PROJECT_FILE}")
print(f"Usage: {COMMAND} project run [COMMAND] {project_loc}")
msg.table([(cmd["name"], cmd.get("help", "")) for cmd in config_commands])
if workflows:
print(f"Available workflows in {PROJECT_FILE}")
print(f"Usage: {COMMAND} project run [WORKFLOW] {project_loc}")
msg.table([(name, " -> ".join(steps)) for name, steps in workflows.items()])
def run_commands(
commands: Iterable[str] = SimpleFrozenList(),
silent: bool = False,
dry: bool = False,
capture: bool = False,
) -> None:
"""Run a sequence of commands in a subprocess, in order.
commands (List[str]): The string commands.
silent (bool): Don't print the commands.
dry (bool): Perform a dry run and don't execut anything.
capture (bool): Whether to capture the output and errors of individual commands.
If False, the stdout and stderr will not be redirected, and if there's an error,
sys.exit will be called with the return code. You should use capture=False
when you want to turn over execution to the command, and capture=True
when you want to run the command more like a function.
"""
for c in commands:
command = split_command(c)
# Not sure if this is needed or a good idea. Motivation: users may often
# use commands in their config that reference "python" and we want to
# make sure that it's always executing the same Python that spaCy is
# executed with and the pip in the same env, not some other Python/pip.
# Also ensures cross-compatibility if user 1 writes "python3" (because
# that's how it's set up on their system), and user 2 without the
# shortcut tries to re-run the command.
if len(command) and command[0] in ("python", "python3"):
command[0] = sys.executable
elif len(command) and command[0] in ("pip", "pip3"):
command = [sys.executable, "-m", "pip", *command[1:]]
if not silent:
print(f"Running command: {join_command(command)}")
if not dry:
run_command(command, capture=capture)
def validate_subcommand(
commands: Sequence[str], workflows: Sequence[str], subcommand: str
) -> None:
"""Check that a subcommand is valid and defined. Raises an error otherwise.
commands (Sequence[str]): The available commands.
subcommand (str): The subcommand.
"""
if not commands and not workflows:
msg.fail(f"No commands or workflows defined in {PROJECT_FILE}", exits=1)
if subcommand not in commands and subcommand not in workflows:
help_msg = []
if subcommand in ["assets", "asset"]:
help_msg.append("Did you mean to run: python -m spacy project assets?")
if commands:
help_msg.append(f"Available commands: {', '.join(commands)}")
if workflows:
help_msg.append(f"Available workflows: {', '.join(workflows)}")
msg.fail(
f"Can't find command or workflow '{subcommand}' in {PROJECT_FILE}",
". ".join(help_msg),
exits=1,
)
def check_rerun(
project_dir: Path,
command: Dict[str, Any],
*,
check_spacy_version: bool = True,
check_spacy_commit: bool = False,
) -> bool:
"""Check if a command should be rerun because its settings or inputs/outputs
changed.
project_dir (Path): The current project directory.
command (Dict[str, Any]): The command, as defined in the project.yml.
strict_version (bool):
RETURNS (bool): Whether to re-run the command.
"""
# Always rerun if no-skip is set
if command.get("no_skip", False):
return True
lock_path = project_dir / PROJECT_LOCK
if not lock_path.exists(): # We don't have a lockfile, run command
return True
data = srsly.read_yaml(lock_path)
if command["name"] not in data: # We don't have info about this command
return True
entry = data[command["name"]]
# Always run commands with no outputs (otherwise they'd always be skipped)
if not entry.get("outs", []):
return True
# Always rerun if spaCy version or commit hash changed
spacy_v = entry.get("spacy_version")
commit = entry.get("spacy_git_version")
if check_spacy_version and not is_minor_version_match(spacy_v, about.__version__):
info = f"({spacy_v} in {PROJECT_LOCK}, {about.__version__} current)"
msg.info(f"Re-running '{command['name']}': spaCy minor version changed {info}")
return True
if check_spacy_commit and commit != GIT_VERSION:
info = f"({commit} in {PROJECT_LOCK}, {GIT_VERSION} current)"
msg.info(f"Re-running '{command['name']}': spaCy commit changed {info}")
return True
# If the entry in the lockfile matches the lockfile entry that would be
# generated from the current command, we don't rerun because it means that
# all inputs/outputs, hashes and scripts are the same and nothing changed
lock_entry = get_lock_entry(project_dir, command)
exclude = ["spacy_version", "spacy_git_version"]
return get_hash(lock_entry, exclude=exclude) != get_hash(entry, exclude=exclude)
def update_lockfile(project_dir: Path, command: Dict[str, Any]) -> None:
"""Update the lockfile after running a command. Will create a lockfile if
it doesn't yet exist and will add an entry for the current command, its
script and dependencies/outputs.
project_dir (Path): The current project directory.
command (Dict[str, Any]): The command, as defined in the project.yml.
"""
lock_path = project_dir / PROJECT_LOCK
if not lock_path.exists():
srsly.write_yaml(lock_path, {})
data = {}
else:
data = srsly.read_yaml(lock_path)
data[command["name"]] = get_lock_entry(project_dir, command)
srsly.write_yaml(lock_path, data)
def get_lock_entry(project_dir: Path, command: Dict[str, Any]) -> Dict[str, Any]:
"""Get a lockfile entry for a given command. An entry includes the command,
the script (command steps) and a list of dependencies and outputs with
their paths and file hashes, if available. The format is based on the
dvc.lock files, to keep things consistent.
project_dir (Path): The current project directory.
command (Dict[str, Any]): The command, as defined in the project.yml.
RETURNS (Dict[str, Any]): The lockfile entry.
"""
deps = get_fileinfo(project_dir, command.get("deps", []))
outs = get_fileinfo(project_dir, command.get("outputs", []))
outs_nc = get_fileinfo(project_dir, command.get("outputs_no_cache", []))
return {
"cmd": f"{COMMAND} run {command['name']}",
"script": command["script"],
"deps": deps,
"outs": [*outs, *outs_nc],
"spacy_version": about.__version__,
"spacy_git_version": GIT_VERSION,
}
def get_fileinfo(project_dir: Path, paths: List[str]) -> List[Dict[str, Optional[str]]]:
"""Generate the file information for a list of paths (dependencies, outputs).
Includes the file path and the file's checksum.
project_dir (Path): The current project directory.
paths (List[str]): The file paths.
RETURNS (List[Dict[str, str]]): The lockfile entry for a file.
"""
data = []
for path in paths:
file_path = project_dir / path
md5 = get_checksum(file_path) if file_path.exists() else None
data.append({"path": path, "md5": md5})
return data
def _check_requirements(requirements: List[str]) -> Tuple[bool, bool]:
"""Checks whether requirements are installed and free of version conflicts.
requirements (List[str]): List of requirements.
RETURNS (Tuple[bool, bool]): Whether (1) any packages couldn't be imported, (2) any packages with version conflicts
exist.
"""
import pkg_resources
failed_pkgs_msgs: List[str] = []
conflicting_pkgs_msgs: List[str] = []
for req in requirements:
try:
pkg_resources.require(req)
except pkg_resources.DistributionNotFound as dnf:
failed_pkgs_msgs.append(dnf.report())
except pkg_resources.VersionConflict as vc:
conflicting_pkgs_msgs.append(vc.report())
except Exception:
msg.warn(
f"Unable to check requirement: {req} "
"Checks are currently limited to requirement specifiers "
"(PEP 508)"
)
if len(failed_pkgs_msgs) or len(conflicting_pkgs_msgs):
msg.warn(
title="Missing requirements or requirement conflicts detected. Make sure your Python environment is set up "
"correctly and you installed all requirements specified in your project's requirements.txt: "
)
for pgk_msg in failed_pkgs_msgs + conflicting_pkgs_msgs:
msg.text(pgk_msg)
return len(failed_pkgs_msgs) > 0, len(conflicting_pkgs_msgs) > 0

View File

@ -26,6 +26,9 @@ batch_size = 1000
[nlp.tokenizer] [nlp.tokenizer]
@tokenizers = "spacy.Tokenizer.v1" @tokenizers = "spacy.Tokenizer.v1"
[nlp.vectors]
@vectors = "spacy.Vectors.v1"
# The pipeline components and their models # The pipeline components and their models
[components] [components]

View File

@ -219,6 +219,7 @@ class Warnings(metaclass=ErrorsWithCodes):
W125 = ("The StaticVectors key_attr is no longer used. To set a custom " W125 = ("The StaticVectors key_attr is no longer used. To set a custom "
"key attribute for vectors, configure it through Vectors(attr=) or " "key attribute for vectors, configure it through Vectors(attr=) or "
"'spacy init vectors --attr'") "'spacy init vectors --attr'")
W126 = ("These keys are unsupported: {unsupported}")
class Errors(metaclass=ErrorsWithCodes): class Errors(metaclass=ErrorsWithCodes):
@ -553,12 +554,12 @@ class Errors(metaclass=ErrorsWithCodes):
"during training, make sure to include it in 'annotating components'") "during training, make sure to include it in 'annotating components'")
# New errors added in v3.x # New errors added in v3.x
E849 = ("The vocab only supports {method} for vectors of type "
"spacy.vectors.Vectors, not {vectors_type}.")
E850 = ("The PretrainVectors objective currently only supports default or " E850 = ("The PretrainVectors objective currently only supports default or "
"floret vectors, not {mode} vectors.") "floret vectors, not {mode} vectors.")
E851 = ("The 'textcat' component labels should only have values of 0 or 1, " E851 = ("The 'textcat' component labels should only have values of 0 or 1, "
"but found value of '{val}'.") "but found value of '{val}'.")
E852 = ("The tar file pulled from the remote attempted an unsafe path "
"traversal.")
E853 = ("Unsupported component factory name '{name}'. The character '.' is " E853 = ("Unsupported component factory name '{name}'. The character '.' is "
"not permitted in factory names.") "not permitted in factory names.")
E854 = ("Unable to set doc.ents. Check that the 'ents_filter' does not " E854 = ("Unable to set doc.ents. Check that the 'ents_filter' does not "
@ -981,6 +982,8 @@ class Errors(metaclass=ErrorsWithCodes):
" 'min_length': {min_length}, 'max_length': {max_length}") " 'min_length': {min_length}, 'max_length': {max_length}")
E1054 = ("The text, including whitespace, must match between reference and " E1054 = ("The text, including whitespace, must match between reference and "
"predicted docs when training {component}.") "predicted docs when training {component}.")
E1055 = ("The 'replace_listener' callback expects {num_params} parameters, "
"but only callbacks with one or three parameters are supported")
# Deprecated model shortcuts, only used in errors and warnings # Deprecated model shortcuts, only used in errors and warnings

View File

@ -1,4 +1,4 @@
# cython: infer_types=True, profile=True # cython: infer_types=True
from typing import Iterable from typing import Iterable

View File

@ -1,4 +1,4 @@
# cython: infer_types=True, profile=True # cython: infer_types=True
from pathlib import Path from pathlib import Path
from typing import Iterable, Tuple, Union from typing import Iterable, Tuple, Union

View File

@ -1,4 +1,4 @@
# cython: infer_types=True, profile=True # cython: infer_types=True
from typing import Any, Callable, Dict, Iterable from typing import Any, Callable, Dict, Iterable
import srsly import srsly

View File

@ -163,7 +163,7 @@ class SpanishLemmatizer(Lemmatizer):
for old, new in self.lookups.get_table("lemma_rules").get("det", []): for old, new in self.lookups.get_table("lemma_rules").get("det", []):
if word == old: if word == old:
return [new] return [new]
# If none of the specfic rules apply, search in the common rules for # If none of the specific rules apply, search in the common rules for
# determiners and pronouns that follow a unique pattern for # determiners and pronouns that follow a unique pattern for
# lemmatization. If the word is in the list, return the corresponding # lemmatization. If the word is in the list, return the corresponding
# lemma. # lemma.
@ -291,7 +291,7 @@ class SpanishLemmatizer(Lemmatizer):
for old, new in self.lookups.get_table("lemma_rules").get("pron", []): for old, new in self.lookups.get_table("lemma_rules").get("pron", []):
if word == old: if word == old:
return [new] return [new]
# If none of the specfic rules apply, search in the common rules for # If none of the specific rules apply, search in the common rules for
# determiners and pronouns that follow a unique pattern for # determiners and pronouns that follow a unique pattern for
# lemmatization. If the word is in the list, return the corresponding # lemmatization. If the word is in the list, return the corresponding
# lemma. # lemma.

View File

@ -15,6 +15,7 @@ _prefixes = (
[ [
"", "",
"", "",
"",
] ]
+ LIST_PUNCT + LIST_PUNCT
+ LIST_ELLIPSES + LIST_ELLIPSES
@ -31,6 +32,7 @@ _suffixes = (
+ [ + [
"", "",
"", "",
"",
r"(?<=[\u1F00-\u1FFF\u0370-\u03FF])[\-\.⸏]", r"(?<=[\u1F00-\u1FFF\u0370-\u03FF])[\-\.⸏]",
] ]
) )

View File

@ -1,4 +1,5 @@
import functools import functools
import inspect
import itertools import itertools
import multiprocessing as mp import multiprocessing as mp
import random import random
@ -64,6 +65,7 @@ from .util import (
registry, registry,
warn_if_jupyter_cupy, warn_if_jupyter_cupy,
) )
from .vectors import BaseVectors
from .vocab import Vocab, create_vocab from .vocab import Vocab, create_vocab
PipeCallable = Callable[[Doc], Doc] PipeCallable = Callable[[Doc], Doc]
@ -157,6 +159,7 @@ class Language:
max_length: int = 10**6, max_length: int = 10**6,
meta: Dict[str, Any] = {}, meta: Dict[str, Any] = {},
create_tokenizer: Optional[Callable[["Language"], Callable[[str], Doc]]] = None, create_tokenizer: Optional[Callable[["Language"], Callable[[str], Doc]]] = None,
create_vectors: Optional[Callable[["Vocab"], BaseVectors]] = None,
batch_size: int = 1000, batch_size: int = 1000,
**kwargs, **kwargs,
) -> None: ) -> None:
@ -197,6 +200,10 @@ class Language:
if vocab is True: if vocab is True:
vectors_name = meta.get("vectors", {}).get("name") vectors_name = meta.get("vectors", {}).get("name")
vocab = create_vocab(self.lang, self.Defaults, vectors_name=vectors_name) vocab = create_vocab(self.lang, self.Defaults, vectors_name=vectors_name)
if not create_vectors:
vectors_cfg = {"vectors": self._config["nlp"]["vectors"]}
create_vectors = registry.resolve(vectors_cfg)["vectors"]
vocab.vectors = create_vectors(vocab)
else: else:
if (self.lang and vocab.lang) and (self.lang != vocab.lang): if (self.lang and vocab.lang) and (self.lang != vocab.lang):
raise ValueError(Errors.E150.format(nlp=self.lang, vocab=vocab.lang)) raise ValueError(Errors.E150.format(nlp=self.lang, vocab=vocab.lang))
@ -1764,6 +1771,10 @@ class Language:
).merge(config) ).merge(config)
if "nlp" not in config: if "nlp" not in config:
raise ValueError(Errors.E985.format(config=config)) raise ValueError(Errors.E985.format(config=config))
# fill in [nlp.vectors] if not present (as a narrower alternative to
# auto-filling [nlp] from the default config)
if "vectors" not in config["nlp"]:
config["nlp"]["vectors"] = {"@vectors": "spacy.Vectors.v1"}
config_lang = config["nlp"].get("lang") config_lang = config["nlp"].get("lang")
if config_lang is not None and config_lang != cls.lang: if config_lang is not None and config_lang != cls.lang:
raise ValueError( raise ValueError(
@ -1795,6 +1806,7 @@ class Language:
filled["nlp"], validate=validate, schema=ConfigSchemaNlp filled["nlp"], validate=validate, schema=ConfigSchemaNlp
) )
create_tokenizer = resolved_nlp["tokenizer"] create_tokenizer = resolved_nlp["tokenizer"]
create_vectors = resolved_nlp["vectors"]
before_creation = resolved_nlp["before_creation"] before_creation = resolved_nlp["before_creation"]
after_creation = resolved_nlp["after_creation"] after_creation = resolved_nlp["after_creation"]
after_pipeline_creation = resolved_nlp["after_pipeline_creation"] after_pipeline_creation = resolved_nlp["after_pipeline_creation"]
@ -1815,7 +1827,12 @@ class Language:
# inside stuff like the spacy train function. If we loaded them here, # inside stuff like the spacy train function. If we loaded them here,
# then we would load them twice at runtime: once when we make from config, # then we would load them twice at runtime: once when we make from config,
# and then again when we load from disk. # and then again when we load from disk.
nlp = lang_cls(vocab=vocab, create_tokenizer=create_tokenizer, meta=meta) nlp = lang_cls(
vocab=vocab,
create_tokenizer=create_tokenizer,
create_vectors=create_vectors,
meta=meta,
)
if after_creation is not None: if after_creation is not None:
nlp = after_creation(nlp) nlp = after_creation(nlp)
if not isinstance(nlp, cls): if not isinstance(nlp, cls):
@ -2032,8 +2049,20 @@ class Language:
# Go over the listener layers and replace them # Go over the listener layers and replace them
for listener in pipe_listeners: for listener in pipe_listeners:
new_model = tok2vec_model.copy() new_model = tok2vec_model.copy()
if "replace_listener" in tok2vec_model.attrs: replace_listener_func = tok2vec_model.attrs.get("replace_listener")
new_model = tok2vec_model.attrs["replace_listener"](new_model) if replace_listener_func is not None:
# Pass the extra args to the callback without breaking compatibility with
# old library versions that only expect a single parameter.
num_params = len(
inspect.signature(replace_listener_func).parameters
)
if num_params == 1:
new_model = replace_listener_func(new_model)
elif num_params == 3:
new_model = replace_listener_func(new_model, listener, tok2vec)
else:
raise ValueError(Errors.E1055.format(num_params=num_params))
util.replace_model_node(pipe.model, listener, new_model) # type: ignore[attr-defined] util.replace_model_node(pipe.model, listener, new_model) # type: ignore[attr-defined]
tok2vec.remove_listener(listener, pipe_name) tok2vec.remove_listener(listener, pipe_name)

View File

@ -1,4 +1,5 @@
# cython: embedsignature=True # cython: embedsignature=True
# cython: profile=False
# Compiler crashes on memory view coercion without this. Should report bug. # Compiler crashes on memory view coercion without this. Should report bug.
cimport numpy as np cimport numpy as np
from libc.string cimport memset from libc.string cimport memset

View File

@ -1,4 +1,4 @@
# cython: infer_types=True, profile=True # cython: infer_types=True
import warnings import warnings
from collections import defaultdict from collections import defaultdict
from itertools import product from itertools import product
@ -129,6 +129,7 @@ cdef class DependencyMatcher:
else: else:
required_keys = {"RIGHT_ID", "RIGHT_ATTRS", "REL_OP", "LEFT_ID"} required_keys = {"RIGHT_ID", "RIGHT_ATTRS", "REL_OP", "LEFT_ID"}
relation_keys = set(relation.keys()) relation_keys = set(relation.keys())
# Identify required keys that have not been specified
missing = required_keys - relation_keys missing = required_keys - relation_keys
if missing: if missing:
missing_txt = ", ".join(list(missing)) missing_txt = ", ".join(list(missing))
@ -136,6 +137,13 @@ cdef class DependencyMatcher:
required=required_keys, required=required_keys,
missing=missing_txt missing=missing_txt
)) ))
# Identify additional, unsupported keys
unsupported = relation_keys - required_keys
if unsupported:
unsupported_txt = ", ".join(list(unsupported))
warnings.warn(Warnings.W126.format(
unsupported=unsupported_txt
))
if ( if (
relation["RIGHT_ID"] in visited_nodes relation["RIGHT_ID"] in visited_nodes
or relation["LEFT_ID"] not in visited_nodes or relation["LEFT_ID"] not in visited_nodes

View File

@ -1,4 +1,4 @@
# cython: profile=True, binding=True, infer_types=True # cython: binding=True, infer_types=True
from cpython.object cimport PyObject from cpython.object cimport PyObject
from libc.stdint cimport int64_t from libc.stdint cimport int64_t

View File

@ -1,4 +1,4 @@
# cython: binding=True, infer_types=True, profile=True # cython: binding=True, infer_types=True
from typing import Iterable, List from typing import Iterable, List
from cymem.cymem cimport Pool from cymem.cymem cimport Pool

View File

@ -1,4 +1,4 @@
# cython: infer_types=True, profile=True # cython: infer_types=True
from preshed.maps cimport map_clear, map_get, map_init, map_iter, map_set from preshed.maps cimport map_clear, map_get, map_init, map_iter, map_set
import warnings import warnings

View File

@ -1,4 +1,5 @@
# cython: infer_types=True, cdivision=True, boundscheck=False # cython: infer_types=True, cdivision=True, boundscheck=False
# cython: profile=False
cimport numpy as np cimport numpy as np
from libc.math cimport exp from libc.math cimport exp
from libc.stdlib cimport calloc, free, realloc from libc.stdlib cimport calloc, free, realloc

View File

@ -9,7 +9,7 @@ from thinc.util import partial
from ..attrs import ORTH from ..attrs import ORTH
from ..errors import Errors, Warnings from ..errors import Errors, Warnings
from ..tokens import Doc from ..tokens import Doc
from ..vectors import Mode from ..vectors import Mode, Vectors
from ..vocab import Vocab from ..vocab import Vocab
@ -48,11 +48,14 @@ def forward(
key_attr: int = getattr(vocab.vectors, "attr", ORTH) key_attr: int = getattr(vocab.vectors, "attr", ORTH)
keys = model.ops.flatten([cast(Ints1d, doc.to_array(key_attr)) for doc in docs]) keys = model.ops.flatten([cast(Ints1d, doc.to_array(key_attr)) for doc in docs])
W = cast(Floats2d, model.ops.as_contig(model.get_param("W"))) W = cast(Floats2d, model.ops.as_contig(model.get_param("W")))
if vocab.vectors.mode == Mode.default: if isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.default:
V = model.ops.asarray(vocab.vectors.data) V = model.ops.asarray(vocab.vectors.data)
rows = vocab.vectors.find(keys=keys) rows = vocab.vectors.find(keys=keys)
V = model.ops.as_contig(V[rows]) V = model.ops.as_contig(V[rows])
elif vocab.vectors.mode == Mode.floret: elif isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.floret:
V = vocab.vectors.get_batch(keys)
V = model.ops.as_contig(V)
elif hasattr(vocab.vectors, "get_batch"):
V = vocab.vectors.get_batch(keys) V = vocab.vectors.get_batch(keys)
V = model.ops.as_contig(V) V = model.ops.as_contig(V)
else: else:
@ -61,7 +64,7 @@ def forward(
vectors_data = model.ops.gemm(V, W, trans2=True) vectors_data = model.ops.gemm(V, W, trans2=True)
except ValueError: except ValueError:
raise RuntimeError(Errors.E896) raise RuntimeError(Errors.E896)
if vocab.vectors.mode == Mode.default: if isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.default:
# Convert negative indices to 0-vectors # Convert negative indices to 0-vectors
# TODO: more options for UNK tokens # TODO: more options for UNK tokens
vectors_data[rows < 0] = 0 vectors_data[rows < 0] = 0

View File

@ -1,4 +1,5 @@
# cython: infer_types # cython: infer_types
# cython: profile=False
import warnings import warnings
import numpy import numpy

View File

@ -1,4 +1,4 @@
# cython: profile=False
IDS = { IDS = {
"": NO_TAG, "": NO_TAG,
"ADJ": ADJ, "ADJ": ADJ,

View File

@ -1,4 +1,5 @@
# cython: infer_types=True, binding=True # cython: infer_types=True, binding=True
# cython: profile=False
from cython.operator cimport dereference as deref from cython.operator cimport dereference as deref
from libc.stdint cimport UINT32_MAX, uint32_t from libc.stdint cimport UINT32_MAX, uint32_t
from libc.string cimport memset from libc.string cimport memset

View File

@ -1,5 +1,4 @@
# cython: infer_types=True # cython: infer_types=True
# cython: profile=True
import numpy import numpy
from thinc.extra.search cimport Beam from thinc.extra.search cimport Beam

View File

@ -0,0 +1 @@
# cython: profile=False

View File

@ -1,4 +1,4 @@
# cython: profile=True, cdivision=True, infer_types=True # cython: cdivision=True, infer_types=True
from cymem.cymem cimport Address, Pool from cymem.cymem cimport Address, Pool
from libc.stdint cimport int32_t from libc.stdint cimport int32_t
from libcpp.vector cimport vector from libcpp.vector cimport vector

View File

@ -1,3 +1,4 @@
# cython: profile=False
from cymem.cymem cimport Pool from cymem.cymem cimport Pool
from libc.stdint cimport int32_t from libc.stdint cimport int32_t

View File

@ -1,4 +1,4 @@
# cython: profile=True, infer_types=True # cython: infer_types=True
"""Implements the projectivize/deprojectivize mechanism in Nivre & Nilsson 2005 """Implements the projectivize/deprojectivize mechanism in Nivre & Nilsson 2005
for doing pseudo-projective parsing implementation uses the HEAD decoration for doing pseudo-projective parsing implementation uses the HEAD decoration
scheme. scheme.

View File

@ -1,4 +1,5 @@
# cython: infer_types=True # cython: infer_types=True
# cython: profile=False
from libcpp.vector cimport vector from libcpp.vector cimport vector
from ...tokens.doc cimport Doc from ...tokens.doc cimport Doc

View File

@ -1,4 +1,5 @@
# cython: infer_types=True # cython: infer_types=True
# cython: profile=False
from __future__ import print_function from __future__ import print_function
from cymem.cymem cimport Pool from cymem.cymem cimport Pool

View File

@ -1,4 +1,4 @@
# cython: infer_types=True, profile=True, binding=True # cython: infer_types=True, binding=True
from collections import defaultdict from collections import defaultdict
from typing import Callable, Optional from typing import Callable, Optional

View File

@ -1,4 +1,4 @@
# cython: infer_types=True, profile=True, binding=True # cython: infer_types=True, binding=True
from itertools import islice from itertools import islice
from typing import Callable, Dict, Optional, Union from typing import Callable, Dict, Optional, Union

View File

@ -1,4 +1,4 @@
# cython: infer_types=True, profile=True, binding=True # cython: infer_types=True, binding=True
from typing import Optional from typing import Optional
import numpy import numpy

View File

@ -1,4 +1,4 @@
# cython: infer_types=True, profile=True, binding=True # cython: infer_types=True, binding=True
from collections import defaultdict from collections import defaultdict
from typing import Callable, Optional from typing import Callable, Optional

View File

@ -1,4 +1,4 @@
# cython: infer_types=True, profile=True, binding=True # cython: infer_types=True, binding=True
import warnings import warnings
from typing import Callable, Dict, Iterable, Iterator, Tuple, Union from typing import Callable, Dict, Iterable, Iterator, Tuple, Union

View File

@ -1,4 +1,4 @@
# cython: infer_types=True, profile=True, binding=True # cython: infer_types=True, binding=True
from typing import Callable, List, Optional from typing import Callable, List, Optional
import srsly import srsly

View File

@ -1,4 +1,4 @@
# cython: infer_types=True, profile=True, binding=True # cython: infer_types=True, binding=True
from itertools import islice from itertools import islice
from typing import Callable, Optional from typing import Callable, Optional

View File

@ -1,4 +1,4 @@
# cython: infer_types=True, profile=True, binding=True # cython: infer_types=True, binding=True
from itertools import islice from itertools import islice
from typing import Callable, Optional from typing import Callable, Optional

View File

@ -1,4 +1,4 @@
# cython: infer_types=True, profile=True, binding=True # cython: infer_types=True, binding=True
from typing import Callable, Dict, Iterable, Iterator, Optional, Tuple from typing import Callable, Dict, Iterable, Iterator, Optional, Tuple
import srsly import srsly

View File

@ -1,4 +1,5 @@
# cython: infer_types=True, cdivision=True, boundscheck=False, binding=True # cython: infer_types=True, cdivision=True, boundscheck=False, binding=True
# cython: profile=False
from __future__ import print_function from __future__ import print_function
cimport numpy as np cimport numpy as np

View File

@ -412,6 +412,7 @@ class ConfigSchemaNlp(BaseModel):
after_creation: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after creation and before the pipeline is constructed") after_creation: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after creation and before the pipeline is constructed")
after_pipeline_creation: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after the pipeline is constructed") after_pipeline_creation: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after the pipeline is constructed")
batch_size: Optional[int] = Field(..., title="Default batch size") batch_size: Optional[int] = Field(..., title="Default batch size")
vectors: Callable = Field(..., title="Vectors implementation")
# fmt: on # fmt: on
class Config: class Config:
@ -480,66 +481,6 @@ CONFIG_SCHEMAS = {
"initialize": ConfigSchemaInit, "initialize": ConfigSchemaInit,
} }
# Project config Schema
class ProjectConfigAssetGitItem(BaseModel):
# fmt: off
repo: StrictStr = Field(..., title="URL of Git repo to download from")
path: StrictStr = Field(..., title="File path or sub-directory to download (used for sparse checkout)")
branch: StrictStr = Field("master", title="Branch to clone from")
# fmt: on
class ProjectConfigAssetURL(BaseModel):
# fmt: off
dest: StrictStr = Field(..., title="Destination of downloaded asset")
url: Optional[StrictStr] = Field(None, title="URL of asset")
checksum: Optional[str] = Field(None, title="MD5 hash of file", regex=r"([a-fA-F\d]{32})")
description: StrictStr = Field("", title="Description of asset")
# fmt: on
class ProjectConfigAssetGit(BaseModel):
# fmt: off
git: ProjectConfigAssetGitItem = Field(..., title="Git repo information")
checksum: Optional[str] = Field(None, title="MD5 hash of file", regex=r"([a-fA-F\d]{32})")
description: Optional[StrictStr] = Field(None, title="Description of asset")
# fmt: on
class ProjectConfigCommand(BaseModel):
# fmt: off
name: StrictStr = Field(..., title="Name of command")
help: Optional[StrictStr] = Field(None, title="Command description")
script: List[StrictStr] = Field([], title="List of CLI commands to run, in order")
deps: List[StrictStr] = Field([], title="File dependencies required by this command")
outputs: List[StrictStr] = Field([], title="Outputs produced by this command")
outputs_no_cache: List[StrictStr] = Field([], title="Outputs not tracked by DVC (DVC only)")
no_skip: bool = Field(False, title="Never skip this command, even if nothing changed")
# fmt: on
class Config:
title = "A single named command specified in a project config"
extra = "forbid"
class ProjectConfigSchema(BaseModel):
# fmt: off
vars: Dict[StrictStr, Any] = Field({}, title="Optional variables to substitute in commands")
env: Dict[StrictStr, Any] = Field({}, title="Optional variable names to substitute in commands, mapped to environment variable names")
assets: List[Union[ProjectConfigAssetURL, ProjectConfigAssetGit]] = Field([], title="Data assets")
workflows: Dict[StrictStr, List[StrictStr]] = Field({}, title="Named workflows, mapped to list of project commands to run in order")
commands: List[ProjectConfigCommand] = Field([], title="Project command shortucts")
title: Optional[str] = Field(None, title="Project title")
spacy_version: Optional[StrictStr] = Field(None, title="spaCy version range that the project is compatible with")
# fmt: on
class Config:
title = "Schema for project configuration file"
# Recommendations for init config workflows # Recommendations for init config workflows

View File

@ -1,4 +1,5 @@
# cython: infer_types=True # cython: infer_types=True
# cython: profile=False
cimport cython cimport cython
from libc.stdint cimport uint32_t from libc.stdint cimport uint32_t
from libc.string cimport memcpy from libc.string cimport memcpy

View File

@ -1,4 +1,5 @@
# cython: optimize.unpack_method_calls=False # cython: optimize.unpack_method_calls=False
# cython: profile=False
IDS = { IDS = {
"": NIL, "": NIL,
"IS_ALPHA": IS_ALPHA, "IS_ALPHA": IS_ALPHA,

View File

@ -216,6 +216,11 @@ def test_dependency_matcher_pattern_validation(en_vocab):
pattern2 = copy.deepcopy(pattern) pattern2 = copy.deepcopy(pattern)
pattern2[1]["RIGHT_ID"] = "fox" pattern2[1]["RIGHT_ID"] = "fox"
matcher.add("FOUNDED", [pattern2]) matcher.add("FOUNDED", [pattern2])
# invalid key
with pytest.warns(UserWarning):
pattern2 = copy.deepcopy(pattern)
pattern2[1]["FOO"] = "BAR"
matcher.add("FOUNDED", [pattern2])
def test_dependency_matcher_callback(en_vocab, doc): def test_dependency_matcher_callback(en_vocab, doc):

View File

@ -4,8 +4,8 @@ from pathlib import Path
def test_build_dependencies(): def test_build_dependencies():
# Check that library requirements are pinned exactly the same across different setup files. # Check that library requirements are pinned exactly the same across different setup files.
# TODO: correct checks for numpy rather than ignoring
libs_ignore_requirements = [ libs_ignore_requirements = [
"numpy",
"pytest", "pytest",
"pytest-timeout", "pytest-timeout",
"mock", "mock",
@ -23,6 +23,7 @@ def test_build_dependencies():
] ]
# ignore language-specific packages that shouldn't be installed by all # ignore language-specific packages that shouldn't be installed by all
libs_ignore_setup = [ libs_ignore_setup = [
"numpy",
"fugashi", "fugashi",
"natto-py", "natto-py",
"pythainlp", "pythainlp",

View File

@ -1,31 +1,19 @@
import math import math
import os import os
import time
from collections import Counter from collections import Counter
from pathlib import Path from pathlib import Path
from typing import Any, Dict, List, Tuple from typing import Any, Dict, List, Tuple
import numpy
import pytest import pytest
import srsly import srsly
from click import NoSuchOption from click import NoSuchOption
from packaging.specifiers import SpecifierSet from packaging.specifiers import SpecifierSet
from thinc.api import Config, ConfigValidationError from thinc.api import Config
import spacy import spacy
from spacy import about from spacy import about
from spacy.cli import info from spacy.cli import info
from spacy.cli._util import ( from spacy.cli._util import parse_config_overrides, string_to_list, walk_directory
download_file,
is_subpath_of,
load_project_config,
parse_config_overrides,
string_to_list,
substitute_project_variables,
upload_file,
validate_project_commands,
walk_directory,
)
from spacy.cli.apply import apply from spacy.cli.apply import apply
from spacy.cli.debug_data import ( from spacy.cli.debug_data import (
_compile_gold, _compile_gold,
@ -43,13 +31,11 @@ from spacy.cli.find_threshold import find_threshold
from spacy.cli.init_config import RECOMMENDATIONS, fill_config, init_config from spacy.cli.init_config import RECOMMENDATIONS, fill_config, init_config
from spacy.cli.init_pipeline import _init_labels from spacy.cli.init_pipeline import _init_labels
from spacy.cli.package import _is_permitted_package_name, get_third_party_dependencies from spacy.cli.package import _is_permitted_package_name, get_third_party_dependencies
from spacy.cli.project.remote_storage import RemoteStorage
from spacy.cli.project.run import _check_requirements
from spacy.cli.validate import get_model_pkgs from spacy.cli.validate import get_model_pkgs
from spacy.lang.en import English from spacy.lang.en import English
from spacy.lang.nl import Dutch from spacy.lang.nl import Dutch
from spacy.language import Language from spacy.language import Language
from spacy.schemas import ProjectConfigSchema, RecommendationSchema, validate from spacy.schemas import RecommendationSchema
from spacy.tokens import Doc, DocBin from spacy.tokens import Doc, DocBin
from spacy.tokens.span import Span from spacy.tokens.span import Span
from spacy.training import Example, docs_to_json, offsets_to_biluo_tags from spacy.training import Example, docs_to_json, offsets_to_biluo_tags
@ -134,25 +120,6 @@ def test_issue7055():
assert "model" in filled_cfg["components"]["ner"] assert "model" in filled_cfg["components"]["ner"]
@pytest.mark.issue(11235)
def test_issue11235():
"""
Test that the cli handles interpolation in the directory names correctly when loading project config.
"""
lang_var = "en"
variables = {"lang": lang_var}
commands = [{"name": "x", "script": ["hello ${vars.lang}"]}]
directories = ["cfg", "${vars.lang}_model"]
project = {"commands": commands, "vars": variables, "directories": directories}
with make_tempdir() as d:
srsly.write_yaml(d / "project.yml", project)
cfg = load_project_config(d)
# Check that the directories are interpolated and created correctly
assert os.path.exists(d / "cfg")
assert os.path.exists(d / f"{lang_var}_model")
assert cfg["commands"][0]["script"][0] == f"hello {lang_var}"
@pytest.mark.issue(12566) @pytest.mark.issue(12566)
@pytest.mark.parametrize( @pytest.mark.parametrize(
"factory,output_file", "factory,output_file",
@ -443,136 +410,6 @@ def test_cli_converters_conll_ner_to_docs():
assert ent.text in ["New York City", "London"] assert ent.text in ["New York City", "London"]
def test_project_config_validation_full():
config = {
"vars": {"some_var": 20},
"directories": ["assets", "configs", "corpus", "scripts", "training"],
"assets": [
{
"dest": "x",
"extra": True,
"url": "https://example.com",
"checksum": "63373dd656daa1fd3043ce166a59474c",
},
{
"dest": "y",
"git": {
"repo": "https://github.com/example/repo",
"branch": "develop",
"path": "y",
},
},
{
"dest": "z",
"extra": False,
"url": "https://example.com",
"checksum": "63373dd656daa1fd3043ce166a59474c",
},
],
"commands": [
{
"name": "train",
"help": "Train a model",
"script": ["python -m spacy train config.cfg -o training"],
"deps": ["config.cfg", "corpus/training.spcy"],
"outputs": ["training/model-best"],
},
{"name": "test", "script": ["pytest", "custom.py"], "no_skip": True},
],
"workflows": {"all": ["train", "test"], "train": ["train"]},
}
errors = validate(ProjectConfigSchema, config)
assert not errors
@pytest.mark.parametrize(
"config",
[
{"commands": [{"name": "a"}, {"name": "a"}]},
{"commands": [{"name": "a"}], "workflows": {"a": []}},
{"commands": [{"name": "a"}], "workflows": {"b": ["c"]}},
],
)
def test_project_config_validation1(config):
with pytest.raises(SystemExit):
validate_project_commands(config)
@pytest.mark.parametrize(
"config,n_errors",
[
({"commands": {"a": []}}, 1),
({"commands": [{"help": "..."}]}, 1),
({"commands": [{"name": "a", "extra": "b"}]}, 1),
({"commands": [{"extra": "b"}]}, 2),
({"commands": [{"name": "a", "deps": [123]}]}, 1),
],
)
def test_project_config_validation2(config, n_errors):
errors = validate(ProjectConfigSchema, config)
assert len(errors) == n_errors
@pytest.mark.parametrize(
"int_value",
[10, pytest.param("10", marks=pytest.mark.xfail)],
)
def test_project_config_interpolation(int_value):
variables = {"a": int_value, "b": {"c": "foo", "d": True}}
commands = [
{"name": "x", "script": ["hello ${vars.a} ${vars.b.c}"]},
{"name": "y", "script": ["${vars.b.c} ${vars.b.d}"]},
]
project = {"commands": commands, "vars": variables}
with make_tempdir() as d:
srsly.write_yaml(d / "project.yml", project)
cfg = load_project_config(d)
assert type(cfg) == dict
assert type(cfg["commands"]) == list
assert cfg["commands"][0]["script"][0] == "hello 10 foo"
assert cfg["commands"][1]["script"][0] == "foo true"
commands = [{"name": "x", "script": ["hello ${vars.a} ${vars.b.e}"]}]
project = {"commands": commands, "vars": variables}
with pytest.raises(ConfigValidationError):
substitute_project_variables(project)
@pytest.mark.parametrize(
"greeting",
[342, "everyone", "tout le monde", pytest.param("42", marks=pytest.mark.xfail)],
)
def test_project_config_interpolation_override(greeting):
variables = {"a": "world"}
commands = [
{"name": "x", "script": ["hello ${vars.a}"]},
]
overrides = {"vars.a": greeting}
project = {"commands": commands, "vars": variables}
with make_tempdir() as d:
srsly.write_yaml(d / "project.yml", project)
cfg = load_project_config(d, overrides=overrides)
assert type(cfg) == dict
assert type(cfg["commands"]) == list
assert cfg["commands"][0]["script"][0] == f"hello {greeting}"
def test_project_config_interpolation_env():
variables = {"a": 10}
env_var = "SPACY_TEST_FOO"
env_vars = {"foo": env_var}
commands = [{"name": "x", "script": ["hello ${vars.a} ${env.foo}"]}]
project = {"commands": commands, "vars": variables, "env": env_vars}
with make_tempdir() as d:
srsly.write_yaml(d / "project.yml", project)
cfg = load_project_config(d)
assert cfg["commands"][0]["script"][0] == "hello 10 "
os.environ[env_var] = "123"
with make_tempdir() as d:
srsly.write_yaml(d / "project.yml", project)
cfg = load_project_config(d)
assert cfg["commands"][0]["script"][0] == "hello 10 123"
@pytest.mark.parametrize( @pytest.mark.parametrize(
"args,expected", "args,expected",
[ [
@ -782,21 +619,6 @@ def test_get_third_party_dependencies():
get_third_party_dependencies(nlp.config) get_third_party_dependencies(nlp.config)
@pytest.mark.parametrize(
"parent,child,expected",
[
("/tmp", "/tmp", True),
("/tmp", "/", False),
("/tmp", "/tmp/subdir", True),
("/tmp", "/tmpdir", False),
("/tmp", "/tmp/subdir/..", True),
("/tmp", "/tmp/..", False),
],
)
def test_is_subpath_of(parent, child, expected):
assert is_subpath_of(parent, child) == expected
@pytest.mark.slow @pytest.mark.slow
@pytest.mark.parametrize( @pytest.mark.parametrize(
"factory_name,pipe_name", "factory_name,pipe_name",
@ -1042,60 +864,6 @@ def test_applycli_user_data():
assert result[0]._.ext == val assert result[0]._.ext == val
def test_local_remote_storage():
with make_tempdir() as d:
filename = "a.txt"
content_hashes = ("aaaa", "cccc", "bbbb")
for i, content_hash in enumerate(content_hashes):
# make sure that each subsequent file has a later timestamp
if i > 0:
time.sleep(1)
content = f"{content_hash} content"
loc_file = d / "root" / filename
if not loc_file.parent.exists():
loc_file.parent.mkdir(parents=True)
with loc_file.open(mode="w") as file_:
file_.write(content)
# push first version to remote storage
remote = RemoteStorage(d / "root", str(d / "remote"))
remote.push(filename, "aaaa", content_hash)
# retrieve with full hashes
loc_file.unlink()
remote.pull(filename, command_hash="aaaa", content_hash=content_hash)
with loc_file.open(mode="r") as file_:
assert file_.read() == content
# retrieve with command hash
loc_file.unlink()
remote.pull(filename, command_hash="aaaa")
with loc_file.open(mode="r") as file_:
assert file_.read() == content
# retrieve with content hash
loc_file.unlink()
remote.pull(filename, content_hash=content_hash)
with loc_file.open(mode="r") as file_:
assert file_.read() == content
# retrieve with no hashes
loc_file.unlink()
remote.pull(filename)
with loc_file.open(mode="r") as file_:
assert file_.read() == content
def test_local_remote_storage_pull_missing():
# pulling from a non-existent remote pulls nothing gracefully
with make_tempdir() as d:
filename = "a.txt"
remote = RemoteStorage(d / "root", str(d / "remote"))
assert remote.pull(filename, command_hash="aaaa") is None
assert remote.pull(filename) is None
def test_cli_find_threshold(capsys): def test_cli_find_threshold(capsys):
def make_examples(nlp: Language) -> List[Example]: def make_examples(nlp: Language) -> List[Example]:
docs: List[Example] = [] docs: List[Example] = []
@ -1206,63 +974,6 @@ def test_cli_find_threshold(capsys):
) )
@pytest.mark.filterwarnings("ignore::DeprecationWarning")
@pytest.mark.parametrize(
"reqs,output",
[
[
"""
spacy
# comment
thinc""",
(False, False),
],
[
"""# comment
--some-flag
spacy""",
(False, False),
],
[
"""# comment
--some-flag
spacy; python_version >= '3.6'""",
(False, False),
],
[
"""# comment
spacyunknowndoesnotexist12345""",
(True, False),
],
],
)
def test_project_check_requirements(reqs, output):
import pkg_resources
# excessive guard against unlikely package name
try:
pkg_resources.require("spacyunknowndoesnotexist12345")
except pkg_resources.DistributionNotFound:
assert output == _check_requirements([req.strip() for req in reqs.split("\n")])
def test_upload_download_local_file():
with make_tempdir() as d1, make_tempdir() as d2:
filename = "f.txt"
content = "content"
local_file = d1 / filename
remote_file = d2 / filename
with local_file.open(mode="w") as file_:
file_.write(content)
upload_file(local_file, remote_file)
local_file.unlink()
download_file(remote_file, local_file)
with local_file.open(mode="r") as file_:
assert file_.read() == content
def test_walk_directory(): def test_walk_directory():
with make_tempdir() as d: with make_tempdir() as d:
files = [ files = [

View File

@ -1,4 +1,5 @@
import os import os
import sys
from pathlib import Path from pathlib import Path
import pytest import pytest
@ -213,6 +214,9 @@ def test_project_clone(options):
assert (out / "README.md").is_file() assert (out / "README.md").is_file()
@pytest.mark.skipif(
sys.version_info >= (3, 12), reason="Python 3.12+ not supported for remotes"
)
def test_project_push_pull(project_dir): def test_project_push_pull(project_dir):
proj = dict(SAMPLE_PROJECT) proj = dict(SAMPLE_PROJECT)
remote = "xyz" remote = "xyz"

View File

@ -1,4 +1,4 @@
# cython: embedsignature=True, profile=True, binding=True # cython: embedsignature=True, binding=True
cimport cython cimport cython
from cymem.cymem cimport Pool from cymem.cymem cimport Pool
from cython.operator cimport dereference as deref from cython.operator cimport dereference as deref

View File

@ -1,4 +1,4 @@
# cython: infer_types=True, bounds_check=False, profile=True # cython: infer_types=True, bounds_check=False
from cymem.cymem cimport Pool from cymem.cymem cimport Pool
from libc.string cimport memset from libc.string cimport memset

View File

@ -8,6 +8,7 @@ from typing import (
List, List,
Optional, Optional,
Protocol, Protocol,
Sequence,
Tuple, Tuple,
Union, Union,
overload, overload,
@ -134,7 +135,12 @@ class Doc:
def text(self) -> str: ... def text(self) -> str: ...
@property @property
def text_with_ws(self) -> str: ... def text_with_ws(self) -> str: ...
ents: Tuple[Span] # Ideally the getter would output Tuple[Span]
# see https://github.com/python/mypy/issues/3004
@property
def ents(self) -> Sequence[Span]: ...
@ents.setter
def ents(self, value: Sequence[Span]) -> None: ...
def set_ents( def set_ents(
self, self,
entities: List[Span], entities: List[Span],

View File

@ -1,4 +1,4 @@
# cython: infer_types=True, bounds_check=False, profile=True # cython: infer_types=True, bounds_check=False
from typing import Set from typing import Set
cimport cython cimport cython

View File

@ -1,4 +1,5 @@
# cython: infer_types=True, cdivision=True, boundscheck=False, binding=True # cython: infer_types=True, cdivision=True, boundscheck=False, binding=True
# cython: profile=False
from typing import Generator, List, Tuple from typing import Generator, List, Tuple
cimport cython cimport cython

View File

@ -1,3 +1,4 @@
# cython: profile=False
cimport numpy as np cimport numpy as np
from libc.string cimport memset from libc.string cimport memset

View File

@ -1,3 +1,4 @@
# cython: profile=False
cimport numpy as np cimport numpy as np
import copy import copy

View File

@ -1,3 +1,4 @@
# cython: profile=False
import struct import struct
import weakref import weakref
from copy import deepcopy from copy import deepcopy

View File

@ -1,4 +1,5 @@
# cython: infer_types=True # cython: infer_types=True
# cython: profile=False
# Compiler crashes on memory view coercion without this. Should report bug. # Compiler crashes on memory view coercion without this. Should report bug.
cimport numpy as np cimport numpy as np

View File

@ -1,3 +1,4 @@
# cython: profile=False
import re import re
from itertools import chain from itertools import chain
from typing import List, Tuple from typing import List, Tuple

View File

@ -1,3 +1,4 @@
# cython: profile=False
from typing import List from typing import List
import numpy import numpy

View File

@ -63,7 +63,7 @@ def create_plain_text_reader(
path: Optional[Path], path: Optional[Path],
min_length: int = 0, min_length: int = 0,
max_length: int = 0, max_length: int = 0,
) -> Callable[["Language"], Iterable[Doc]]: ) -> Callable[["Language"], Iterable[Example]]:
"""Iterate Example objects from a file or directory of plain text """Iterate Example objects from a file or directory of plain text
UTF-8 files with one line per doc. UTF-8 files with one line per doc.

View File

@ -0,0 +1,66 @@
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
from ..tokens import Doc, Span
from ..vocab import Vocab
from .alignment import Alignment
def annotations_to_doc(
vocab: Vocab,
tok_annot: Dict[str, Any],
doc_annot: Dict[str, Any],
) -> Doc: ...
def validate_examples(
examples: Iterable[Example],
method: str,
) -> None: ...
def validate_get_examples(
get_examples: Callable[[], Iterable[Example]],
method: str,
): ...
class Example:
x: Doc
y: Doc
def __init__(
self,
predicted: Doc,
reference: Doc,
*,
alignment: Optional[Alignment] = None,
): ...
def __len__(self) -> int: ...
@property
def predicted(self) -> Doc: ...
@predicted.setter
def predicted(self, doc: Doc) -> None: ...
@property
def reference(self) -> Doc: ...
@reference.setter
def reference(self, doc: Doc) -> None: ...
def copy(self) -> Example: ...
@classmethod
def from_dict(cls, predicted: Doc, example_dict: Dict[str, Any]) -> Example: ...
@property
def alignment(self) -> Alignment: ...
def get_aligned(self, field: str, as_string=False): ...
def get_aligned_parse(self, projectivize=True): ...
def get_aligned_sent_starts(self): ...
def get_aligned_spans_x2y(
self, x_spans: Iterable[Span], allow_overlap=False
) -> List[Span]: ...
def get_aligned_spans_y2x(
self, y_spans: Iterable[Span], allow_overlap=False
) -> List[Span]: ...
def get_aligned_ents_and_ner(self) -> Tuple[List[Span], List[str]]: ...
def get_aligned_ner(self) -> List[str]: ...
def get_matching_ents(self, check_label: bool = True) -> List[Span]: ...
def to_dict(self) -> Dict[str, Any]: ...
def split_sents(self) -> List[Example]: ...
@property
def text(self) -> str: ...
def __str__(self) -> str: ...
def __repr__(self) -> str: ...
def _parse_example_dict_data(example_dict): ...
def _fix_legacy_dict_data(example_dict): ...

View File

@ -1,3 +1,4 @@
# cython: profile=False
from collections.abc import Iterable as IterableInstance from collections.abc import Iterable as IterableInstance
import numpy import numpy

View File

@ -1,3 +1,4 @@
# cython: profile=False
import warnings import warnings
import srsly import srsly

View File

@ -302,7 +302,7 @@ def read_vectors(
shape = (truncate_vectors, shape[1]) shape = (truncate_vectors, shape[1])
vectors_data = numpy.zeros(shape=shape, dtype="f") vectors_data = numpy.zeros(shape=shape, dtype="f")
vectors_keys = [] vectors_keys = []
for i, line in enumerate(tqdm.tqdm(f)): for i, line in enumerate(tqdm.tqdm(f, disable=None)):
line = line.rstrip() line = line.rstrip()
pieces = line.rsplit(" ", vectors_data.shape[1]) pieces = line.rsplit(" ", vectors_data.shape[1])
word = pieces.pop(0) word = pieces.pop(0)

View File

@ -0,0 +1 @@
# cython: profile=False

View File

@ -101,7 +101,6 @@ logger.addHandler(logger_stream_handler)
class ENV_VARS: class ENV_VARS:
CONFIG_OVERRIDES = "SPACY_CONFIG_OVERRIDES" CONFIG_OVERRIDES = "SPACY_CONFIG_OVERRIDES"
PROJECT_USE_GIT_VERSION = "SPACY_PROJECT_USE_GIT_VERSION"
class registry(thinc.registry): class registry(thinc.registry):
@ -119,6 +118,7 @@ class registry(thinc.registry):
augmenters = catalogue.create("spacy", "augmenters", entry_points=True) augmenters = catalogue.create("spacy", "augmenters", entry_points=True)
loggers = catalogue.create("spacy", "loggers", entry_points=True) loggers = catalogue.create("spacy", "loggers", entry_points=True)
scorers = catalogue.create("spacy", "scorers", entry_points=True) scorers = catalogue.create("spacy", "scorers", entry_points=True)
vectors = catalogue.create("spacy", "vectors", entry_points=True)
# These are factories registered via third-party packages and the # These are factories registered via third-party packages and the
# spacy_factories entry point. This registry only exists so we can easily # spacy_factories entry point. This registry only exists so we can easily
# load them via the entry points. The "true" factories are added via the # load them via the entry points. The "true" factories are added via the
@ -974,23 +974,12 @@ def replace_model_node(model: Model, target: Model, replacement: Model) -> None:
def split_command(command: str) -> List[str]: def split_command(command: str) -> List[str]:
"""Split a string command using shlex. Handles platform compatibility. """Split a string command using shlex. Handles platform compatibility.
command (str) : The command to split command (str) : The command to split
RETURNS (List[str]): The split command. RETURNS (List[str]): The split command.
""" """
return shlex.split(command, posix=not is_windows) return shlex.split(command, posix=not is_windows)
def join_command(command: List[str]) -> str:
"""Join a command using shlex. shlex.join is only available for Python 3.8+,
so we're using a workaround here.
command (List[str]): The command to join.
RETURNS (str): The joined command
"""
return " ".join(shlex.quote(cmd) for cmd in command)
def run_command( def run_command(
command: Union[str, List[str]], command: Union[str, List[str]],
*, *,
@ -999,7 +988,6 @@ def run_command(
) -> subprocess.CompletedProcess: ) -> subprocess.CompletedProcess:
"""Run a command on the command line as a subprocess. If the subprocess """Run a command on the command line as a subprocess. If the subprocess
returns a non-zero exit code, a system exit is performed. returns a non-zero exit code, a system exit is performed.
command (str / List[str]): The command. If provided as a string, the command (str / List[str]): The command. If provided as a string, the
string will be split using shlex.split. string will be split using shlex.split.
stdin (Optional[Any]): stdin to read from or None. stdin (Optional[Any]): stdin to read from or None.
@ -1050,7 +1038,6 @@ def run_command(
@contextmanager @contextmanager
def working_dir(path: Union[str, Path]) -> Iterator[Path]: def working_dir(path: Union[str, Path]) -> Iterator[Path]:
"""Change current working directory and returns to previous on exit. """Change current working directory and returns to previous on exit.
path (str / Path): The directory to navigate to. path (str / Path): The directory to navigate to.
YIELDS (Path): The absolute path to the current working directory. This YIELDS (Path): The absolute path to the current working directory. This
should be used if the block needs to perform actions within the working should be used if the block needs to perform actions within the working
@ -1069,7 +1056,6 @@ def working_dir(path: Union[str, Path]) -> Iterator[Path]:
def make_tempdir() -> Generator[Path, None, None]: def make_tempdir() -> Generator[Path, None, None]:
"""Execute a block in a temporary directory and remove the directory and """Execute a block in a temporary directory and remove the directory and
its contents at the end of the with block. its contents at the end of the with block.
YIELDS (Path): The path of the temp directory. YIELDS (Path): The path of the temp directory.
""" """
d = Path(tempfile.mkdtemp()) d = Path(tempfile.mkdtemp())
@ -1082,20 +1068,14 @@ def make_tempdir() -> Generator[Path, None, None]:
rmfunc(path) rmfunc(path)
try: try:
shutil.rmtree(str(d), onerror=force_remove) if sys.version_info >= (3, 12):
shutil.rmtree(str(d), onexc=force_remove)
else:
shutil.rmtree(str(d), onerror=force_remove)
except PermissionError as e: except PermissionError as e:
warnings.warn(Warnings.W091.format(dir=d, msg=e)) warnings.warn(Warnings.W091.format(dir=d, msg=e))
def is_cwd(path: Union[Path, str]) -> bool:
"""Check whether a path is the current working directory.
path (Union[Path, str]): The directory path.
RETURNS (bool): Whether the path is the current working directory.
"""
return str(Path(path).resolve()).lower() == str(Path.cwd().resolve()).lower()
def is_in_jupyter() -> bool: def is_in_jupyter() -> bool:
"""Check if user is running spaCy from a Jupyter notebook by detecting the """Check if user is running spaCy from a Jupyter notebook by detecting the
IPython kernel. Mainly used for the displaCy visualizer. IPython kernel. Mainly used for the displaCy visualizer.

View File

@ -1,3 +1,6 @@
# cython: infer_types=True, binding=True
from typing import Callable
from cython.operator cimport dereference as deref from cython.operator cimport dereference as deref
from libc.stdint cimport uint32_t, uint64_t from libc.stdint cimport uint32_t, uint64_t
from libcpp.set cimport set as cppset from libcpp.set cimport set as cppset
@ -5,7 +8,8 @@ from murmurhash.mrmr cimport hash128_x64
import warnings import warnings
from enum import Enum from enum import Enum
from typing import cast from pathlib import Path
from typing import TYPE_CHECKING, Union, cast
import numpy import numpy
import srsly import srsly
@ -21,6 +25,9 @@ from .attrs import IDS
from .errors import Errors, Warnings from .errors import Errors, Warnings
from .strings import get_string_id from .strings import get_string_id
if TYPE_CHECKING:
from .vocab import Vocab # noqa: F401 # no-cython-lint
def unpickle_vectors(bytes_data): def unpickle_vectors(bytes_data):
return Vectors().from_bytes(bytes_data) return Vectors().from_bytes(bytes_data)
@ -35,7 +42,71 @@ class Mode(str, Enum):
return list(cls.__members__.keys()) return list(cls.__members__.keys())
cdef class Vectors: cdef class BaseVectors:
def __init__(self, *, strings=None):
# Make sure abstract BaseVectors is not instantiated.
if self.__class__ == BaseVectors:
raise TypeError(
Errors.E1046.format(cls_name=self.__class__.__name__)
)
def __getitem__(self, key):
raise NotImplementedError
def __contains__(self, key):
raise NotImplementedError
def is_full(self):
raise NotImplementedError
def get_batch(self, keys):
raise NotImplementedError
@property
def shape(self):
raise NotImplementedError
def __len__(self):
raise NotImplementedError
@property
def vectors_length(self):
raise NotImplementedError
@property
def size(self):
raise NotImplementedError
def add(self, key, *, vector=None):
raise NotImplementedError
def to_ops(self, ops: Ops):
pass
# add dummy methods for to_bytes, from_bytes, to_disk and from_disk to
# allow serialization
def to_bytes(self, **kwargs):
return b""
def from_bytes(self, data: bytes, **kwargs):
return self
def to_disk(self, path: Union[str, Path], **kwargs):
return None
def from_disk(self, path: Union[str, Path], **kwargs):
return self
@util.registry.vectors("spacy.Vectors.v1")
def create_mode_vectors() -> Callable[["Vocab"], BaseVectors]:
def vectors_factory(vocab: "Vocab") -> BaseVectors:
return Vectors(strings=vocab.strings)
return vectors_factory
cdef class Vectors(BaseVectors):
"""Store, save and load word vectors. """Store, save and load word vectors.
Vectors data is kept in the vectors.data attribute, which should be an Vectors data is kept in the vectors.data attribute, which should be an

View File

@ -1,4 +1,3 @@
# cython: profile=True
import functools import functools
import numpy import numpy
@ -94,8 +93,9 @@ cdef class Vocab:
return self._vectors return self._vectors
def __set__(self, vectors): def __set__(self, vectors):
for s in vectors.strings: if hasattr(vectors, "strings"):
self.strings.add(s) for s in vectors.strings:
self.strings.add(s)
self._vectors = vectors self._vectors = vectors
self._vectors.strings = self.strings self._vectors.strings = self.strings
@ -193,7 +193,7 @@ cdef class Vocab:
lex = <LexemeC*>mem.alloc(1, sizeof(LexemeC)) lex = <LexemeC*>mem.alloc(1, sizeof(LexemeC))
lex.orth = self.strings.add(string) lex.orth = self.strings.add(string)
lex.length = len(string) lex.length = len(string)
if self.vectors is not None: if self.vectors is not None and hasattr(self.vectors, "key2row"):
lex.id = self.vectors.key2row.get(lex.orth, OOV_RANK) lex.id = self.vectors.key2row.get(lex.orth, OOV_RANK)
else: else:
lex.id = OOV_RANK lex.id = OOV_RANK
@ -289,12 +289,17 @@ cdef class Vocab:
@property @property
def vectors_length(self): def vectors_length(self):
return self.vectors.shape[1] if hasattr(self.vectors, "shape"):
return self.vectors.shape[1]
else:
return -1
def reset_vectors(self, *, width=None, shape=None): def reset_vectors(self, *, width=None, shape=None):
"""Drop the current vector table. Because all vectors must be the same """Drop the current vector table. Because all vectors must be the same
width, you have to call this to change the size of the vectors. width, you have to call this to change the size of the vectors.
""" """
if not isinstance(self.vectors, Vectors):
raise ValueError(Errors.E849.format(method="reset_vectors", vectors_type=type(self.vectors)))
if width is not None and shape is not None: if width is not None and shape is not None:
raise ValueError(Errors.E065.format(width=width, shape=shape)) raise ValueError(Errors.E065.format(width=width, shape=shape))
elif shape is not None: elif shape is not None:
@ -304,6 +309,8 @@ cdef class Vocab:
self.vectors = Vectors(strings=self.strings, shape=(self.vectors.shape[0], width)) self.vectors = Vectors(strings=self.strings, shape=(self.vectors.shape[0], width))
def deduplicate_vectors(self): def deduplicate_vectors(self):
if not isinstance(self.vectors, Vectors):
raise ValueError(Errors.E849.format(method="deduplicate_vectors", vectors_type=type(self.vectors)))
if self.vectors.mode != VectorsMode.default: if self.vectors.mode != VectorsMode.default:
raise ValueError(Errors.E858.format( raise ValueError(Errors.E858.format(
mode=self.vectors.mode, mode=self.vectors.mode,
@ -357,6 +364,8 @@ cdef class Vocab:
DOCS: https://spacy.io/api/vocab#prune_vectors DOCS: https://spacy.io/api/vocab#prune_vectors
""" """
if not isinstance(self.vectors, Vectors):
raise ValueError(Errors.E849.format(method="prune_vectors", vectors_type=type(self.vectors)))
if self.vectors.mode != VectorsMode.default: if self.vectors.mode != VectorsMode.default:
raise ValueError(Errors.E858.format( raise ValueError(Errors.E858.format(
mode=self.vectors.mode, mode=self.vectors.mode,

View File

@ -481,6 +481,286 @@ The other arguments are shared between all versions.
</Accordion> </Accordion>
## Curated Transformer architectures {id="curated-trf",source="https://github.com/explosion/spacy-curated-transformers/blob/main/spacy_curated_transformers/models/architectures.py"}
The following architectures are provided by the package
[`spacy-curated-transformers`](https://github.com/explosion/spacy-curated-transformers).
See the [usage documentation](/usage/embeddings-transformers#transformers) for
how to integrate the architectures into your training config.
When loading the model
[from the Hugging Face Hub](/api/curatedtransformer#hf_trfencoder_loader), the
model config's parameters must be same as the hyperparameters used by the
pre-trained model. The
[`init fill-curated-transformer`](/api/cli#init-fill-curated-transformer) CLI
command can be used to automatically fill in these values.
### spacy-curated-transformers.AlbertTransformer.v1
Construct an ALBERT transformer model.
| Name | Description |
| ------------------------------ | ---------------------------------------------------------------------------------------- |
| `vocab_size` | Vocabulary size. ~~int~~ |
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ |
| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ |
| `embedding_width` | Width of the embedding representations. ~~int~~ |
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ |
| `hidden_width` | Width of the final representations. ~~int~~ |
| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ |
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
| `num_hidden_groups` | Number of layer groups whose constituents share parameters. ~~int~~ |
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
| **CREATES** | The model using the architecture ~~Model~~ |
### spacy-curated-transformers.BertTransformer.v1
Construct a BERT transformer model.
| Name | Description |
| ------------------------------ | ---------------------------------------------------------------------------------------- |
| `vocab_size` | Vocabulary size. ~~int~~ |
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ |
| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ |
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ |
| `hidden_width` | Width of the final representations. ~~int~~ |
| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ |
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
| **CREATES** | The model using the architecture ~~Model~~ |
### spacy-curated-transformers.CamembertTransformer.v1
Construct a CamemBERT transformer model.
| Name | Description |
| ------------------------------ | ---------------------------------------------------------------------------------------- |
| `vocab_size` | Vocabulary size. ~~int~~ |
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ |
| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ |
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ |
| `hidden_width` | Width of the final representations. ~~int~~ |
| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ |
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
| **CREATES** | The model using the architecture ~~Model~~ |
### spacy-curated-transformers.RobertaTransformer.v1
Construct a RoBERTa transformer model.
| Name | Description |
| ------------------------------ | ---------------------------------------------------------------------------------------- |
| `vocab_size` | Vocabulary size. ~~int~~ |
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ |
| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ |
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ |
| `hidden_width` | Width of the final representations. ~~int~~ |
| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ |
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
| **CREATES** | The model using the architecture ~~Model~~ |
### spacy-curated-transformers.XlmrTransformer.v1
Construct a XLM-RoBERTa transformer model.
| Name | Description |
| ------------------------------ | ---------------------------------------------------------------------------------------- |
| `vocab_size` | Vocabulary size. ~~int~~ |
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ |
| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ |
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ |
| `hidden_width` | Width of the final representations. ~~int~~ |
| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ |
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
| **CREATES** | The model using the architecture ~~Model~~ |
### spacy-curated-transformers.ScalarWeight.v1
Construct a model that accepts a list of transformer layer outputs and returns a
weighted representation of the same.
| Name | Description |
| -------------------- | ----------------------------------------------------------------------------- |
| `num_layers` | Number of transformer hidden layers. ~~int~~ |
| `dropout_prob` | Dropout probability. ~~float~~ |
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
| **CREATES** | The model using the architecture ~~Model[ScalarWeightInT, ScalarWeightOutT]~~ |
### spacy-curated-transformers.TransformerLayersListener.v1
Construct a listener layer that communicates with one or more upstream
Transformer components. This layer extracts the output of the last transformer
layer and performs pooling over the individual pieces of each `Doc` token,
returning their corresponding representations. The upstream name should either
be the wildcard string '\*', or the name of the Transformer component.
In almost all cases, the wildcard string will suffice as there'll only be one
upstream Transformer component. But in certain situations, e.g: you have
disjoint datasets for certain tasks, or you'd like to use a pre-trained pipeline
but a downstream task requires its own token representations, you could end up
with more than one Transformer component in the pipeline.
| Name | Description |
| --------------- | ---------------------------------------------------------------------------------------------------------------------- |
| `layers` | The number of layers produced by the upstream transformer component, excluding the embedding layer. ~~int~~ |
| `width` | The width of the vectors produced by the upstream transformer component. ~~int~~ |
| `pooling` | Model that is used to perform pooling over the piece representations. ~~Model~~ |
| `upstream_name` | A string to identify the 'upstream' Transformer component to communicate with. ~~str~~ |
| `grad_factor` | Factor to multiply gradients with. ~~float~~ |
| **CREATES** | A model that returns the relevant vectors from an upstream transformer component. ~~Model[List[Doc], List[Floats2d]]~~ |
### spacy-curated-transformers.LastTransformerLayerListener.v1
Construct a listener layer that communicates with one or more upstream
Transformer components. This layer extracts the output of the last transformer
layer and performs pooling over the individual pieces of each Doc token,
returning their corresponding representations. The upstream name should either
be the wildcard string '\*', or the name of the Transformer component.
In almost all cases, the wildcard string will suffice as there'll only be one
upstream Transformer component. But in certain situations, e.g: you have
disjoint datasets for certain tasks, or you'd like to use a pre-trained pipeline
but a downstream task requires its own token representations, you could end up
with more than one Transformer component in the pipeline.
| Name | Description |
| --------------- | ---------------------------------------------------------------------------------------------------------------------- |
| `width` | The width of the vectors produced by the upstream transformer component. ~~int~~ |
| `pooling` | Model that is used to perform pooling over the piece representations. ~~Model~~ |
| `upstream_name` | A string to identify the 'upstream' Transformer component to communicate with. ~~str~~ |
| `grad_factor` | Factor to multiply gradients with. ~~float~~ |
| **CREATES** | A model that returns the relevant vectors from an upstream transformer component. ~~Model[List[Doc], List[Floats2d]]~~ |
### spacy-curated-transformers.ScalarWeightingListener.v1
Construct a listener layer that communicates with one or more upstream
Transformer components. This layer calculates a weighted representation of all
transformer layer outputs and performs pooling over the individual pieces of
each Doc token, returning their corresponding representations.
Requires its upstream Transformer components to return all layer outputs from
their models. The upstream name should either be the wildcard string '\*', or
the name of the Transformer component.
In almost all cases, the wildcard string will suffice as there'll only be one
upstream Transformer component. But in certain situations, e.g: you have
disjoint datasets for certain tasks, or you'd like to use a pre-trained pipeline
but a downstream task requires its own token representations, you could end up
with more than one Transformer component in the pipeline.
| Name | Description |
| --------------- | ---------------------------------------------------------------------------------------------------------------------- |
| `width` | The width of the vectors produced by the upstream transformer component. ~~int~~ |
| `weighting` | Model that is used to perform the weighting of the different layer outputs. ~~Model~~ |
| `pooling` | Model that is used to perform pooling over the piece representations. ~~Model~~ |
| `upstream_name` | A string to identify the 'upstream' Transformer component to communicate with. ~~str~~ |
| `grad_factor` | Factor to multiply gradients with. ~~float~~ |
| **CREATES** | A model that returns the relevant vectors from an upstream transformer component. ~~Model[List[Doc], List[Floats2d]]~~ |
### spacy-curated-transformers.BertWordpieceEncoder.v1
Construct a WordPiece piece encoder model that accepts a list of token sequences
or documents and returns a corresponding list of piece identifiers. This encoder
also splits each token on punctuation characters, as expected by most BERT
models.
This model must be separately initialized using an appropriate loader.
### spacy-curated-transformers.ByteBpeEncoder.v1
Construct a Byte-BPE piece encoder model that accepts a list of token sequences
or documents and returns a corresponding list of piece identifiers.
This model must be separately initialized using an appropriate loader.
### spacy-curated-transformers.CamembertSentencepieceEncoder.v1
Construct a SentencePiece piece encoder model that accepts a list of token
sequences or documents and returns a corresponding list of piece identifiers
with CamemBERT post-processing applied.
This model must be separately initialized using an appropriate loader.
### spacy-curated-transformers.CharEncoder.v1
Construct a character piece encoder model that accepts a list of token sequences
or documents and returns a corresponding list of piece identifiers.
This model must be separately initialized using an appropriate loader.
### spacy-curated-transformers.SentencepieceEncoder.v1
Construct a SentencePiece piece encoder model that accepts a list of token
sequences or documents and returns a corresponding list of piece identifiers.
This model must be separately initialized using an appropriate loader.
### spacy-curated-transformers.WordpieceEncoder.v1
Construct a WordPiece piece encoder model that accepts a list of token sequences
or documents and returns a corresponding list of piece identifiers. This encoder
also splits each token on punctuation characters, as expected by most BERT
models.
This model must be separately initialized using an appropriate loader.
### spacy-curated-transformers.XlmrSentencepieceEncoder.v1
Construct a SentencePiece piece encoder model that accepts a list of token
sequences or documents and returns a corresponding list of piece identifiers
with XLM-RoBERTa post-processing applied.
This model must be separately initialized using an appropriate loader.
## Pretraining architectures {id="pretrain",source="spacy/ml/models/multi_task.py"} ## Pretraining architectures {id="pretrain",source="spacy/ml/models/multi_task.py"}
The spacy `pretrain` command lets you initialize a `Tok2Vec` layer in your The spacy `pretrain` command lets you initialize a `Tok2Vec` layer in your

View File

@ -0,0 +1,143 @@
---
title: BaseVectors
teaser: Abstract class for word vectors
tag: class
source: spacy/vectors.pyx
version: 3.7
---
`BaseVectors` is an abstract class to support the development of custom vectors
implementations.
For use in training with [`StaticVectors`](/api/architectures#staticvectors),
`get_batch` must be implemented. For improved performance, use efficient
batching in `get_batch` and implement `to_ops` to copy the vector data to the
current device. See an example custom implementation for
[BPEmb subword embeddings](/usage/embeddings-transformers#custom-vectors).
## BaseVectors.\_\_init\_\_ {id="init",tag="method"}
Create a new vector store.
| Name | Description |
| -------------- | --------------------------------------------------------------------------------------------------------------------- |
| _keyword-only_ | |
| `strings` | The string store. A new string store is created if one is not provided. Defaults to `None`. ~~Optional[StringStore]~~ |
## BaseVectors.\_\_getitem\_\_ {id="getitem",tag="method"}
Get a vector by key. If the key is not found in the table, a `KeyError` should
be raised.
| Name | Description |
| ----------- | ---------------------------------------------------------------- |
| `key` | The key to get the vector for. ~~Union[int, str]~~ |
| **RETURNS** | The vector for the key. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
## BaseVectors.\_\_len\_\_ {id="len",tag="method"}
Return the number of vectors in the table.
| Name | Description |
| ----------- | ------------------------------------------- |
| **RETURNS** | The number of vectors in the table. ~~int~~ |
## BaseVectors.\_\_contains\_\_ {id="contains",tag="method"}
Check whether there is a vector entry for the given key.
| Name | Description |
| ----------- | -------------------------------------------- |
| `key` | The key to check. ~~int~~ |
| **RETURNS** | Whether the key has a vector entry. ~~bool~~ |
## BaseVectors.add {id="add",tag="method"}
Add a key to the table, if possible. If no keys can be added, return `-1`.
| Name | Description |
| ----------- | ----------------------------------------------------------------------------------- |
| `key` | The key to add. ~~Union[str, int]~~ |
| **RETURNS** | The row the vector was added to, or `-1` if the operation is not supported. ~~int~~ |
## BaseVectors.shape {id="shape",tag="property"}
Get `(rows, dims)` tuples of number of rows and number of dimensions in the
vector table.
| Name | Description |
| ----------- | ------------------------------------------ |
| **RETURNS** | A `(rows, dims)` pair. ~~Tuple[int, int]~~ |
## BaseVectors.size {id="size",tag="property"}
The vector size, i.e. `rows * dims`.
| Name | Description |
| ----------- | ------------------------ |
| **RETURNS** | The vector size. ~~int~~ |
## BaseVectors.is_full {id="is_full",tag="property"}
Whether the vectors table is full and no slots are available for new keys.
| Name | Description |
| ----------- | ------------------------------------------- |
| **RETURNS** | Whether the vectors table is full. ~~bool~~ |
## BaseVectors.get_batch {id="get_batch",tag="method",version="3.2"}
Get the vectors for the provided keys efficiently as a batch. Required to use
the vectors with [`StaticVectors`](/api/architectures#StaticVectors) for
training.
| Name | Description |
| ------ | --------------------------------------- |
| `keys` | The keys. ~~Iterable[Union[int, str]]~~ |
## BaseVectors.to_ops {id="to_ops",tag="method"}
Dummy method. Implement this to change the embedding matrix to use different
Thinc ops.
| Name | Description |
| ----- | -------------------------------------------------------- |
| `ops` | The Thinc ops to switch the embedding matrix to. ~~Ops~~ |
## BaseVectors.to_disk {id="to_disk",tag="method"}
Dummy method to allow serialization. Implement to save vector data with the
pipeline.
| Name | Description |
| ------ | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
## BaseVectors.from_disk {id="from_disk",tag="method"}
Dummy method to allow serialization. Implement to load vector data from a saved
pipeline.
| Name | Description |
| ----------- | ----------------------------------------------------------------------------------------------- |
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| **RETURNS** | The modified vectors object. ~~BaseVectors~~ |
## BaseVectors.to_bytes {id="to_bytes",tag="method"}
Dummy method to allow serialization. Implement to serialize vector data to a
binary string.
| Name | Description |
| ----------- | ---------------------------------------------------- |
| **RETURNS** | The serialized form of the vectors object. ~~bytes~~ |
## BaseVectors.from_bytes {id="from_bytes",tag="method"}
Dummy method to allow serialization. Implement to load vector data from a binary
string.
| Name | Description |
| ----------- | ----------------------------------- |
| `data` | The data to load from. ~~bytes~~ |
| **RETURNS** | The vectors object. ~~BaseVectors~~ |

View File

@ -186,6 +186,29 @@ $ python -m spacy init fill-config [base_path] [output_file] [--diff]
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | Complete and auto-filled config file for training. | | **CREATES** | Complete and auto-filled config file for training. |
### init fill-curated-transformer {id="init-fill-curated-transformer",version="3.7",tag="command"}
Auto-fill the Hugging Face model hyperpameters and loader parameters of a
[Curated Transformer](/api/curatedtransformer) pipeline component in a
[.cfg file](/usage/training#config). The name and revision of the
[Hugging Face model](https://huggingface.co/models) can either be passed as
command-line arguments or read from the
`initialize.components.transformer.encoder_loader` config section.
```bash
$ python -m spacy init fill-curated-transformer [base_path] [output_file] [--model-name] [--model-revision] [--pipe-name] [--code]
```
| Name | Description |
| ------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `base_path` | Path to base config to fill, e.g. generated by the [quickstart widget](/usage/training#quickstart). ~~Path (positional)~~ |
| `output_file` | Path to output `.cfg` file or "-" to write to stdout so you can pipe it to a file. Defaults to "-" (stdout). ~~Path (positional)~~ |
| `--model-name`, `-m` | Name of the Hugging Face model. Defaults to the model name from the encoder loader config. ~~Optional[str] (option)~~ |
| `--model-revision`, `-r` | Revision of the Hugging Face model. Defaults to `main`. ~~Optional[str] (option)~~ |
| `--pipe-name`, `-n` | Name of the Curated Transformer pipe whose config is to be filled. Defaults to the first transformer pipe. ~~Optional[str] (option)~~ |
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
| **CREATES** | Complete and auto-filled config file for training. |
### init vectors {id="init-vectors",version="3",tag="command"} ### init vectors {id="init-vectors",version="3",tag="command"}
Convert [word vectors](/usage/linguistic-features#vectors-similarity) for use Convert [word vectors](/usage/linguistic-features#vectors-similarity) for use
@ -1041,6 +1064,42 @@ $ python -m spacy debug model ./config.cfg tagger -l "5,15" -DIM -PAR -P0 -P1 -P
| overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ | | overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ |
| **PRINTS** | Debugging information. | | **PRINTS** | Debugging information. |
### debug pieces {id="debug-pieces",version="3.7",tag="command"}
Analyze word- or sentencepiece stats.
```bash
$ python -m spacy debug pieces [config_path] [--code] [--name] [overrides]
```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `config_path` | Path to config file. ~~Union[Path, str] (positional)~~ |
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
| `--name`, `-n` | Name of the Curated Transformer pipe whose config is to be filled. Defaults to the first transformer pipe. ~~Optional[str] (option)~~ |
| overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ |
| **PRINTS** | Debugging information. |
<Accordion title="Example outputs" spaced>
```bash
$ python -m spacy debug pieces ./config.cfg
```
```
========================= Training corpus statistics =========================
Median token length: 1.0
Mean token length: 1.54
Token length range: [1, 13]
======================= Development corpus statistics =======================
Median token length: 1.0
Mean token length: 1.44
Token length range: [1, 8]
```
</Accordion>
## train {id="train",tag="command"} ## train {id="train",tag="command"}
Train a pipeline. Expects data in spaCy's Train a pipeline. Expects data in spaCy's
@ -1183,7 +1242,7 @@ skew. To render a sample of dependency parses in a HTML file using the
`--displacy-path` argument. `--displacy-path` argument.
```bash ```bash
$ python -m spacy benchmark accuracy [model] [data_path] [--output] [--code] [--gold-preproc] [--gpu-id] [--displacy-path] [--displacy-limit] $ python -m spacy benchmark accuracy [model] [data_path] [--output] [--code] [--gold-preproc] [--gpu-id] [--displacy-path] [--displacy-limit] [--per-component] [--spans-key]
``` ```
| Name | Description | | Name | Description |
@ -1197,6 +1256,7 @@ $ python -m spacy benchmark accuracy [model] [data_path] [--output] [--code] [--
| `--displacy-path`, `-dp` | Directory to output rendered parses as HTML. If not set, no visualizations will be generated. ~~Optional[Path] \(option)~~ | | `--displacy-path`, `-dp` | Directory to output rendered parses as HTML. If not set, no visualizations will be generated. ~~Optional[Path] \(option)~~ |
| `--displacy-limit`, `-dl` | Number of parses to generate per file. Defaults to `25`. Keep in mind that a significantly higher number might cause the `.html` files to render slowly. ~~int (option)~~ | | `--displacy-limit`, `-dl` | Number of parses to generate per file. Defaults to `25`. Keep in mind that a significantly higher number might cause the `.html` files to render slowly. ~~int (option)~~ |
| `--per-component`, `-P` <Tag variant="new">3.6</Tag> | Whether to return the scores keyed by component name. Defaults to `False`. ~~bool (flag)~~ | | `--per-component`, `-P` <Tag variant="new">3.6</Tag> | Whether to return the scores keyed by component name. Defaults to `False`. ~~bool (flag)~~ |
| `--spans-key`, `-sk` <Tag variant="new">3.6.2</Tag> | Spans key to use when evaluating `Doc.spans`. Defaults to `sc`. ~~str (option)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | Training results and optional metrics and visualizations. | | **CREATES** | Training results and optional metrics and visualizations. |
@ -1484,9 +1544,9 @@ obsolete files is left up to you.
Remotes can be defined in the `remotes` section of the Remotes can be defined in the `remotes` section of the
[`project.yml`](/usage/projects#project-yml). Under the hood, spaCy uses [`project.yml`](/usage/projects#project-yml). Under the hood, spaCy uses
[`Pathy`](https://github.com/justindujardin/pathy) to communicate with the [`cloudpathlib`](https://cloudpathlib.drivendata.org) to communicate with the
remote storages, so you can use any protocol that `Pathy` supports, including remote storages, so you can use any protocol that `cloudpathlib` supports,
[S3](https://aws.amazon.com/s3/), including [S3](https://aws.amazon.com/s3/),
[Google Cloud Storage](https://cloud.google.com/storage), and the local [Google Cloud Storage](https://cloud.google.com/storage), and the local
filesystem, although you may need to install extra dependencies to use certain filesystem, although you may need to install extra dependencies to use certain
protocols. protocols.

View File

@ -0,0 +1,572 @@
---
title: CuratedTransformer
teaser:
Pipeline component for multi-task learning with Curated Transformer models
tag: class
source: github.com/explosion/spacy-curated-transformers/blob/main/spacy_curated_transformers/pipeline/transformer.py
version: 3.7
api_base_class: /api/pipe
api_string_name: curated_transformer
---
<Infobox title="Important note" variant="warning">
This component is available via the extension package
[`spacy-curated-transformers`](https://github.com/explosion/spacy-curated-transformers).
It exposes the component via entry points, so if you have the package installed,
using `factory = "curated_transformer"` in your
[training config](/usage/training#config) will work out-of-the-box.
</Infobox>
This pipeline component lets you use a curated set of transformer models in your
pipeline. spaCy Curated Transformers currently supports the following model
types:
- ALBERT
- BERT
- CamemBERT
- RoBERTa
- XLM-RoBERT
If you want to use another type of model, use
[spacy-transformers](/api/spacy-transformers), which allows you to use all
Hugging Face transformer models with spaCy.
You will usually connect downstream components to a shared Curated Transformer
pipe using one of the Curated Transformer listener layers. This works similarly
to spaCy's [Tok2Vec](/api/tok2vec), and the
[Tok2VecListener](/api/architectures/#Tok2VecListener) sublayer. The component
assigns the output of the transformer to the `Doc`'s extension attributes. To
access the values, you can use the custom
[`Doc._.trf_data`](#assigned-attributes) attribute.
For more details, see the [usage documentation](/usage/embeddings-transformers).
## Assigned Attributes {id="assigned-attributes"}
The component sets the following
[custom extension attribute](/usage/processing-pipeline#custom-components-attributes):
| Location | Value |
| ---------------- | -------------------------------------------------------------------------- |
| `Doc._.trf_data` | Curated Transformer outputs for the `Doc` object. ~~DocTransformerOutput~~ |
## Config and Implementation {id="config"}
The default config is defined by the pipeline component factory and describes
how the component should be configured. You can override its settings via the
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
[`config.cfg` for training](/usage/training#config). See the
[model architectures](/api/architectures#curated-trf) documentation for details
on the curated transformer architectures and their arguments and
hyperparameters.
> #### Example
>
> ```python
> from spacy_curated_transformers.pipeline.transformer import DEFAULT_CONFIG
>
> nlp.add_pipe("curated_transformer", config=DEFAULT_CONFIG)
> ```
| Setting | Description |
| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) wrapping the transformer. Defaults to [`XlmrTransformer`](/api/architectures#curated-trf). ~~Model~~ |
| `frozen` | If `True`, the model's weights are frozen and no backpropagation is performed. ~~bool~~ |
| `all_layer_outputs` | If `True`, the model returns the outputs of all the layers. Otherwise, only the output of the last layer is returned. This must be set to `True` if any of the pipe's downstream listeners require the outputs of all transformer layers. ~~bool~~ |
```python
https://github.com/explosion/spacy-curated-transformers/blob/main/spacy_curated_transformers/pipeline/transformer.py
```
## CuratedTransformer.\_\_init\_\_ {id="init",tag="method"}
> #### Example
>
> ```python
> # Construction via add_pipe with default model
> trf = nlp.add_pipe("curated_transformer")
>
> # Construction via add_pipe with custom config
> config = {
> "model": {
> "@architectures": "spacy-curated-transformers.XlmrTransformer.v1",
> "vocab_size": 250002,
> "num_hidden_layers": 12,
> "hidden_width": 768,
> "piece_encoder": {
> "@architectures": "spacy-curated-transformers.XlmrSentencepieceEncoder.v1"
> }
> }
> }
> trf = nlp.add_pipe("curated_transformer", config=config)
>
> # Construction from class
> from spacy_curated_transformers import CuratedTransformer
> trf = CuratedTransformer(nlp.vocab, model)
> ```
Construct a `CuratedTransformer` component. One or more subsequent spaCy
components can use the transformer outputs as features in its model, with
gradients backpropagated to the single shared weights. The activations from the
transformer are saved in the [`Doc._.trf_data`](#assigned-attributes) extension
attribute. You can also provide a callback to set additional annotations. In
your application, you would normally use a shortcut for this and instantiate the
component using its string name and [`nlp.add_pipe`](/api/language#create_pipe).
| Name | Description |
| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | The shared vocabulary. ~~Vocab~~ |
| `model` | One of the supported pre-trained transformer models. ~~Model~~ |
| _keyword-only_ | |
| `name` | The component instance name. ~~str~~ |
| `frozen` | If `True`, the model's weights are frozen and no backpropagation is performed. ~~bool~~ |
| `all_layer_outputs` | If `True`, the model returns the outputs of all the layers. Otherwise, only the output of the last layer is returned. This must be set to `True` if any of the pipe's downstream listeners require the outputs of all transformer layers. ~~bool~~ |
## CuratedTransformer.\_\_call\_\_ {id="call",tag="method"}
Apply the pipe to one document. The document is modified in place, and returned.
This usually happens under the hood when the `nlp` object is called on a text
and all pipeline components are applied to the `Doc` in order. Both
[`__call__`](/api/curatedtransformer#call) and
[`pipe`](/api/curatedtransformer#pipe) delegate to the
[`predict`](/api/curatedtransformer#predict) and
[`set_annotations`](/api/curatedtransformer#set_annotations) methods.
> #### Example
>
> ```python
> doc = nlp("This is a sentence.")
> trf = nlp.add_pipe("curated_transformer")
> # This usually happens under the hood
> processed = trf(doc)
> ```
| Name | Description |
| ----------- | -------------------------------- |
| `doc` | The document to process. ~~Doc~~ |
| **RETURNS** | The processed document. ~~Doc~~ |
## CuratedTransformer.pipe {id="pipe",tag="method"}
Apply the pipe to a stream of documents. This usually happens under the hood
when the `nlp` object is called on a text and all pipeline components are
applied to the `Doc` in order. Both [`__call__`](/api/curatedtransformer#call)
and [`pipe`](/api/curatedtransformer#pipe) delegate to the
[`predict`](/api/curatedtransformer#predict) and
[`set_annotations`](/api/curatedtransformer#set_annotations) methods.
> #### Example
>
> ```python
> trf = nlp.add_pipe("curated_transformer")
> for doc in trf.pipe(docs, batch_size=50):
> pass
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------- |
| `stream` | A stream of documents. ~~Iterable[Doc]~~ |
| _keyword-only_ | |
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
| **YIELDS** | The processed documents in order. ~~Doc~~ |
## CuratedTransformer.initialize {id="initialize",tag="method"}
Initialize the component for training and return an
[`Optimizer`](https://thinc.ai/docs/api-optimizers). `get_examples` should be a
function that returns an iterable of [`Example`](/api/example) objects. **At
least one example should be supplied.** The data examples are used to
**initialize the model** of the component and can either be the full training
data or a representative sample. Initialization includes validating the network,
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
setting up the label scheme based on the data. This method is typically called
by [`Language.initialize`](/api/language#initialize).
> #### Example
>
> ```python
> trf = nlp.add_pipe("curated_transformer")
> trf.initialize(lambda: examples, nlp=nlp)
> ```
| Name | Description |
| ---------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
| `encoder_loader` | Initialization callback for the transformer model. ~~Optional[Callable]~~ |
| `piece_loader` | Initialization callback for the input piece encoder. ~~Optional[Callable]~~ |
## CuratedTransformer.predict {id="predict",tag="method"}
Apply the component's model to a batch of [`Doc`](/api/doc) objects without
modifying them.
> #### Example
>
> ```python
> trf = nlp.add_pipe("curated_transformer")
> scores = trf.predict([doc1, doc2])
> ```
| Name | Description |
| ----------- | ------------------------------------------- |
| `docs` | The documents to predict. ~~Iterable[Doc]~~ |
| **RETURNS** | The model's prediction for each document. |
## CuratedTransformer.set_annotations {id="set_annotations",tag="method"}
Assign the extracted features to the `Doc` objects. By default, the
[`DocTransformerOutput`](/api/curatedtransformer#doctransformeroutput) object is
written to the [`Doc._.trf_data`](#assigned-attributes) attribute. Your
`set_extra_annotations` callback is then called, if provided.
> #### Example
>
> ```python
> trf = nlp.add_pipe("curated_transformer")
> scores = trf.predict(docs)
> trf.set_annotations(docs, scores)
> ```
| Name | Description |
| -------- | ------------------------------------------------------------ |
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
| `scores` | The scores to set, produced by `CuratedTransformer.predict`. |
## CuratedTransformer.update {id="update",tag="method"}
Prepare for an update to the transformer.
Like the [`Tok2Vec`](api/tok2vec) component, the `CuratedTransformer` component
is unusual in that it does not receive "gold standard" annotations to calculate
a weight update. The optimal output of the transformer data is unknown; it's a
hidden layer inside the network that is updated by backpropagating from output
layers.
The `CuratedTransformer` component therefore does not perform a weight update
during its own `update` method. Instead, it runs its transformer model and
communicates the output and the backpropagation callback to any downstream
components that have been connected to it via the transformer listener sublayer.
If there are multiple listeners, the last layer will actually backprop to the
transformer and call the optimizer, while the others simply increment the
gradients.
> #### Example
>
> ```python
> trf = nlp.add_pipe("curated_transformer")
> optimizer = nlp.initialize()
> losses = trf.update(examples, sgd=optimizer)
> ```
| Name | Description |
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `examples` | A batch of [`Example`](/api/example) objects. Only the [`Example.predicted`](/api/example#predicted) `Doc` object is used, the reference `Doc` is ignored. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | The dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
## CuratedTransformer.create_optimizer {id="create_optimizer",tag="method"}
Create an optimizer for the pipeline component.
> #### Example
>
> ```python
> trf = nlp.add_pipe("curated_transformer")
> optimizer = trf.create_optimizer()
> ```
| Name | Description |
| ----------- | ---------------------------- |
| **RETURNS** | The optimizer. ~~Optimizer~~ |
## CuratedTransformer.use_params {id="use_params",tag="method, contextmanager"}
Modify the pipe's model to use the given parameter values. At the end of the
context, the original parameters are restored.
> #### Example
>
> ```python
> trf = nlp.add_pipe("curated_transformer")
> with trf.use_params(optimizer.averages):
> trf.to_disk("/best_model")
> ```
| Name | Description |
| -------- | -------------------------------------------------- |
| `params` | The parameter values to use in the model. ~~dict~~ |
## CuratedTransformer.to_disk {id="to_disk",tag="method"}
Serialize the pipe to disk.
> #### Example
>
> ```python
> trf = nlp.add_pipe("curated_transformer")
> trf.to_disk("/path/to/transformer")
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
## CuratedTransformer.from_disk {id="from_disk",tag="method"}
Load the pipe from disk. Modifies the object in place and returns it.
> #### Example
>
> ```python
> trf = nlp.add_pipe("curated_transformer")
> trf.from_disk("/path/to/transformer")
> ```
| Name | Description |
| -------------- | ----------------------------------------------------------------------------------------------- |
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The modified `CuratedTransformer` object. ~~CuratedTransformer~~ |
## CuratedTransformer.to_bytes {id="to_bytes",tag="method"}
> #### Example
>
> ```python
> trf = nlp.add_pipe("curated_transformer")
> trf_bytes = trf.to_bytes()
> ```
Serialize the pipe to a bytestring.
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------- |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The serialized form of the `CuratedTransformer` object. ~~bytes~~ |
## CuratedTransformer.from_bytes {id="from_bytes",tag="method"}
Load the pipe from a bytestring. Modifies the object in place and returns it.
> #### Example
>
> ```python
> trf_bytes = trf.to_bytes()
> trf = nlp.add_pipe("curated_transformer")
> trf.from_bytes(trf_bytes)
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------- |
| `bytes_data` | The data to load from. ~~bytes~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The `CuratedTransformer` object. ~~CuratedTransformer~~ |
## Serialization Fields {id="serialization-fields"}
During serialization, spaCy will export several data fields used to restore
different aspects of the object. If needed, you can exclude them from
serialization by passing in the string names via the `exclude` argument.
> #### Example
>
> ```python
> data = trf.to_disk("/path", exclude=["vocab"])
> ```
| Name | Description |
| ------- | -------------------------------------------------------------- |
| `vocab` | The shared [`Vocab`](/api/vocab). |
| `cfg` | The config file. You usually don't want to exclude this. |
| `model` | The binary model data. You usually don't want to exclude this. |
## DocTransformerOutput {id="doctransformeroutput",tag="dataclass"}
Curated Transformer outputs for one `Doc` object. Stores the dense
representations generated by the transformer for each piece identifier. Piece
identifiers are grouped by token. Instances of this class are typically assigned
to the [`Doc._.trf_data`](/api/curatedtransformer#assigned-attributes) extension
attribute.
| Name | Description |
| ----------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `all_outputs` | List of `Ragged` tensors that correspends to outputs of the different transformer layers. Each tensor element corresponds to a piece identifier's representation. ~~List[Ragged]~~ |
| `last_layer_only` | If only the last transformer layer's outputs are preserved. ~~bool~~ |
### DocTransformerOutput.embedding_layer {id="doctransformeroutput-embeddinglayer",tag="property"}
Return the output of the transformer's embedding layer or `None` if
`last_layer_only` is `True`.
| Name | Description |
| ----------- | -------------------------------------------- |
| **RETURNS** | Embedding layer output. ~~Optional[Ragged]~~ |
### DocTransformerOutput.last_hidden_layer_state {id="doctransformeroutput-lasthiddenlayerstate",tag="property"}
Return the output of the transformer's last hidden layer.
| Name | Description |
| ----------- | ------------------------------------ |
| **RETURNS** | Last hidden layer output. ~~Ragged~~ |
### DocTransformerOutput.all_hidden_layer_states {id="doctransformeroutput-allhiddenlayerstates",tag="property"}
Return the outputs of all transformer layers (excluding the embedding layer).
| Name | Description |
| ----------- | -------------------------------------- |
| **RETURNS** | Hidden layer outputs. ~~List[Ragged]~~ |
### DocTransformerOutput.num_outputs {id="doctransformeroutput-numoutputs",tag="property"}
Return the number of layer outputs stored in the `DocTransformerOutput` instance
(including the embedding layer).
| Name | Description |
| ----------- | -------------------------- |
| **RETURNS** | Numbef of outputs. ~~int~~ |
## Span Getters {id="span_getters",source="github.com/explosion/spacy-transformers/blob/master/spacy_curated_transformers/span_getters.py"}
Span getters are functions that take a batch of [`Doc`](/api/doc) objects and
return a lists of [`Span`](/api/span) objects for each doc to be processed by
the transformer. This is used to manage long documents by cutting them into
smaller sequences before running the transformer. The spans are allowed to
overlap, and you can also omit sections of the `Doc` if they are not relevant.
Span getters can be referenced in the
`[components.transformer.model.with_spans]` block of the config to customize the
sequences processed by the transformer.
| Name | Description |
| ----------- | ------------------------------------------------------------- |
| `docs` | A batch of `Doc` objects. ~~Iterable[Doc]~~ |
| **RETURNS** | The spans to process by the transformer. ~~List[List[Span]]~~ |
### WithStridedSpans.v1 {id="strided_spans",tag="registered function"}
> #### Example config
>
> ```ini
> [transformer.model.with_spans]
> @architectures = "spacy-curated-transformers.WithStridedSpans.v1"
> stride = 96
> window = 128
> ```
Create a span getter for strided spans. If you set the `window` and `stride` to
the same value, the spans will cover each token once. Setting `stride` lower
than `window` will allow for an overlap, so that some tokens are counted twice.
This can be desirable, because it allows all tokens to have both a left and
right context.
| Name | Description |
| -------- | ------------------------ |
| `window` | The window size. ~~int~~ |
| `stride` | The stride size. ~~int~~ |
## Model Loaders
[Curated Transformer models](/api/architectures#curated-trf) are constructed
with default hyperparameters and randomized weights when the pipeline is
created. To load the weights of an existing pre-trained model into the pipeline,
one of the following loader callbacks can be used. The pre-trained model must
have the same hyperparameters as the model used by the pipeline.
### HFTransformerEncoderLoader.v1 {id="hf_trfencoder_loader",tag="registered_function"}
Construct a callback that initializes a supported transformer model with weights
from a corresponding HuggingFace model.
| Name | Description |
| ---------- | ------------------------------------------ |
| `name` | Name of the HuggingFace model. ~~str~~ |
| `revision` | Name of the model revision/branch. ~~str~~ |
### PyTorchCheckpointLoader.v1 {id="pytorch_checkpoint_loader",tag="registered_function"}
Construct a callback that initializes a supported transformer model with weights
from a PyTorch checkpoint.
| Name | Description |
| ------ | ---------------------------------------- |
| `path` | Path to the PyTorch checkpoint. ~~Path~~ |
## Tokenizer Loaders
[Curated Transformer models](/api/architectures#curated-trf) must be paired with
a matching tokenizer (piece encoder) model in a spaCy pipeline. As with the
transformer models, tokenizers are constructed with an empty vocabulary during
pipeline creation - They need to be initialized with an appropriate loader
before use in training/inference.
### ByteBPELoader.v1 {id="bytebpe_loader",tag="registered_function"}
Construct a callback that initializes a Byte-BPE piece encoder model.
| Name | Description |
| ------------- | ------------------------------------- |
| `vocab_path` | Path to the vocabulary file. ~~Path~~ |
| `merges_path` | Path to the merges file. ~~Path~~ |
### CharEncoderLoader.v1 {id="charencoder_loader",tag="registered_function"}
Construct a callback that initializes a character piece encoder model.
| Name | Description |
| ----------- | --------------------------------------------------------------------------- |
| `path` | Path to the serialized character model. ~~Path~~ |
| `bos_piece` | Piece used as a beginning-of-sentence token. Defaults to `"[BOS]"`. ~~str~~ |
| `eos_piece` | Piece used as a end-of-sentence token. Defaults to `"[EOS]"`. ~~str~~ |
| `unk_piece` | Piece used as a stand-in for unknown tokens. Defaults to `"[UNK]"`. ~~str~~ |
| `normalize` | Unicode normalization form to use. Defaults to `"NFKC"`. ~~str~~ |
### HFPieceEncoderLoader.v1 {id="hf_pieceencoder_loader",tag="registered_function"}
Construct a callback that initializes a HuggingFace piece encoder model. Used in
conjunction with the HuggingFace model loader.
| Name | Description |
| ---------- | ------------------------------------------ |
| `name` | Name of the HuggingFace model. ~~str~~ |
| `revision` | Name of the model revision/branch. ~~str~~ |
### SentencepieceLoader.v1 {id="sentencepiece_loader",tag="registered_function"}
Construct a callback that initializes a SentencePiece piece encoder model.
| Name | Description |
| ------ | ---------------------------------------------------- |
| `path` | Path to the serialized SentencePiece model. ~~Path~~ |
### WordpieceLoader.v1 {id="wordpiece_loader",tag="registered_function"}
Construct a callback that initializes a WordPiece piece encoder model.
| Name | Description |
| ------ | ------------------------------------------------ |
| `path` | Path to the serialized WordPiece model. ~~Path~~ |
## Callbacks
### gradual_transformer_unfreezing.v1 {id="gradual_transformer_unfreezing",tag="registered_function"}
Construct a callback that can be used to gradually unfreeze the weights of one
or more Transformer components during training. This can be used to prevent
catastrophic forgetting during fine-tuning.
| Name | Description |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `target_pipes` | A dictionary whose keys and values correspond to the names of Transformer components and the training step at which they should be unfrozen respectively. ~~Dict[str, int]~~ |

View File

@ -19,8 +19,8 @@ prototyping** and **prompting**, and turning unstructured responses into
An LLM component is implemented through the `LLMWrapper` class. It is accessible An LLM component is implemented through the `LLMWrapper` class. It is accessible
through a generic `llm` through a generic `llm`
[component factory](https://spacy.io/usage/processing-pipelines#custom-components-factories) [component factory](https://spacy.io/usage/processing-pipelines#custom-components-factories)
as well as through task-specific component factories: `llm_ner`, `llm_spancat`, `llm_rel`, as well as through task-specific component factories: `llm_ner`, `llm_spancat`,
`llm_textcat`, `llm_sentiment` and `llm_summarization`. `llm_rel`, `llm_textcat`, `llm_sentiment` and `llm_summarization`.
### LLMWrapper.\_\_init\_\_ {id="init",tag="method"} ### LLMWrapper.\_\_init\_\_ {id="init",tag="method"}
@ -254,12 +254,14 @@ prompting.
> max_n_words = null > max_n_words = null
> ``` > ```
| Argument | Description | | Argument | Description |
| ------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | --------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `template` | Custom prompt template to send to LLM model. Defaults to [summarization.v1.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/summarization.v1.jinja). ~~str~~ | | `template` | Custom prompt template to send to LLM model. Defaults to [summarization.v1.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/summarization.v1.jinja). ~~str~~ |
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | | `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
| `max_n_words` | Maximum number of words to be used in summary. Note that this should not expected to work exactly. Defaults to `None`. ~~Optional[int]~~ | | `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SummarizationTask]]~~ |
| `field` | Name of extension attribute to store summary in (i. e. the summary will be available in `doc._.{field}`). Defaults to `summary`. ~~str~~ | | `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `SummarizationExample`. ~~Optional[Type[FewshotExample]]~~ |
| `max_n_words` | Maximum number of words to be used in summary. Note that this should not expected to work exactly. Defaults to `None`. ~~Optional[int]~~ |
| `field` | Name of extension attribute to store summary in (i. e. the summary will be available in `doc._.{field}`). Defaults to `summary`. ~~str~~ |
The summarization task prompts the model for a concise summary of the provided The summarization task prompts the model for a concise summary of the provided
text. It optionally allows to limit the response to a certain number of tokens - text. It optionally allows to limit the response to a certain number of tokens -
@ -325,16 +327,19 @@ When no examples are [specified](/usage/large-language-models#few-shot-prompts),
the v3 implementation will use a dummy example in the prompt. Technically this the v3 implementation will use a dummy example in the prompt. Technically this
means that the task will always perform few-shot prompting under the hood. means that the task will always perform few-shot prompting under the hood.
| Argument | Description | | Argument | Description |
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | | `template` | Custom prompt template to send to LLM model. Defaults to [ner.v3.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/ner.v3.jinja). ~~str~~ |
| `label_definitions` | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ | | `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
| `template` | Custom prompt template to send to LLM model. Defaults to [ner.v3.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/ner.v3.jinja). ~~str~~ | | `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[NERTask]]~~ |
| `description` (NEW) | A description of what to recognize or not recognize as entities. ~~str~~ | | `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `NERExample`. ~~Optional[Type[FewshotExample]]~~ |
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | | `scorer` | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ | | `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ | | `label_definitions` | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ | | `description` (NEW) | A description of what to recognize or not recognize as entities. ~~str~~ |
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ |
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ |
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ |
Note that the `single_match` parameter, used in v1 and v2, is not supported Note that the `single_match` parameter, used in v1 and v2, is not supported
anymore, as the CoT parsing algorithm takes care of this automatically. anymore, as the CoT parsing algorithm takes care of this automatically.
@ -415,16 +420,19 @@ v1.
> examples = null > examples = null
> ``` > ```
| Argument | Description | | Argument | Description |
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | | `template` (NEW) | Custom prompt template to send to LLM model. Defaults to [ner.v2.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/ner.v2.jinja). ~~str~~ |
| `label_definitions` (NEW) | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ | | `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
| `template` (NEW) | Custom prompt template to send to LLM model. Defaults to [ner.v2.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/ner.v2.jinja). ~~str~~ | | `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[NERTask]]~~ |
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | | `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `NERExample`. ~~Optional[Type[FewshotExample]]~~ |
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ | | `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ | | `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ | | `label_definitions` (NEW) | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ | | `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ |
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ |
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ |
| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ |
The parameters `alignment_mode`, `case_sensitive_matching` and `single_match` The parameters `alignment_mode`, `case_sensitive_matching` and `single_match`
are identical to the [v1](#ner-v1) implementation. The format of few-shot are identical to the [v1](#ner-v1) implementation. The format of few-shot
@ -467,14 +475,17 @@ few-shot prompting.
> examples = null > examples = null
> ``` > ```
| Argument | Description | | Argument | Description |
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `labels` | Comma-separated list of labels. ~~str~~ | | `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | | `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[NERTask]]~~ |
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ | | `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `NERExample`. ~~Optional[Type[FewshotExample]]~~ |
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ | | `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ | | `labels` | Comma-separated list of labels. ~~str~~ |
| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ | | `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ |
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ |
| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ |
The NER task implementation doesn't currently ask the LLM for specific offsets, The NER task implementation doesn't currently ask the LLM for specific offsets,
but simply expects a list of strings that represent the enties in the document. but simply expects a list of strings that represent the enties in the document.
@ -539,17 +550,20 @@ support overlapping entities and store its annotations in `doc.spans`.
> examples = null > examples = null
> ``` > ```
| Argument | Description | | Argument | Description |
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | | `template` | Custom prompt template to send to LLM model. Defaults to [`spancat.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/spancat.v3.jinja). ~~str~~ |
| `label_definitions` | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ | | `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
| `template` | Custom prompt template to send to LLM model. Defaults to [`spancat.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/spancat.v3.jinja). ~~str~~ | | `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SpanCatTask]]~~ |
| `description` (NEW) | A description of what to recognize or not recognize as entities. ~~str~~ | | `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `SpanCatExample`. ~~Optional[Type[FewshotExample]]~~ |
| `spans_key` | Key of the `Doc.spans` dict to save the spans under. Defaults to `"sc"`. ~~str~~ | | `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | | `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ | | `label_definitions` | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ | | `description` (NEW) | A description of what to recognize or not recognize as entities. ~~str~~ |
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ | | `spans_key` | Key of the `Doc.spans` dict to save the spans under. Defaults to `"sc"`. ~~str~~ |
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ |
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ |
Note that the `single_match` parameter, used in v1 and v2, is not supported Note that the `single_match` parameter, used in v1 and v2, is not supported
anymore, as the CoT parsing algorithm takes care of this automatically. anymore, as the CoT parsing algorithm takes care of this automatically.
@ -568,17 +582,20 @@ support overlapping entities and store its annotations in `doc.spans`.
> examples = null > examples = null
> ``` > ```
| Argument | Description | | Argument | Description |
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | | `template` (NEW) | Custom prompt template to send to LLM model. Defaults to [`spancat.v2.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/spancat.v2.jinja). ~~str~~ |
| `label_definitions` (NEW) | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ | | `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
| `template` (NEW) | Custom prompt template to send to LLM model. Defaults to [`spancat.v2.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/spancat.v2.jinja). ~~str~~ | | `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SpanCatTask]]~~ |
| `spans_key` | Key of the `Doc.spans` dict to save the spans under. Defaults to `"sc"`. ~~str~~ | | `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `SpanCatExample`. ~~Optional[Type[FewshotExample]]~~ |
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | | `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ | | `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ | | `label_definitions` (NEW) | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ | | `spans_key` | Key of the `Doc.spans` dict to save the spans under. Defaults to `"sc"`. ~~str~~ |
| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ | | `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ |
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ |
| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ |
Except for the `spans_key` parameter, the SpanCat v2 task reuses the Except for the `spans_key` parameter, the SpanCat v2 task reuses the
configuration from the NER v2 task. Refer to [its documentation](#ner-v2) for configuration from the NER v2 task. Refer to [its documentation](#ner-v2) for
@ -599,15 +616,18 @@ v1 NER task to support overlapping entities and store its annotations in
> examples = null > examples = null
> ``` > ```
| Argument | Description | | Argument | Description |
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `labels` | Comma-separated list of labels. ~~str~~ | | `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
| `spans_key` | Key of the `Doc.spans` dict to save the spans under. Defaults to `"sc"`. ~~str~~ | | `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SpanCatTask]]~~ |
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | | `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `SpanCatExample`. ~~Optional[Type[FewshotExample]]~~ |
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ | | `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ | | `labels` | Comma-separated list of labels. ~~str~~ |
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ | | `spans_key` | Key of the `Doc.spans` dict to save the spans under. Defaults to `"sc"`. ~~str~~ |
| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ | | `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ |
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ |
| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ |
Except for the `spans_key` parameter, the SpanCat v1 task reuses the Except for the `spans_key` parameter, the SpanCat v1 task reuses the
configuration from the NER v1 task. Refer to [its documentation](#ner-v1) for configuration from the NER v1 task. Refer to [its documentation](#ner-v1) for
@ -636,16 +656,19 @@ prompt.
> examples = null > examples = null
> ``` > ```
| Argument | Description | | Argument | Description |
| ------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | --------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | | `template` | Custom prompt template to send to LLM model. Defaults to [`textcat.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/textcat.v3.jinja). ~~str~~ |
| `label_definitions` (NEW) | Dictionary of label definitions. Included in the prompt, if set. Defaults to `None`. ~~Optional[Dict[str, str]]~~ | | `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
| `template` | Custom prompt template to send to LLM model. Defaults to [`textcat.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/textcat.v3.jinja). ~~str~~ | | `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SpanCatTask]]~~ |
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | | `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `TextCatExample`. ~~Optional[Type[FewshotExample]]~~ |
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ | | `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Defaults to `False`. ~~bool~~ | | `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Defaults to `True`. ~~bool~~ | | `label_definitions` (NEW) | Dictionary of label definitions. Included in the prompt, if set. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ | | `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ |
| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Defaults to `False`. ~~bool~~ |
| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Defaults to `True`. ~~bool~~ |
| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ |
The formatting of few-shot examples is the same as those for the The formatting of few-shot examples is the same as those for the
[v1](#textcat-v1) implementation. [v1](#textcat-v1) implementation.
@ -663,15 +686,18 @@ V2 includes all v1 functionality, with an improved prompt template.
> examples = null > examples = null
> ``` > ```
| Argument | Description | | Argument | Description |
| ------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | --------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | | `template` (NEW) | Custom prompt template to send to LLM model. Defaults to [`textcat.v2.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/textcat.v2.jinja). ~~str~~ |
| `template` (NEW) | Custom prompt template to send to LLM model. Defaults to [`textcat.v2.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/textcat.v2.jinja). ~~str~~ | | `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | | `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SpanCatTask]]~~ |
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ | | `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `TextCatExample`. ~~Optional[Type[FewshotExample]]~~ |
| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Defaults to `False`. ~~bool~~ | | `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Defaults to `True`. ~~bool~~ | | `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ | | `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Defaults to `False`. ~~bool~~ |
| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Defaults to `True`. ~~bool~~ |
| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ |
The formatting of few-shot examples is the same as those for the The formatting of few-shot examples is the same as those for the
[v1](#textcat-v1) implementation. [v1](#textcat-v1) implementation.
@ -690,14 +716,17 @@ prompting.
> examples = null > examples = null
> ``` > ```
| Argument | Description | | Argument | Description |
| ------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | --------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `labels` | Comma-separated list of labels. ~~str~~ | | `examples` | Optional function that generates examples for few-shot learning. Deafults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
| `examples` | Optional function that generates examples for few-shot learning. Deafults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | | `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SpanCatTask]]~~ |
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ | | `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `TextCatExample`. ~~Optional[Type[FewshotExample]]~~ |
| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Deafults to `False`. ~~bool~~ | | `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Deafults to `True`. ~~bool~~ | | `labels` | Comma-separated list of labels. ~~str~~ |
| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Deafults to `False`. ~~bool~~ | | `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Defaults to `False`. ~~bool~~ |
| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Defaults to `True`. ~~bool~~ |
| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ |
To perform [few-shot learning](/usage/large-language-models#few-shot-prompts), To perform [few-shot learning](/usage/large-language-models#few-shot-prompts),
you can write down a few examples in a separate file, and provide these to be you can write down a few examples in a separate file, and provide these to be
@ -740,14 +769,17 @@ on an upstream NER component for entities extraction.
> labels = ["LivesIn", "Visits"] > labels = ["LivesIn", "Visits"]
> ``` > ```
| Argument | Description | | Argument | Description |
| ------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | --------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | | `template` | Custom prompt template to send to LLM model. Defaults to [`rel.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/rel.v1.jinja). ~~str~~ |
| `template` | Custom prompt template to send to LLM model. Defaults to [`rel.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/rel.v1.jinja). ~~str~~ | | `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
| `label_definitions` | Dictionary providing a description for each relation label. Defaults to `None`. ~~Optional[Dict[str, str]]~~ | | `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[RELTask]]~~ |
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | | `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `RELExample`. ~~Optional[Type[FewshotExample]]~~ |
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ | | `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ | | `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
| `label_definitions` | Dictionary providing a description for each relation label. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ |
| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ |
To perform [few-shot learning](/usage/large-language-models#few-shot-prompts), To perform [few-shot learning](/usage/large-language-models#few-shot-prompts),
you can write down a few examples in a separate file, and provide these to be you can write down a few examples in a separate file, and provide these to be
@ -793,10 +825,13 @@ This task supports both zero-shot and few-shot prompting.
> examples = null > examples = null
> ``` > ```
| Argument | Description | | Argument | Description |
| ---------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | --------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `template` | Custom prompt template to send to LLM model. Defaults to [lemma.v1.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/lemma.v1.jinja). ~~str~~ | | `template` | Custom prompt template to send to LLM model. Defaults to [lemma.v1.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/lemma.v1.jinja). ~~str~~ |
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | | `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[LemmaTask]]~~ |
| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `LemmaExample`. ~~Optional[Type[FewshotExample]]~~ |
| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
The task prompts the LLM to lemmatize the passed text and return the lemmatized The task prompts the LLM to lemmatize the passed text and return the lemmatized
version as a list of tokens and their corresponding lemma. E. g. the text version as a list of tokens and their corresponding lemma. E. g. the text
@ -870,11 +905,14 @@ This task supports both zero-shot and few-shot prompting.
> examples = null > examples = null
> ``` > ```
| Argument | Description | | Argument | Description |
| ---------- | ------------------------------------------------------------------------------------------------------------------------------------------ | | --------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `template` | Custom prompt template to send to LLM model. Defaults to [sentiment.v1.jinja](./spacy_llm/tasks/templates/sentiment.v1.jinja). ~~str~~ | | `template` | Custom prompt template to send to LLM model. Defaults to [sentiment.v1.jinja](./spacy_llm/tasks/templates/sentiment.v1.jinja). ~~str~~ |
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | | `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
| `field` | Name of extension attribute to store summary in (i. e. the summary will be available in `doc._.{field}`). Defaults to `sentiment`. ~~str~~ | | `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SentimentTask]]~~ |
| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `SentimentExample`. ~~Optional[Type[FewshotExample]]~~ |
| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
| `field` | Name of extension attribute to store summary in (i. e. the summary will be available in `doc._.{field}`). Defaults to `sentiment`. ~~str~~ |
To perform [few-shot learning](/usage/large-language-models#few-shot-prompts), To perform [few-shot learning](/usage/large-language-models#few-shot-prompts),
you can write down a few examples in a separate file, and provide these to be you can write down a few examples in a separate file, and provide these to be
@ -952,42 +990,62 @@ provider's API.
Currently, these models are provided as part of the core library: Currently, these models are provided as part of the core library:
| Model | Provider | Supported names | Default name | Default config | | Model | Provider | Supported names | Default name | Default config |
| ----------------------------- | --------- | ---------------------------------------------------------------------------------------- | ---------------------- | ------------------------------------ | | ----------------------------- | ----------------- | ------------------------------------------------------------------------------------------------------------------ | ---------------------- | ------------------------------------ |
| `spacy.GPT-4.v1` | OpenAI | `["gpt-4", "gpt-4-0314", "gpt-4-32k", "gpt-4-32k-0314"]` | `"gpt-4"` | `{}` | | `spacy.GPT-4.v1` | OpenAI | `["gpt-4", "gpt-4-0314", "gpt-4-32k", "gpt-4-32k-0314"]` | `"gpt-4"` | `{}` |
| `spacy.GPT-4.v2` | OpenAI | `["gpt-4", "gpt-4-0314", "gpt-4-32k", "gpt-4-32k-0314"]` | `"gpt-4"` | `{temperature=0.0}` | | `spacy.GPT-4.v2` | OpenAI | `["gpt-4", "gpt-4-0314", "gpt-4-32k", "gpt-4-32k-0314"]` | `"gpt-4"` | `{temperature=0.0}` |
| `spacy.GPT-3-5.v1` | OpenAI | `["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-0613-16k"]` | `"gpt-3.5-turbo"` | `{}` | | `spacy.GPT-3-5.v1` | OpenAI | `["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-0613-16k", "gpt-3.5-turbo-instruct"]` | `"gpt-3.5-turbo"` | `{}` |
| `spacy.GPT-3-5.v2` | OpenAI | `["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-0613-16k"]` | `"gpt-3.5-turbo"` | `{temperature=0.0}` | | `spacy.GPT-3-5.v2` | OpenAI | `["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-0613-16k", "gpt-3.5-turbo-instruct"]` | `"gpt-3.5-turbo"` | `{temperature=0.0}` |
| `spacy.Davinci.v1` | OpenAI | `["davinci"]` | `"davinci"` | `{}` | | `spacy.Davinci.v1` | OpenAI | `["davinci"]` | `"davinci"` | `{}` |
| `spacy.Davinci.v2` | OpenAI | `["davinci"]` | `"davinci"` | `{temperature=0.0, max_tokens=500}` | | `spacy.Davinci.v2` | OpenAI | `["davinci"]` | `"davinci"` | `{temperature=0.0, max_tokens=500}` |
| `spacy.Text-Davinci.v1` | OpenAI | `["text-davinci-003", "text-davinci-002"]` | `"text-davinci-003"` | `{}` | | `spacy.Text-Davinci.v1` | OpenAI | `["text-davinci-003", "text-davinci-002"]` | `"text-davinci-003"` | `{}` |
| `spacy.Text-Davinci.v2` | OpenAI | `["text-davinci-003", "text-davinci-002"]` | `"text-davinci-003"` | `{temperature=0.0, max_tokens=1000}` | | `spacy.Text-Davinci.v2` | OpenAI | `["text-davinci-003", "text-davinci-002"]` | `"text-davinci-003"` | `{temperature=0.0, max_tokens=1000}` |
| `spacy.Code-Davinci.v1` | OpenAI | `["code-davinci-002"]` | `"code-davinci-002"` | `{}` | | `spacy.Code-Davinci.v1` | OpenAI | `["code-davinci-002"]` | `"code-davinci-002"` | `{}` |
| `spacy.Code-Davinci.v2` | OpenAI | `["code-davinci-002"]` | `"code-davinci-002"` | `{temperature=0.0, max_tokens=500}` | | `spacy.Code-Davinci.v2` | OpenAI | `["code-davinci-002"]` | `"code-davinci-002"` | `{temperature=0.0, max_tokens=500}` |
| `spacy.Curie.v1` | OpenAI | `["curie"]` | `"curie"` | `{}` | | `spacy.Curie.v1` | OpenAI | `["curie"]` | `"curie"` | `{}` |
| `spacy.Curie.v2` | OpenAI | `["curie"]` | `"curie"` | `{temperature=0.0, max_tokens=500}` | | `spacy.Curie.v2` | OpenAI | `["curie"]` | `"curie"` | `{temperature=0.0, max_tokens=500}` |
| `spacy.Text-Curie.v1` | OpenAI | `["text-curie-001"]` | `"text-curie-001"` | `{}` | | `spacy.Text-Curie.v1` | OpenAI | `["text-curie-001"]` | `"text-curie-001"` | `{}` |
| `spacy.Text-Curie.v2` | OpenAI | `["text-curie-001"]` | `"text-curie-001"` | `{temperature=0.0, max_tokens=500}` | | `spacy.Text-Curie.v2` | OpenAI | `["text-curie-001"]` | `"text-curie-001"` | `{temperature=0.0, max_tokens=500}` |
| `spacy.Babbage.v1` | OpenAI | `["babbage"]` | `"babbage"` | `{}` | | `spacy.Babbage.v1` | OpenAI | `["babbage"]` | `"babbage"` | `{}` |
| `spacy.Babbage.v2` | OpenAI | `["babbage"]` | `"babbage"` | `{temperature=0.0, max_tokens=500}` | | `spacy.Babbage.v2` | OpenAI | `["babbage"]` | `"babbage"` | `{temperature=0.0, max_tokens=500}` |
| `spacy.Text-Babbage.v1` | OpenAI | `["text-babbage-001"]` | `"text-babbage-001"` | `{}` | | `spacy.Text-Babbage.v1` | OpenAI | `["text-babbage-001"]` | `"text-babbage-001"` | `{}` |
| `spacy.Text-Babbage.v2` | OpenAI | `["text-babbage-001"]` | `"text-babbage-001"` | `{temperature=0.0, max_tokens=500}` | | `spacy.Text-Babbage.v2` | OpenAI | `["text-babbage-001"]` | `"text-babbage-001"` | `{temperature=0.0, max_tokens=500}` |
| `spacy.Ada.v1` | OpenAI | `["ada"]` | `"ada"` | `{}` | | `spacy.Ada.v1` | OpenAI | `["ada"]` | `"ada"` | `{}` |
| `spacy.Ada.v2` | OpenAI | `["ada"]` | `"ada"` | `{temperature=0.0, max_tokens=500}` | | `spacy.Ada.v2` | OpenAI | `["ada"]` | `"ada"` | `{temperature=0.0, max_tokens=500}` |
| `spacy.Text-Ada.v1` | OpenAI | `["text-ada-001"]` | `"text-ada-001"` | `{}` | | `spacy.Text-Ada.v1` | OpenAI | `["text-ada-001"]` | `"text-ada-001"` | `{}` |
| `spacy.Text-Ada.v2` | OpenAI | `["text-ada-001"]` | `"text-ada-001"` | `{temperature=0.0, max_tokens=500}` | | `spacy.Text-Ada.v2` | OpenAI | `["text-ada-001"]` | `"text-ada-001"` | `{temperature=0.0, max_tokens=500}` |
| `spacy.Command.v1` | Cohere | `["command", "command-light", "command-light-nightly", "command-nightly"]` | `"command"` | `{}` | | `spacy.Azure.v1` | Microsoft, OpenAI | Arbitrary values | No default | `{temperature=0.0}` |
| `spacy.Claude-2.v1` | Anthropic | `["claude-2", "claude-2-100k"]` | `"claude-2"` | `{}` | | `spacy.Command.v1` | Cohere | `["command", "command-light", "command-light-nightly", "command-nightly"]` | `"command"` | `{}` |
| `spacy.Claude-1.v1` | Anthropic | `["claude-1", "claude-1-100k"]` | `"claude-1"` | `{}` | | `spacy.Claude-2.v1` | Anthropic | `["claude-2", "claude-2-100k"]` | `"claude-2"` | `{}` |
| `spacy.Claude-1-0.v1` | Anthropic | `["claude-1.0"]` | `"claude-1.0"` | `{}` | | `spacy.Claude-1.v1` | Anthropic | `["claude-1", "claude-1-100k"]` | `"claude-1"` | `{}` |
| `spacy.Claude-1-2.v1` | Anthropic | `["claude-1.2"]` | `"claude-1.2"` | `{}` | | `spacy.Claude-1-0.v1` | Anthropic | `["claude-1.0"]` | `"claude-1.0"` | `{}` |
| `spacy.Claude-1-3.v1` | Anthropic | `["claude-1.3", "claude-1.3-100k"]` | `"claude-1.3"` | `{}` | | `spacy.Claude-1-2.v1` | Anthropic | `["claude-1.2"]` | `"claude-1.2"` | `{}` |
| `spacy.Claude-instant-1.v1` | Anthropic | `["claude-instant-1", "claude-instant-1-100k"]` | `"claude-instant-1"` | `{}` | | `spacy.Claude-1-3.v1` | Anthropic | `["claude-1.3", "claude-1.3-100k"]` | `"claude-1.3"` | `{}` |
| `spacy.Claude-instant-1-1.v1` | Anthropic | `["claude-instant-1.1", "claude-instant-1.1-100k"]` | `"claude-instant-1.1"` | `{}` | | `spacy.Claude-instant-1.v1` | Anthropic | `["claude-instant-1", "claude-instant-1-100k"]` | `"claude-instant-1"` | `{}` |
| `spacy.Claude-instant-1-1.v1` | Anthropic | `["claude-instant-1.1", "claude-instant-1.1-100k"]` | `"claude-instant-1.1"` | `{}` |
| `spacy.PaLM.v1` | Google | `["chat-bison-001", "text-bison-001"]` | `"text-bison-001"` | `{temperature=0.0}` |
To use these models, make sure that you've [set the relevant API](#api-keys) To use these models, make sure that you've [set the relevant API](#api-keys)
keys as environment variables. keys as environment variables.
**⚠️ A note on `spacy.Azure.v1`.** Working with Azure OpenAI is slightly
different than working with models from other providers:
- In Azure LLMs have to be made available by creating a _deployment_ of a given
model (e. g. GPT-3.5). This deployment can have an arbitrary name. The `name`
argument, which everywhere else denotes the model name (e. g. `claude-1.0`,
`gpt-3.5`), here refers to the _deployment name_.
- Deployed Azure OpenAI models are reachable via a resource-specific base URL,
usually of the form `https://{resource}.openai.azure.com`. Hence the URL has
to be specified via the `base_url` argument.
- Azure further expects the _API version_ to be specified. The default value for
this, via the `api_version` argument, is currently `2023-05-15` but may be
updated in the future.
- Finally, since we can't infer information about the model from the deployment
name, `spacy-llm` requires the `model_type` to be set to either
`"completions"` or `"chat"`, depending on whether the deployed model is a
completion or chat model.
#### API Keys {id="api-keys"} #### API Keys {id="api-keys"}
Note that when using hosted services, you have to ensure that the proper API Note that when using hosted services, you have to ensure that the proper API
@ -1014,6 +1072,12 @@ For Anthropic:
export ANTHROPIC_API_KEY="..." export ANTHROPIC_API_KEY="..."
``` ```
For PaLM:
```shell
export PALM_API_KEY="..."
```
### Models via HuggingFace {id="models-hf"} ### Models via HuggingFace {id="models-hf"}
These models all take the same parameters: These models all take the same parameters:
@ -1037,11 +1101,27 @@ Currently, these models are provided as part of the core library:
| Model | Provider | Supported names | HF directory | | Model | Provider | Supported names | HF directory |
| -------------------- | --------------- | ------------------------------------------------------------------------------------------------------------ | -------------------------------------- | | -------------------- | --------------- | ------------------------------------------------------------------------------------------------------------ | -------------------------------------- |
| `spacy.Dolly.v1` | Databricks | `["dolly-v2-3b", "dolly-v2-7b", "dolly-v2-12b"]` | https://huggingface.co/databricks | | `spacy.Dolly.v1` | Databricks | `["dolly-v2-3b", "dolly-v2-7b", "dolly-v2-12b"]` | https://huggingface.co/databricks |
| `spacy.Llama2.v1` | Meta AI | `["Llama-2-7b-hf", "Llama-2-13b-hf", "Llama-2-70b-hf"]` | https://huggingface.co/meta-llama |
| `spacy.Falcon.v1` | TII | `["falcon-rw-1b", "falcon-7b", "falcon-7b-instruct", "falcon-40b-instruct"]` | https://huggingface.co/tiiuae | | `spacy.Falcon.v1` | TII | `["falcon-rw-1b", "falcon-7b", "falcon-7b-instruct", "falcon-40b-instruct"]` | https://huggingface.co/tiiuae |
| `spacy.Llama2.v1` | Meta AI | `["Llama-2-7b-hf", "Llama-2-13b-hf", "Llama-2-70b-hf"]` | https://huggingface.co/meta-llama |
| `spacy.Mistral.v1` | Mistral AI | `["Mistral-7B-v0.1", "Mistral-7B-Instruct-v0.1"]` | https://huggingface.co/mistralai |
| `spacy.StableLM.v1` | Stability AI | `["stablelm-base-alpha-3b", "stablelm-base-alpha-7b", "stablelm-tuned-alpha-3b", "stablelm-tuned-alpha-7b"]` | https://huggingface.co/stabilityai | | `spacy.StableLM.v1` | Stability AI | `["stablelm-base-alpha-3b", "stablelm-base-alpha-7b", "stablelm-tuned-alpha-3b", "stablelm-tuned-alpha-7b"]` | https://huggingface.co/stabilityai |
| `spacy.OpenLLaMA.v1` | OpenLM Research | `["open_llama_3b", "open_llama_7b", "open_llama_7b_v2", "open_llama_13b"]` | https://huggingface.co/openlm-research | | `spacy.OpenLLaMA.v1` | OpenLM Research | `["open_llama_3b", "open_llama_7b", "open_llama_7b_v2", "open_llama_13b"]` | https://huggingface.co/openlm-research |
<Infobox variant="warning" title="Gated models on Hugging Face" id="hf_licensing">
Some models available on Hugging Face (HF), such as Llama 2, are _gated models_.
That means that users have to fulfill certain requirements to be allowed access
to these models. In the case of Llama 2 you'll need to request agree to Meta's
Terms of Service while logged in with your HF account. After Meta grants you
permission to use Llama 2, you'll be able to download and use the model.
This requires that you are logged in with your HF account on your local
machine - check out the HF quick start documentation. In a nutshell, you'll need
to create an access token on HF and log in to HF using your access token, e. g.
with `huggingface-cli login`.
</Infobox>
Note that Hugging Face will download the model the first time you use it - you Note that Hugging Face will download the model the first time you use it - you
can can
[define the cached directory](https://huggingface.co/docs/huggingface_hub/main/en/guides/manage-cache) [define the cached directory](https://huggingface.co/docs/huggingface_hub/main/en/guides/manage-cache)

View File

@ -297,10 +297,9 @@ The vector size, i.e. `rows * dims`.
## Vectors.is_full {id="is_full",tag="property"} ## Vectors.is_full {id="is_full",tag="property"}
Whether the vectors table is full and has no slots are available for new keys. Whether the vectors table is full and no slots are available for new keys. If a
If a table is full, it can be resized using table is full, it can be resized using [`Vectors.resize`](/api/vectors#resize).
[`Vectors.resize`](/api/vectors#resize). In `floret` mode, the table is always In `floret` mode, the table is always full and cannot be resized.
full and cannot be resized.
> #### Example > #### Example
> >
@ -441,7 +440,7 @@ Load state from a binary string.
> #### Example > #### Example
> >
> ```python > ```python
> fron spacy.vectors import Vectors > from spacy.vectors import Vectors
> vectors_bytes = vectors.to_bytes() > vectors_bytes = vectors.to_bytes()
> new_vectors = Vectors(StringStore()) > new_vectors = Vectors(StringStore())
> new_vectors.from_bytes(vectors_bytes) > new_vectors.from_bytes(vectors_bytes)

View File

@ -632,6 +632,165 @@ def MyCustomVectors(
) )
``` ```
#### Creating a custom vectors implementation {id="custom-vectors",version="3.7"}
You can specify a custom registered vectors class under `[nlp.vectors]` in order
to use static vectors in formats other than the ones supported by
[`Vectors`](/api/vectors). Extend the abstract [`BaseVectors`](/api/basevectors)
class to implement your custom vectors.
As an example, the following `BPEmbVectors` class implements support for
[BPEmb subword embeddings](https://bpemb.h-its.org/):
```python
# requires: pip install bpemb
import warnings
from pathlib import Path
from typing import Callable, Optional, cast
from bpemb import BPEmb
from thinc.api import Ops, get_current_ops
from thinc.backends import get_array_ops
from thinc.types import Floats2d
from spacy.strings import StringStore
from spacy.util import registry
from spacy.vectors import BaseVectors
from spacy.vocab import Vocab
class BPEmbVectors(BaseVectors):
def __init__(
self,
*,
strings: Optional[StringStore] = None,
lang: Optional[str] = None,
vs: Optional[int] = None,
dim: Optional[int] = None,
cache_dir: Optional[Path] = None,
encode_extra_options: Optional[str] = None,
model_file: Optional[Path] = None,
emb_file: Optional[Path] = None,
):
kwargs = {}
if lang is not None:
kwargs["lang"] = lang
if vs is not None:
kwargs["vs"] = vs
if dim is not None:
kwargs["dim"] = dim
if cache_dir is not None:
kwargs["cache_dir"] = cache_dir
if encode_extra_options is not None:
kwargs["encode_extra_options"] = encode_extra_options
if model_file is not None:
kwargs["model_file"] = model_file
if emb_file is not None:
kwargs["emb_file"] = emb_file
self.bpemb = BPEmb(**kwargs)
self.strings = strings
self.name = repr(self.bpemb)
self.n_keys = -1
self.mode = "BPEmb"
self.to_ops(get_current_ops())
def __contains__(self, key):
return True
def is_full(self):
return True
def add(self, key, *, vector=None, row=None):
warnings.warn(
(
"Skipping BPEmbVectors.add: the bpemb vector table cannot be "
"modified. Vectors are calculated from bytepieces."
)
)
return -1
def __getitem__(self, key):
return self.get_batch([key])[0]
def get_batch(self, keys):
keys = [self.strings.as_string(key) for key in keys]
bp_ids = self.bpemb.encode_ids(keys)
ops = get_array_ops(self.bpemb.emb.vectors)
indices = ops.asarray(ops.xp.hstack(bp_ids), dtype="int32")
lengths = ops.asarray([len(x) for x in bp_ids], dtype="int32")
vecs = ops.reduce_mean(cast(Floats2d, self.bpemb.emb.vectors[indices]), lengths)
return vecs
@property
def shape(self):
return self.bpemb.vectors.shape
def __len__(self):
return self.shape[0]
@property
def vectors_length(self):
return self.shape[1]
@property
def size(self):
return self.bpemb.vectors.size
def to_ops(self, ops: Ops):
self.bpemb.emb.vectors = ops.asarray(self.bpemb.emb.vectors)
@registry.vectors("BPEmbVectors.v1")
def create_bpemb_vectors(
lang: Optional[str] = "multi",
vs: Optional[int] = None,
dim: Optional[int] = None,
cache_dir: Optional[Path] = None,
encode_extra_options: Optional[str] = None,
model_file: Optional[Path] = None,
emb_file: Optional[Path] = None,
) -> Callable[[Vocab], BPEmbVectors]:
def bpemb_vectors_factory(vocab: Vocab) -> BPEmbVectors:
return BPEmbVectors(
strings=vocab.strings,
lang=lang,
vs=vs,
dim=dim,
cache_dir=cache_dir,
encode_extra_options=encode_extra_options,
model_file=model_file,
emb_file=emb_file,
)
return bpemb_vectors_factory
```
<Infobox variant="warning">
Note that the serialization methods are not implemented, so the embeddings are
loaded from your local cache or downloaded by `BPEmb` each time the pipeline is
loaded.
</Infobox>
To use this in your pipeline, specify this registered function under
`[nlp.vectors]` in your config:
```ini
[nlp.vectors]
@vectors = "BPEmbVectors.v1"
lang = "en"
```
Or specify it when creating a blank pipeline:
```python
nlp = spacy.blank("en", config={"nlp.vectors": {"@vectors": "BPEmbVectors.v1", "lang": "en"}})
```
Remember to include this code with `--code` when using
[`spacy train`](/api/cli#train) and [`spacy package`](/api/cli#package).
## Pretraining {id="pretraining"} ## Pretraining {id="pretraining"}
The [`spacy pretrain`](/api/cli#pretrain) command lets you initialize your The [`spacy pretrain`](/api/cli#pretrain) command lets you initialize your

View File

@ -20,7 +20,7 @@ menu:
## Installation instructions {id="installation"} ## Installation instructions {id="installation"}
spaCy is compatible with **64-bit CPython 3.6+** and runs on **Unix/Linux**, spaCy is compatible with **64-bit CPython 3.7+** and runs on **Unix/Linux**,
**macOS/OS X** and **Windows**. The latest spaCy releases are available over **macOS/OS X** and **Windows**. The latest spaCy releases are available over
[pip](https://pypi.python.org/pypi/spacy) and [pip](https://pypi.python.org/pypi/spacy) and
[conda](https://anaconda.org/conda-forge/spacy). [conda](https://anaconda.org/conda-forge/spacy).

View File

@ -170,8 +170,8 @@ to be `"databricks/dolly-v2-12b"` for better performance.
### Example 3: Create the component directly in Python {id="example-3"} ### Example 3: Create the component directly in Python {id="example-3"}
The `llm` component behaves as any other component does, and there are The `llm` component behaves as any other component does, and there are
[task-specific components](/api/large-language-models#config) defined to [task-specific components](/api/large-language-models#config) defined to help
help you hit the ground running with a reasonable built-in task implementation. you hit the ground running with a reasonable built-in task implementation.
```python ```python
import spacy import spacy
@ -436,7 +436,7 @@ respectively. Alternatively you can use LangChain to access hosted or local
models by specifying one of the models registered with the `langchain.` prefix. models by specifying one of the models registered with the `langchain.` prefix.
<Infobox> <Infobox>
_Why LangChain if there are also are a native REST and a HuggingFace interface? When should I use what?_ _Why LangChain if there are also are native REST and HuggingFace interfaces? When should I use what?_
Third-party libraries like `langchain` focus on prompt management, integration Third-party libraries like `langchain` focus on prompt management, integration
of many different LLM APIs, and other related features such as conversational of many different LLM APIs, and other related features such as conversational
@ -476,6 +476,7 @@ provider's documentation.
| [`spacy.Curie.v2`](/api/large-language-models#models-rest) | OpenAIs `curie` model family. | | [`spacy.Curie.v2`](/api/large-language-models#models-rest) | OpenAIs `curie` model family. |
| [`spacy.Babbage.v2`](/api/large-language-models#models-rest) | OpenAIs `babbage` model family. | | [`spacy.Babbage.v2`](/api/large-language-models#models-rest) | OpenAIs `babbage` model family. |
| [`spacy.Ada.v2`](/api/large-language-models#models-rest) | OpenAIs `ada` model family. | | [`spacy.Ada.v2`](/api/large-language-models#models-rest) | OpenAIs `ada` model family. |
| [`spacy.Azure.v1`](/api/large-language-models#models-rest) | Azure's OpenAI models. |
| [`spacy.Command.v1`](/api/large-language-models#models-rest) | Coheres `command` model family. | | [`spacy.Command.v1`](/api/large-language-models#models-rest) | Coheres `command` model family. |
| [`spacy.Claude-2.v1`](/api/large-language-models#models-rest) | Anthropics `claude-2` model family. | | [`spacy.Claude-2.v1`](/api/large-language-models#models-rest) | Anthropics `claude-2` model family. |
| [`spacy.Claude-1.v1`](/api/large-language-models#models-rest) | Anthropics `claude-1` model family. | | [`spacy.Claude-1.v1`](/api/large-language-models#models-rest) | Anthropics `claude-1` model family. |
@ -484,8 +485,10 @@ provider's documentation.
| [`spacy.Claude-1-0.v1`](/api/large-language-models#models-rest) | Anthropics `claude-1.0` model family. | | [`spacy.Claude-1-0.v1`](/api/large-language-models#models-rest) | Anthropics `claude-1.0` model family. |
| [`spacy.Claude-1-2.v1`](/api/large-language-models#models-rest) | Anthropics `claude-1.2` model family. | | [`spacy.Claude-1-2.v1`](/api/large-language-models#models-rest) | Anthropics `claude-1.2` model family. |
| [`spacy.Claude-1-3.v1`](/api/large-language-models#models-rest) | Anthropics `claude-1.3` model family. | | [`spacy.Claude-1-3.v1`](/api/large-language-models#models-rest) | Anthropics `claude-1.3` model family. |
| [`spacy.PaLM.v1`](/api/large-language-models#models-rest) | Googles `PaLM` model family. |
| [`spacy.Dolly.v1`](/api/large-language-models#models-hf) | Dolly models through HuggingFace. | | [`spacy.Dolly.v1`](/api/large-language-models#models-hf) | Dolly models through HuggingFace. |
| [`spacy.Falcon.v1`](/api/large-language-models#models-hf) | Falcon models through HuggingFace. | | [`spacy.Falcon.v1`](/api/large-language-models#models-hf) | Falcon models through HuggingFace. |
| [`spacy.Mistral.v1`](/api/large-language-models#models-hf) | Mistral models through HuggingFace. |
| [`spacy.Llama2.v1`](/api/large-language-models#models-hf) | Llama2 models through HuggingFace. | | [`spacy.Llama2.v1`](/api/large-language-models#models-hf) | Llama2 models through HuggingFace. |
| [`spacy.StableLM.v1`](/api/large-language-models#models-hf) | StableLM models through HuggingFace. | | [`spacy.StableLM.v1`](/api/large-language-models#models-hf) | StableLM models through HuggingFace. |
| [`spacy.OpenLLaMA.v1`](/api/large-language-models#models-hf) | OpenLLaMA models through HuggingFace. | | [`spacy.OpenLLaMA.v1`](/api/large-language-models#models-hf) | OpenLLaMA models through HuggingFace. |

View File

@ -656,9 +656,9 @@ locally.
You can list one or more remotes in the `remotes` section of your You can list one or more remotes in the `remotes` section of your
[`project.yml`](#project-yml) by mapping a string name to the URL of the [`project.yml`](#project-yml) by mapping a string name to the URL of the
storage. Under the hood, spaCy uses storage. Under the hood, spaCy uses
[`Pathy`](https://github.com/justindujardin/pathy) to communicate with the [`cloudpathlib`](https://cloudpathlib.drivendata.org) to communicate with the
remote storages, so you can use any protocol that `Pathy` supports, including remote storages, so you can use any protocol that `cloudpathlib` supports,
[S3](https://aws.amazon.com/s3/), including [S3](https://aws.amazon.com/s3/),
[Google Cloud Storage](https://cloud.google.com/storage), and the local [Google Cloud Storage](https://cloud.google.com/storage), and the local
filesystem, although you may need to install extra dependencies to use certain filesystem, although you may need to install extra dependencies to use certain
protocols. protocols.

View File

@ -850,14 +850,14 @@ negative pattern. To keep it simple, we'll either add or subtract `0.1` points
this way, the score will also reflect combinations of emoji, even positive _and_ this way, the score will also reflect combinations of emoji, even positive _and_
negative ones. negative ones.
With a library like [Emojipedia](https://github.com/bcongdon/python-emojipedia), With a library like [emoji](https://github.com/carpedm20/emoji), we can also
we can also retrieve a short description for each emoji for example, 😍's retrieve a short description for each emoji for example, 😍's official title
official title is "Smiling Face With Heart-Eyes". Assigning it to a is "Smiling Face With Heart-Eyes". Assigning it to a
[custom attribute](/usage/processing-pipelines#custom-components-attributes) on [custom attribute](/usage/processing-pipelines#custom-components-attributes) on
the emoji span will make it available as `span._.emoji_desc`. the emoji span will make it available as `span._.emoji_desc`.
```python ```python
from emojipedia import Emojipedia # Installation: pip install emojipedia import emoji # Installation: pip install emoji
from spacy.tokens import Span # Get the global Span object from spacy.tokens import Span # Get the global Span object
Span.set_extension("emoji_desc", default=None) # Register the custom attribute Span.set_extension("emoji_desc", default=None) # Register the custom attribute
@ -869,9 +869,9 @@ def label_sentiment(matcher, doc, i, matches):
elif doc.vocab.strings[match_id] == "SAD": elif doc.vocab.strings[match_id] == "SAD":
doc.sentiment -= 0.1 # Subtract 0.1 for negative sentiment doc.sentiment -= 0.1 # Subtract 0.1 for negative sentiment
span = doc[start:end] span = doc[start:end]
emoji = Emojipedia.search(span[0].text) # Get data for emoji # Verify if it is an emoji and set the extension attribute correctly.
span._.emoji_desc = emoji.title # Assign emoji description if emoji.is_emoji(span[0].text):
span._.emoji_desc = emoji.demojize(span[0].text, delimiters=("", ""), language=doc.lang_).replace("_", " ")
``` ```
To label the hashtags, we can use a To label the hashtags, we can use a
@ -1096,28 +1096,28 @@ The following operators are supported by the `DependencyMatcher`, most of which
come directly from come directly from
[Semgrex](https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/SemgrexPattern.html): [Semgrex](https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/SemgrexPattern.html):
| Symbol | Description | | Symbol | Description |
| --------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------- | | --------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------ |
| `A < B` | `A` is the immediate dependent of `B`. | | `A < B` | `A` is the immediate dependent of `B`. |
| `A > B` | `A` is the immediate head of `B`. | | `A > B` | `A` is the immediate head of `B`. |
| `A << B` | `A` is the dependent in a chain to `B` following dep &rarr; head paths. | | `A << B` | `A` is the dependent in a chain to `B` following dep &rarr; head paths. |
| `A >> B` | `A` is the head in a chain to `B` following head &rarr; dep paths. | | `A >> B` | `A` is the head in a chain to `B` following head &rarr; dep paths. |
| `A . B` | `A` immediately precedes `B`, i.e. `A.i == B.i - 1`, and both are within the same dependency tree. | | `A . B` | `A` immediately precedes `B`, i.e. `A.i == B.i - 1`, and both are within the same dependency tree. |
| `A .* B` | `A` precedes `B`, i.e. `A.i < B.i`, and both are within the same dependency tree _(Semgrex counterpart: `..`)_. | | `A .* B` | `A` precedes `B`, i.e. `A.i < B.i`, and both are within the same dependency tree _(Semgrex counterpart: `..`)_. |
| `A ; B` | `A` immediately follows `B`, i.e. `A.i == B.i + 1`, and both are within the same dependency tree _(Semgrex counterpart: `-`)_. | | `A ; B` | `A` immediately follows `B`, i.e. `A.i == B.i + 1`, and both are within the same dependency tree _(Semgrex counterpart: `-`)_. |
| `A ;* B` | `A` follows `B`, i.e. `A.i > B.i`, and both are within the same dependency tree _(Semgrex counterpart: `--`)_. | | `A ;* B` | `A` follows `B`, i.e. `A.i > B.i`, and both are within the same dependency tree _(Semgrex counterpart: `--`)_. |
| `A $+ B` | `B` is a right immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i - 1`. | | `A $+ B` | `B` is a right immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i - 1`. |
| `A $- B` | `B` is a left immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i + 1`. | | `A $- B` | `B` is a left immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i + 1`. |
| `A $++ B` | `B` is a right sibling of `A`, i.e. `A` and `B` have the same parent and `A.i < B.i`. | | `A $++ B` | `B` is a right sibling of `A`, i.e. `A` and `B` have the same parent and `A.i < B.i`. |
| `A $-- B` | `B` is a left sibling of `A`, i.e. `A` and `B` have the same parent and `A.i > B.i`. | | `A $-- B` | `B` is a left sibling of `A`, i.e. `A` and `B` have the same parent and `A.i > B.i`. |
| `A >+ B` <Tag variant="new">3.5.1</Tag> | `B` is a right immediate child of `A`, i.e. `A` is a parent of `B` and `A.i == B.i - 1` _(not in Semgrex)_. | | `A >+ B` <Tag variant="new">3.5.1</Tag> | `B` is a right immediate child of `A`, i.e. `A` is a parent of `B` and `A.i == B.i - 1` _(not in Semgrex)_. |
| `A >- B` <Tag variant="new">3.5.1</Tag> | `B` is a left immediate child of `A`, i.e. `A` is a parent of `B` and `A.i == B.i + 1` _(not in Semgrex)_. | | `A >- B` <Tag variant="new">3.5.1</Tag> | `B` is a left immediate child of `A`, i.e. `A` is a parent of `B` and `A.i == B.i + 1` _(not in Semgrex)_. |
| `A >++ B` | `B` is a right child of `A`, i.e. `A` is a parent of `B` and `A.i < B.i`. | | `A >++ B` | `B` is a right child of `A`, i.e. `A` is a parent of `B` and `A.i < B.i`. |
| `A >-- B` | `B` is a left child of `A`, i.e. `A` is a parent of `B` and `A.i > B.i`. | | `A >-- B` | `B` is a left child of `A`, i.e. `A` is a parent of `B` and `A.i > B.i`. |
| `A <+ B` <Tag variant="new">3.5.1</Tag> | `B` is a right immediate parent of `A`, i.e. `A` is a child of `B` and `A.i == B.i - 1` _(not in Semgrex)_. | | `A <+ B` <Tag variant="new">3.5.1</Tag> | `B` is a right immediate parent of `A`, i.e. `A` is a child of `B` and `A.i == B.i - 1` _(not in Semgrex)_. |
| `A <- B` <Tag variant="new">3.5.1</Tag> | `B` is a left immediate parent of `A`, i.e. `A` is a child of `B` and `A.i == B.i + 1` _(not in Semgrex)_. | | `A <- B` <Tag variant="new">3.5.1</Tag> | `B` is a left immediate parent of `A`, i.e. `A` is a child of `B` and `A.i == B.i + 1` _(not in Semgrex)_. |
| `A <++ B` | `B` is a right parent of `A`, i.e. `A` is a child of `B` and `A.i < B.i`. | | `A <++ B` | `B` is a right parent of `A`, i.e. `A` is a child of `B` and `A.i < B.i`. |
| `A <-- B` | `B` is a left parent of `A`, i.e. `A` is a child of `B` and `A.i > B.i`. | | `A <-- B` | `B` is a left parent of `A`, i.e. `A` is a child of `B` and `A.i > B.i`. |
### Designing dependency matcher patterns {id="dependencymatcher-patterns"} ### Designing dependency matcher patterns {id="dependencymatcher-patterns"}

140
website/docs/usage/v3-7.mdx Normal file
View File

@ -0,0 +1,140 @@
---
title: What's New in v3.7
teaser: New features and how to upgrade
menu:
- ['New Features', 'features']
- ['Upgrading Notes', 'upgrading']
---
## New features {id="features",hidden="true"}
spaCy v3.7 adds support for Python 3.12, introduces the new standalone library
[Weasel](https://github.com/explosion/weasel) for project workflows, and updates
the transformer-based trained pipelines to use our new
[Curated Transformers](https://github.com/explosion/curated-transformers)
library.
This release drops support for Python 3.6.
### Weasel {id="weasel"}
The [spaCy projects](/usage/projects) functionality has been moved into a new
standalone library [Weasel](https://github.com/explosion/weasel). This brings
minor changes to spaCy-specific settings in spaCy projects (see
[upgrading](#upgrading) below), but also makes it possible to use the same
workflow functionality outside of spaCy.
All `spacy project` commands should run as before, just now they're using Weasel
under the hood.
<Infobox title="Remote storage for Python 3.12" variant="warning">
Remote storage for spaCy projects is not yet supported for Python 3.12. Use
Python 3.11 or earlier for remote storage.
</Infobox>
### Registered vectors {id="custom-vectors"}
You can specify a custom registered vectors class under `[nlp.vectors]` in order
to use static vectors in formats other than the ones supported by
[`Vectors`](/api/vectors). To implement your custom vectors, extend the abstract
class [`BaseVectors`](/api/basevectors). See an example using
[BPEmb subword embeddings](/usage/embeddings-transformers#custom-vectors).
### Additional features and improvements {id="additional-features-and-improvements"}
- Add support for Python 3.12.
- Extend to Thinc v8.2.
- Extend `transformers` extra to `spacy-transformers` v1.3.
- Add `--spans-key` option for CLI evaluation with `spacy benchmark accuracy`.
- Load the CLI module lazily for `spacy.info`.
- Add type stubs for for `spacy.training.example`.
- Warn for unsupported pattern keys in dependency matcher.
- `Language.replace_listeners`: Pass the replaced listener and the `tok2vec`
pipe to the callback in order to support `spacy-curated-transformers`.
- Always use `tqdm` with `disable=None` in order to disable output in
non-interactive environments.
- Language updates:
- Add left and right pointing angle brackets as punctuation to ancient Greek.
- Update example sentences for Turkish.
- Package setup updates:
- Update NumPy build constraints for NumPy 1.25+. For Python 3.9+, it is no
longer necessary to set build constraints while building binary wheels.
- Refactor Cython profiling in order to disable profiling for Python 3.12 in
the package setup, since Cython does not currently support profiling for
Python 3.12.
## Trained pipelines {id="pipelines"}
### Pipeline updates {id="pipeline-updates"}
The transformer-based `trf` pipelines have been updated to use our new
[Curated Transformers](https://github.com/explosion/curated-transformers)
library using the Thinc model wrappers and pipeline component from
[spaCy Curated Transformers](https://github.com/explosion/spacy-curated-transformers).
## Notes about upgrading from v3.6 {id="upgrading"}
This release drops support for Python 3.6, drops mypy checks for Python 3.7 and
removes the `ray` extra. In addition there are several minor changes for spaCy
projects described in the following section.
### Backwards incompatibilities for spaCy Projects {id="upgrading-projects"}
`spacy project` has a few backwards incompatibilities due to the transition to
the standalone library [Weasel](https://github.com/explosion/weasel), which is
not as tightly coupled to spaCy. Weasel produces warnings when it detects older
spaCy-specific settings in your environment or project config.
- Support for the `spacy_version` configuration key has been dropped.
- Support for the `check_requirements` configuration key has been dropped due to
the deprecation of `pkg_resources`.
- The `SPACY_CONFIG_OVERRIDES` environment variable is no longer checked. You
can set configuration overrides using `WEASEL_CONFIG_OVERRIDES`.
- Support for `SPACY_PROJECT_USE_GIT_VERSION` environment variable has been
dropped.
- Error codes are now Weasel-specific and do not follow spaCy error codes.
### Pipeline package version compatibility {id="version-compat"}
> #### Using legacy implementations
>
> In spaCy v3, you'll still be able to load and reference legacy implementations
> via [`spacy-legacy`](https://github.com/explosion/spacy-legacy), even if the
> components or architectures change and newer versions are available in the
> core library.
When you're loading a pipeline package trained with an earlier version of spaCy
v3, you will see a warning telling you that the pipeline may be incompatible.
This doesn't necessarily have to be true, but we recommend running your
pipelines against your test suite or evaluation data to make sure there are no
unexpected results.
If you're using one of the [trained pipelines](/models) we provide, you should
run [`spacy download`](/api/cli#download) to update to the latest version. To
see an overview of all installed packages and their compatibility, you can run
[`spacy validate`](/api/cli#validate).
If you've trained your own custom pipeline and you've confirmed that it's still
working as expected, you can update the spaCy version requirements in the
[`meta.json`](/api/data-formats#meta):
```diff
- "spacy_version": ">=3.6.0,<3.7.0",
+ "spacy_version": ">=3.6.0,<3.8.0",
```
### Updating v3.6 configs
To update a config from spaCy v3.6 with the new v3.7 settings, run
[`init fill-config`](/api/cli#init-fill-config):
```cli
$ python -m spacy init fill-config config-v3.6.cfg config-v3.7.cfg
```
In many cases ([`spacy train`](/api/cli#train),
[`spacy.load`](/api/top-level#spacy.load)), the new defaults will be filled in
automatically, but you'll need to fill in the new settings to run
[`debug config`](/api/cli#debug) and [`debug data`](/api/cli#debug-data).

View File

@ -15,7 +15,8 @@
{ "text": "New in v3.3", "url": "/usage/v3-3" }, { "text": "New in v3.3", "url": "/usage/v3-3" },
{ "text": "New in v3.4", "url": "/usage/v3-4" }, { "text": "New in v3.4", "url": "/usage/v3-4" },
{ "text": "New in v3.5", "url": "/usage/v3-5" }, { "text": "New in v3.5", "url": "/usage/v3-5" },
{ "text": "New in v3.6", "url": "/usage/v3-6" } { "text": "New in v3.6", "url": "/usage/v3-6" },
{ "text": "New in v3.7", "url": "/usage/v3-7" }
] ]
}, },
{ {
@ -100,6 +101,7 @@
"items": [ "items": [
{ "text": "AttributeRuler", "url": "/api/attributeruler" }, { "text": "AttributeRuler", "url": "/api/attributeruler" },
{ "text": "CoreferenceResolver", "url": "/api/coref" }, { "text": "CoreferenceResolver", "url": "/api/coref" },
{ "text": "CuratedTransformer", "url": "/api/curatedtransformer" },
{ "text": "DependencyParser", "url": "/api/dependencyparser" }, { "text": "DependencyParser", "url": "/api/dependencyparser" },
{ "text": "EditTreeLemmatizer", "url": "/api/edittreelemmatizer" }, { "text": "EditTreeLemmatizer", "url": "/api/edittreelemmatizer" },
{ "text": "EntityLinker", "url": "/api/entitylinker" }, { "text": "EntityLinker", "url": "/api/entitylinker" },
@ -135,6 +137,7 @@
"label": "Other", "label": "Other",
"items": [ "items": [
{ "text": "Attributes", "url": "/api/attributes" }, { "text": "Attributes", "url": "/api/attributes" },
{ "text": "BaseVectors", "url": "/api/basevectors" },
{ "text": "Corpus", "url": "/api/corpus" }, { "text": "Corpus", "url": "/api/corpus" },
{ "text": "InMemoryLookupKB", "url": "/api/inmemorylookupkb" }, { "text": "InMemoryLookupKB", "url": "/api/inmemorylookupkb" },
{ "text": "KnowledgeBase", "url": "/api/kb" }, { "text": "KnowledgeBase", "url": "/api/kb" },

Some files were not shown because too many files have changed in this diff Show More