mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-27 17:54:39 +03:00
Merge pull request #13046 from explosion/docs/llm_main
Sync `docs/llm_develop` with `docs/llm_main`
This commit is contained in:
commit
df07c4734b
6
.github/workflows/tests.yml
vendored
6
.github/workflows/tests.yml
vendored
|
@ -58,10 +58,8 @@ jobs:
|
|||
fail-fast: true
|
||||
matrix:
|
||||
os: [ubuntu-latest, windows-latest, macos-latest]
|
||||
python_version: ["3.11"]
|
||||
python_version: ["3.11", "3.12.0-rc.2"]
|
||||
include:
|
||||
- os: ubuntu-20.04
|
||||
python_version: "3.6"
|
||||
- os: windows-latest
|
||||
python_version: "3.7"
|
||||
- os: macos-latest
|
||||
|
@ -95,7 +93,7 @@ jobs:
|
|||
- name: Run mypy
|
||||
run: |
|
||||
python -m mypy spacy
|
||||
if: matrix.python_version != '3.6'
|
||||
if: matrix.python_version != '3.7'
|
||||
|
||||
- name: Delete source directory and .egg-info
|
||||
run: |
|
||||
|
|
|
@ -16,7 +16,7 @@ model packaging, deployment and workflow management. spaCy is commercial
|
|||
open-source software, released under the
|
||||
[MIT license](https://github.com/explosion/spaCy/blob/master/LICENSE).
|
||||
|
||||
💫 **Version 3.6 out now!**
|
||||
💫 **Version 3.7 out now!**
|
||||
[Check out the release notes here.](https://github.com/explosion/spaCy/releases)
|
||||
|
||||
[![tests](https://github.com/explosion/spaCy/actions/workflows/tests.yml/badge.svg)](https://github.com/explosion/spaCy/actions/workflows/tests.yml)
|
||||
|
@ -108,7 +108,7 @@ For detailed installation instructions, see the
|
|||
|
||||
- **Operating system**: macOS / OS X · Linux · Windows (Cygwin, MinGW, Visual
|
||||
Studio)
|
||||
- **Python version**: Python 3.6+ (only 64 bit)
|
||||
- **Python version**: Python 3.7+ (only 64 bit)
|
||||
- **Package managers**: [pip] · [conda] (via `conda-forge`)
|
||||
|
||||
[pip]: https://pypi.org/project/spacy/
|
||||
|
|
|
@ -1,9 +1,6 @@
|
|||
# build version constraints for use with wheelwright + multibuild
|
||||
numpy==1.15.0; python_version<='3.7' and platform_machine!='aarch64'
|
||||
numpy==1.19.2; python_version<='3.7' and platform_machine=='aarch64'
|
||||
# build version constraints for use with wheelwright
|
||||
numpy==1.15.0; python_version=='3.7' and platform_machine!='aarch64'
|
||||
numpy==1.19.2; python_version=='3.7' and platform_machine=='aarch64'
|
||||
numpy==1.17.3; python_version=='3.8' and platform_machine!='aarch64'
|
||||
numpy==1.19.2; python_version=='3.8' and platform_machine=='aarch64'
|
||||
numpy==1.19.3; python_version=='3.9'
|
||||
numpy==1.21.3; python_version=='3.10'
|
||||
numpy==1.23.2; python_version=='3.11'
|
||||
numpy; python_version>='3.12'
|
||||
numpy>=1.25.0; python_version>='3.9'
|
||||
|
|
|
@ -1,14 +1,17 @@
|
|||
# Listeners
|
||||
|
||||
1. [Overview](#1-overview)
|
||||
2. [Initialization](#2-initialization)
|
||||
- [A. Linking listeners to the embedding component](#2a-linking-listeners-to-the-embedding-component)
|
||||
- [B. Shape inference](#2b-shape-inference)
|
||||
3. [Internal communication](#3-internal-communication)
|
||||
- [A. During prediction](#3a-during-prediction)
|
||||
- [B. During training](#3b-during-training)
|
||||
- [C. Frozen components](#3c-frozen-components)
|
||||
4. [Replacing listener with standalone](#4-replacing-listener-with-standalone)
|
||||
- [1. Overview](#1-overview)
|
||||
- [2. Initialization](#2-initialization)
|
||||
- [2A. Linking listeners to the embedding component](#2a-linking-listeners-to-the-embedding-component)
|
||||
- [2B. Shape inference](#2b-shape-inference)
|
||||
- [3. Internal communication](#3-internal-communication)
|
||||
- [3A. During prediction](#3a-during-prediction)
|
||||
- [3B. During training](#3b-during-training)
|
||||
- [Training with multiple listeners](#training-with-multiple-listeners)
|
||||
- [3C. Frozen components](#3c-frozen-components)
|
||||
- [The Tok2Vec or Transformer is frozen](#the-tok2vec-or-transformer-is-frozen)
|
||||
- [The upstream component is frozen](#the-upstream-component-is-frozen)
|
||||
- [4. Replacing listener with standalone](#4-replacing-listener-with-standalone)
|
||||
|
||||
## 1. Overview
|
||||
|
||||
|
@ -218,3 +221,15 @@ new_model = tok2vec_model.attrs["replace_listener"](new_model)
|
|||
The new config and model are then properly stored on the `nlp` object.
|
||||
Note that this functionality (running the replacement for a transformer listener) was broken prior to
|
||||
`spacy-transformers` 1.0.5.
|
||||
|
||||
In spaCy 3.7, `Language.replace_listeners` was updated to pass the following additional arguments to the `replace_listener` callback:
|
||||
the listener to be replaced and the `tok2vec`/`transformer` pipe from which the new model was copied. To maintain backwards-compatiblity,
|
||||
the method only passes these extra arguments for callbacks that support them:
|
||||
|
||||
```
|
||||
def replace_listener_pre_37(copied_tok2vec_model):
|
||||
...
|
||||
|
||||
def replace_listener_post_37(copied_tok2vec_model, replaced_listener, tok2vec_pipe):
|
||||
...
|
||||
```
|
||||
|
|
|
@ -5,8 +5,9 @@ requires = [
|
|||
"cymem>=2.0.2,<2.1.0",
|
||||
"preshed>=3.0.2,<3.1.0",
|
||||
"murmurhash>=0.28.0,<1.1.0",
|
||||
"thinc>=8.1.8,<8.2.0",
|
||||
"numpy>=1.15.0",
|
||||
"thinc>=8.1.8,<8.3.0",
|
||||
"numpy>=1.15.0; python_version < '3.9'",
|
||||
"numpy>=1.25.0; python_version >= '3.9'",
|
||||
]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
|
|
|
@ -3,17 +3,18 @@ spacy-legacy>=3.0.11,<3.1.0
|
|||
spacy-loggers>=1.0.0,<2.0.0
|
||||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
thinc>=8.1.8,<8.2.0
|
||||
thinc>=8.1.8,<8.3.0
|
||||
ml_datasets>=0.2.0,<0.3.0
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
wasabi>=0.9.1,<1.2.0
|
||||
srsly>=2.4.3,<3.0.0
|
||||
catalogue>=2.0.6,<2.1.0
|
||||
typer>=0.3.0,<0.10.0
|
||||
pathy>=0.10.0
|
||||
smart-open>=5.2.1,<7.0.0
|
||||
weasel>=0.1.0,<0.4.0
|
||||
# Third party dependencies
|
||||
numpy>=1.15.0
|
||||
numpy>=1.15.0; python_version < "3.9"
|
||||
numpy>=1.19.0; python_version >= "3.9"
|
||||
requests>=2.13.0,<3.0.0
|
||||
tqdm>=4.38.0,<5.0.0
|
||||
pydantic>=1.7.4,!=1.8,!=1.8.1,<3.0.0
|
||||
|
@ -31,12 +32,11 @@ pytest-timeout>=1.3.0,<2.0.0
|
|||
mock>=2.0.0,<3.0.0
|
||||
flake8>=3.8.0,<6.0.0
|
||||
hypothesis>=3.27.0,<7.0.0
|
||||
mypy>=0.990,<1.1.0; platform_machine != "aarch64" and python_version >= "3.7"
|
||||
types-dataclasses>=0.1.3; python_version < "3.7"
|
||||
mypy>=1.5.0,<1.6.0; platform_machine != "aarch64" and python_version >= "3.8"
|
||||
types-mock>=0.1.1
|
||||
types-setuptools>=57.0.0
|
||||
types-requests
|
||||
types-setuptools>=57.0.0
|
||||
black==22.3.0
|
||||
cython-lint>=0.15.0; python_version >= "3.7"
|
||||
cython-lint>=0.15.0
|
||||
isort>=5.0,<6.0
|
||||
|
|
21
setup.cfg
21
setup.cfg
|
@ -17,7 +17,6 @@ classifiers =
|
|||
Operating System :: Microsoft :: Windows
|
||||
Programming Language :: Cython
|
||||
Programming Language :: Python :: 3
|
||||
Programming Language :: Python :: 3.6
|
||||
Programming Language :: Python :: 3.7
|
||||
Programming Language :: Python :: 3.8
|
||||
Programming Language :: Python :: 3.9
|
||||
|
@ -31,15 +30,18 @@ project_urls =
|
|||
[options]
|
||||
zip_safe = false
|
||||
include_package_data = true
|
||||
python_requires = >=3.6
|
||||
python_requires = >=3.7
|
||||
# NOTE: This section is superseded by pyproject.toml and will be removed in
|
||||
# spaCy v4
|
||||
setup_requires =
|
||||
cython>=0.25,<3.0
|
||||
numpy>=1.15.0
|
||||
numpy>=1.15.0; python_version < "3.9"
|
||||
numpy>=1.19.0; python_version >= "3.9"
|
||||
# We also need our Cython packages here to compile against
|
||||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
thinc>=8.1.8,<8.2.0
|
||||
thinc>=8.1.8,<8.3.0
|
||||
install_requires =
|
||||
# Our libraries
|
||||
spacy-legacy>=3.0.11,<3.1.0
|
||||
|
@ -47,16 +49,17 @@ install_requires =
|
|||
murmurhash>=0.28.0,<1.1.0
|
||||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
thinc>=8.1.8,<8.2.0
|
||||
thinc>=8.1.8,<8.3.0
|
||||
wasabi>=0.9.1,<1.2.0
|
||||
srsly>=2.4.3,<3.0.0
|
||||
catalogue>=2.0.6,<2.1.0
|
||||
weasel>=0.1.0,<0.4.0
|
||||
# Third-party dependencies
|
||||
typer>=0.3.0,<0.10.0
|
||||
pathy>=0.10.0
|
||||
smart-open>=5.2.1,<7.0.0
|
||||
tqdm>=4.38.0,<5.0.0
|
||||
numpy>=1.15.0
|
||||
numpy>=1.15.0; python_version < "3.9"
|
||||
numpy>=1.19.0; python_version >= "3.9"
|
||||
requests>=2.13.0,<3.0.0
|
||||
pydantic>=1.7.4,!=1.8,!=1.8.1,<3.0.0
|
||||
jinja2
|
||||
|
@ -74,9 +77,7 @@ console_scripts =
|
|||
lookups =
|
||||
spacy_lookups_data>=1.0.3,<1.1.0
|
||||
transformers =
|
||||
spacy_transformers>=1.1.2,<1.3.0
|
||||
ray =
|
||||
spacy_ray>=0.1.0,<1.0.0
|
||||
spacy_transformers>=1.1.2,<1.4.0
|
||||
cuda =
|
||||
cupy>=5.0.0b4,<13.0.0
|
||||
cuda80 =
|
||||
|
|
1
setup.py
1
setup.py
|
@ -78,6 +78,7 @@ COMPILER_DIRECTIVES = {
|
|||
"language_level": -3,
|
||||
"embedsignature": True,
|
||||
"annotation_typing": False,
|
||||
"profile": sys.version_info < (3, 12),
|
||||
}
|
||||
# Files to copy into the package that are otherwise not included
|
||||
COPY_FILES = {
|
||||
|
|
|
@ -1,7 +1,5 @@
|
|||
# fmt: off
|
||||
__title__ = "spacy"
|
||||
__version__ = "3.6.1"
|
||||
__version__ = "3.7.1"
|
||||
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
|
||||
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"
|
||||
__projects__ = "https://github.com/explosion/projects"
|
||||
__projects_branch__ = "v3"
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# cython: profile=False
|
||||
from .errors import Errors
|
||||
|
||||
IOB_STRINGS = ("", "I", "O", "B")
|
||||
|
|
|
@ -22,13 +22,6 @@ from .init_pipeline import init_pipeline_cli # noqa: F401
|
|||
from .package import package # noqa: F401
|
||||
from .pretrain import pretrain # noqa: F401
|
||||
from .profile import profile # noqa: F401
|
||||
from .project.assets import project_assets # noqa: F401
|
||||
from .project.clone import project_clone # noqa: F401
|
||||
from .project.document import project_document # noqa: F401
|
||||
from .project.dvc import project_update_dvc # noqa: F401
|
||||
from .project.pull import project_pull # noqa: F401
|
||||
from .project.push import project_push # noqa: F401
|
||||
from .project.run import project_run # noqa: F401
|
||||
from .train import train_cli # noqa: F401
|
||||
from .validate import validate # noqa: F401
|
||||
|
||||
|
|
|
@ -25,10 +25,11 @@ from thinc.api import Config, ConfigValidationError, require_gpu
|
|||
from thinc.util import gpu_is_available
|
||||
from typer.main import get_command
|
||||
from wasabi import Printer, msg
|
||||
from weasel import app as project_cli
|
||||
|
||||
from .. import about
|
||||
from ..compat import Literal
|
||||
from ..schemas import ProjectConfigSchema, validate
|
||||
from ..schemas import validate
|
||||
from ..util import (
|
||||
ENV_VARS,
|
||||
SimpleFrozenDict,
|
||||
|
@ -40,15 +41,10 @@ from ..util import (
|
|||
run_command,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pathy import FluidPath # noqa: F401
|
||||
|
||||
|
||||
SDIST_SUFFIX = ".tar.gz"
|
||||
WHEEL_SUFFIX = "-py3-none-any.whl"
|
||||
|
||||
PROJECT_FILE = "project.yml"
|
||||
PROJECT_LOCK = "project.lock"
|
||||
COMMAND = "python -m spacy"
|
||||
NAME = "spacy"
|
||||
HELP = """spaCy Command-line Interface
|
||||
|
@ -74,11 +70,10 @@ Opt = typer.Option
|
|||
|
||||
app = typer.Typer(name=NAME, help=HELP)
|
||||
benchmark_cli = typer.Typer(name="benchmark", help=BENCHMARK_HELP, no_args_is_help=True)
|
||||
project_cli = typer.Typer(name="project", help=PROJECT_HELP, no_args_is_help=True)
|
||||
debug_cli = typer.Typer(name="debug", help=DEBUG_HELP, no_args_is_help=True)
|
||||
init_cli = typer.Typer(name="init", help=INIT_HELP, no_args_is_help=True)
|
||||
|
||||
app.add_typer(project_cli)
|
||||
app.add_typer(project_cli, name="project", help=PROJECT_HELP, no_args_is_help=True)
|
||||
app.add_typer(debug_cli)
|
||||
app.add_typer(benchmark_cli)
|
||||
app.add_typer(init_cli)
|
||||
|
@ -153,148 +148,6 @@ def _parse_override(value: Any) -> Any:
|
|||
return str(value)
|
||||
|
||||
|
||||
def load_project_config(
|
||||
path: Path, interpolate: bool = True, overrides: Dict[str, Any] = SimpleFrozenDict()
|
||||
) -> Dict[str, Any]:
|
||||
"""Load the project.yml file from a directory and validate it. Also make
|
||||
sure that all directories defined in the config exist.
|
||||
|
||||
path (Path): The path to the project directory.
|
||||
interpolate (bool): Whether to substitute project variables.
|
||||
overrides (Dict[str, Any]): Optional config overrides.
|
||||
RETURNS (Dict[str, Any]): The loaded project.yml.
|
||||
"""
|
||||
config_path = path / PROJECT_FILE
|
||||
if not config_path.exists():
|
||||
msg.fail(f"Can't find {PROJECT_FILE}", config_path, exits=1)
|
||||
invalid_err = f"Invalid {PROJECT_FILE}. Double-check that the YAML is correct."
|
||||
try:
|
||||
config = srsly.read_yaml(config_path)
|
||||
except ValueError as e:
|
||||
msg.fail(invalid_err, e, exits=1)
|
||||
errors = validate(ProjectConfigSchema, config)
|
||||
if errors:
|
||||
msg.fail(invalid_err)
|
||||
print("\n".join(errors))
|
||||
sys.exit(1)
|
||||
validate_project_version(config)
|
||||
validate_project_commands(config)
|
||||
if interpolate:
|
||||
err = f"{PROJECT_FILE} validation error"
|
||||
with show_validation_error(title=err, hint_fill=False):
|
||||
config = substitute_project_variables(config, overrides)
|
||||
# Make sure directories defined in config exist
|
||||
for subdir in config.get("directories", []):
|
||||
dir_path = path / subdir
|
||||
if not dir_path.exists():
|
||||
dir_path.mkdir(parents=True)
|
||||
return config
|
||||
|
||||
|
||||
def substitute_project_variables(
|
||||
config: Dict[str, Any],
|
||||
overrides: Dict[str, Any] = SimpleFrozenDict(),
|
||||
key: str = "vars",
|
||||
env_key: str = "env",
|
||||
) -> Dict[str, Any]:
|
||||
"""Interpolate variables in the project file using the config system.
|
||||
|
||||
config (Dict[str, Any]): The project config.
|
||||
overrides (Dict[str, Any]): Optional config overrides.
|
||||
key (str): Key containing variables in project config.
|
||||
env_key (str): Key containing environment variable mapping in project config.
|
||||
RETURNS (Dict[str, Any]): The interpolated project config.
|
||||
"""
|
||||
config.setdefault(key, {})
|
||||
config.setdefault(env_key, {})
|
||||
# Substitute references to env vars with their values
|
||||
for config_var, env_var in config[env_key].items():
|
||||
config[env_key][config_var] = _parse_override(os.environ.get(env_var, ""))
|
||||
# Need to put variables in the top scope again so we can have a top-level
|
||||
# section "project" (otherwise, a list of commands in the top scope wouldn't)
|
||||
# be allowed by Thinc's config system
|
||||
cfg = Config({"project": config, key: config[key], env_key: config[env_key]})
|
||||
cfg = Config().from_str(cfg.to_str(), overrides=overrides)
|
||||
interpolated = cfg.interpolate()
|
||||
return dict(interpolated["project"])
|
||||
|
||||
|
||||
def validate_project_version(config: Dict[str, Any]) -> None:
|
||||
"""If the project defines a compatible spaCy version range, chec that it's
|
||||
compatible with the current version of spaCy.
|
||||
|
||||
config (Dict[str, Any]): The loaded config.
|
||||
"""
|
||||
spacy_version = config.get("spacy_version", None)
|
||||
if spacy_version and not is_compatible_version(about.__version__, spacy_version):
|
||||
err = (
|
||||
f"The {PROJECT_FILE} specifies a spaCy version range ({spacy_version}) "
|
||||
f"that's not compatible with the version of spaCy you're running "
|
||||
f"({about.__version__}). You can edit version requirement in the "
|
||||
f"{PROJECT_FILE} to load it, but the project may not run as expected."
|
||||
)
|
||||
msg.fail(err, exits=1)
|
||||
|
||||
|
||||
def validate_project_commands(config: Dict[str, Any]) -> None:
|
||||
"""Check that project commands and workflows are valid, don't contain
|
||||
duplicates, don't clash and only refer to commands that exist.
|
||||
|
||||
config (Dict[str, Any]): The loaded config.
|
||||
"""
|
||||
command_names = [cmd["name"] for cmd in config.get("commands", [])]
|
||||
workflows = config.get("workflows", {})
|
||||
duplicates = set([cmd for cmd in command_names if command_names.count(cmd) > 1])
|
||||
if duplicates:
|
||||
err = f"Duplicate commands defined in {PROJECT_FILE}: {', '.join(duplicates)}"
|
||||
msg.fail(err, exits=1)
|
||||
for workflow_name, workflow_steps in workflows.items():
|
||||
if workflow_name in command_names:
|
||||
err = f"Can't use workflow name '{workflow_name}': name already exists as a command"
|
||||
msg.fail(err, exits=1)
|
||||
for step in workflow_steps:
|
||||
if step not in command_names:
|
||||
msg.fail(
|
||||
f"Unknown command specified in workflow '{workflow_name}': {step}",
|
||||
f"Workflows can only refer to commands defined in the 'commands' "
|
||||
f"section of the {PROJECT_FILE}.",
|
||||
exits=1,
|
||||
)
|
||||
|
||||
|
||||
def get_hash(data, exclude: Iterable[str] = tuple()) -> str:
|
||||
"""Get the hash for a JSON-serializable object.
|
||||
|
||||
data: The data to hash.
|
||||
exclude (Iterable[str]): Top-level keys to exclude if data is a dict.
|
||||
RETURNS (str): The hash.
|
||||
"""
|
||||
if isinstance(data, dict):
|
||||
data = {k: v for k, v in data.items() if k not in exclude}
|
||||
data_str = srsly.json_dumps(data, sort_keys=True).encode("utf8")
|
||||
return hashlib.md5(data_str).hexdigest()
|
||||
|
||||
|
||||
def get_checksum(path: Union[Path, str]) -> str:
|
||||
"""Get the checksum for a file or directory given its file path. If a
|
||||
directory path is provided, this uses all files in that directory.
|
||||
|
||||
path (Union[Path, str]): The file or directory path.
|
||||
RETURNS (str): The checksum.
|
||||
"""
|
||||
path = Path(path)
|
||||
if not (path.is_file() or path.is_dir()):
|
||||
msg.fail(f"Can't get checksum for {path}: not a file or directory", exits=1)
|
||||
if path.is_file():
|
||||
return hashlib.md5(Path(path).read_bytes()).hexdigest()
|
||||
else:
|
||||
# TODO: this is currently pretty slow
|
||||
dir_checksum = hashlib.md5()
|
||||
for sub_file in sorted(fp for fp in path.rglob("*") if fp.is_file()):
|
||||
dir_checksum.update(sub_file.read_bytes())
|
||||
return dir_checksum.hexdigest()
|
||||
|
||||
|
||||
@contextmanager
|
||||
def show_validation_error(
|
||||
file_path: Optional[Union[str, Path]] = None,
|
||||
|
@ -352,166 +205,10 @@ def import_code(code_path: Optional[Union[Path, str]]) -> None:
|
|||
msg.fail(f"Couldn't load Python code: {code_path}", e, exits=1)
|
||||
|
||||
|
||||
def upload_file(src: Path, dest: Union[str, "FluidPath"]) -> None:
|
||||
"""Upload a file.
|
||||
|
||||
src (Path): The source path.
|
||||
url (str): The destination URL to upload to.
|
||||
"""
|
||||
import smart_open
|
||||
|
||||
# Create parent directories for local paths
|
||||
if isinstance(dest, Path):
|
||||
if not dest.parent.exists():
|
||||
dest.parent.mkdir(parents=True)
|
||||
|
||||
dest = str(dest)
|
||||
with smart_open.open(dest, mode="wb") as output_file:
|
||||
with src.open(mode="rb") as input_file:
|
||||
output_file.write(input_file.read())
|
||||
|
||||
|
||||
def download_file(
|
||||
src: Union[str, "FluidPath"], dest: Path, *, force: bool = False
|
||||
) -> None:
|
||||
"""Download a file using smart_open.
|
||||
|
||||
url (str): The URL of the file.
|
||||
dest (Path): The destination path.
|
||||
force (bool): Whether to force download even if file exists.
|
||||
If False, the download will be skipped.
|
||||
"""
|
||||
import smart_open
|
||||
|
||||
if dest.exists() and not force:
|
||||
return None
|
||||
src = str(src)
|
||||
with smart_open.open(src, mode="rb", compression="disable") as input_file:
|
||||
with dest.open(mode="wb") as output_file:
|
||||
shutil.copyfileobj(input_file, output_file)
|
||||
|
||||
|
||||
def ensure_pathy(path):
|
||||
"""Temporary helper to prevent importing Pathy globally (which can cause
|
||||
slow and annoying Google Cloud warning)."""
|
||||
from pathy import Pathy # noqa: F811
|
||||
|
||||
return Pathy.fluid(path)
|
||||
|
||||
|
||||
def git_checkout(
|
||||
repo: str, subpath: str, dest: Path, *, branch: str = "master", sparse: bool = False
|
||||
):
|
||||
git_version = get_git_version()
|
||||
if dest.exists():
|
||||
msg.fail("Destination of checkout must not exist", exits=1)
|
||||
if not dest.parent.exists():
|
||||
msg.fail("Parent of destination of checkout must exist", exits=1)
|
||||
if sparse and git_version >= (2, 22):
|
||||
return git_sparse_checkout(repo, subpath, dest, branch)
|
||||
elif sparse:
|
||||
# Only show warnings if the user explicitly wants sparse checkout but
|
||||
# the Git version doesn't support it
|
||||
err_old = (
|
||||
f"You're running an old version of Git (v{git_version[0]}.{git_version[1]}) "
|
||||
f"that doesn't fully support sparse checkout yet."
|
||||
)
|
||||
err_unk = "You're running an unknown version of Git, so sparse checkout has been disabled."
|
||||
msg.warn(
|
||||
f"{err_unk if git_version == (0, 0) else err_old} "
|
||||
f"This means that more files than necessary may be downloaded "
|
||||
f"temporarily. To only download the files needed, make sure "
|
||||
f"you're using Git v2.22 or above."
|
||||
)
|
||||
with make_tempdir() as tmp_dir:
|
||||
cmd = f"git -C {tmp_dir} clone {repo} . -b {branch}"
|
||||
run_command(cmd, capture=True)
|
||||
# We need Path(name) to make sure we also support subdirectories
|
||||
try:
|
||||
source_path = tmp_dir / Path(subpath)
|
||||
if not is_subpath_of(tmp_dir, source_path):
|
||||
err = f"'{subpath}' is a path outside of the cloned repository."
|
||||
msg.fail(err, repo, exits=1)
|
||||
shutil.copytree(str(source_path), str(dest))
|
||||
except FileNotFoundError:
|
||||
err = f"Can't clone {subpath}. Make sure the directory exists in the repo (branch '{branch}')"
|
||||
msg.fail(err, repo, exits=1)
|
||||
|
||||
|
||||
def git_sparse_checkout(repo, subpath, dest, branch):
|
||||
# We're using Git, partial clone and sparse checkout to
|
||||
# only clone the files we need
|
||||
# This ends up being RIDICULOUS. omg.
|
||||
# So, every tutorial and SO post talks about 'sparse checkout'...But they
|
||||
# go and *clone* the whole repo. Worthless. And cloning part of a repo
|
||||
# turns out to be completely broken. The only way to specify a "path" is..
|
||||
# a path *on the server*? The contents of which, specifies the paths. Wat.
|
||||
# Obviously this is hopelessly broken and insecure, because you can query
|
||||
# arbitrary paths on the server! So nobody enables this.
|
||||
# What we have to do is disable *all* files. We could then just checkout
|
||||
# the path, and it'd "work", but be hopelessly slow...Because it goes and
|
||||
# transfers every missing object one-by-one. So the final piece is that we
|
||||
# need to use some weird git internals to fetch the missings in bulk, and
|
||||
# *that* we can do by path.
|
||||
# We're using Git and sparse checkout to only clone the files we need
|
||||
with make_tempdir() as tmp_dir:
|
||||
# This is the "clone, but don't download anything" part.
|
||||
cmd = (
|
||||
f"git clone {repo} {tmp_dir} --no-checkout --depth 1 "
|
||||
f"-b {branch} --filter=blob:none"
|
||||
)
|
||||
run_command(cmd)
|
||||
# Now we need to find the missing filenames for the subpath we want.
|
||||
# Looking for this 'rev-list' command in the git --help? Hah.
|
||||
cmd = f"git -C {tmp_dir} rev-list --objects --all --missing=print -- {subpath}"
|
||||
ret = run_command(cmd, capture=True)
|
||||
git_repo = _http_to_git(repo)
|
||||
# Now pass those missings into another bit of git internals
|
||||
missings = " ".join([x[1:] for x in ret.stdout.split() if x.startswith("?")])
|
||||
if not missings:
|
||||
err = (
|
||||
f"Could not find any relevant files for '{subpath}'. "
|
||||
f"Did you specify a correct and complete path within repo '{repo}' "
|
||||
f"and branch {branch}?"
|
||||
)
|
||||
msg.fail(err, exits=1)
|
||||
cmd = f"git -C {tmp_dir} fetch-pack {git_repo} {missings}"
|
||||
run_command(cmd, capture=True)
|
||||
# And finally, we can checkout our subpath
|
||||
cmd = f"git -C {tmp_dir} checkout {branch} {subpath}"
|
||||
run_command(cmd, capture=True)
|
||||
|
||||
# Get a subdirectory of the cloned path, if appropriate
|
||||
source_path = tmp_dir / Path(subpath)
|
||||
if not is_subpath_of(tmp_dir, source_path):
|
||||
err = f"'{subpath}' is a path outside of the cloned repository."
|
||||
msg.fail(err, repo, exits=1)
|
||||
|
||||
shutil.move(str(source_path), str(dest))
|
||||
|
||||
|
||||
def git_repo_branch_exists(repo: str, branch: str) -> bool:
|
||||
"""Uses 'git ls-remote' to check if a repository and branch exists
|
||||
|
||||
repo (str): URL to get repo.
|
||||
branch (str): Branch on repo to check.
|
||||
RETURNS (bool): True if repo:branch exists.
|
||||
"""
|
||||
get_git_version()
|
||||
cmd = f"git ls-remote {repo} {branch}"
|
||||
# We might be tempted to use `--exit-code` with `git ls-remote`, but
|
||||
# `run_command` handles the `returncode` for us, so we'll rely on
|
||||
# the fact that stdout returns '' if the requested branch doesn't exist
|
||||
ret = run_command(cmd, capture=True)
|
||||
exists = ret.stdout != ""
|
||||
return exists
|
||||
|
||||
|
||||
def get_git_version(
|
||||
error: str = "Could not run 'git'. Make sure it's installed and the executable is available.",
|
||||
) -> Tuple[int, int]:
|
||||
"""Get the version of git and raise an error if calling 'git --version' fails.
|
||||
|
||||
error (str): The error message to show.
|
||||
RETURNS (Tuple[int, int]): The version as a (major, minor) tuple. Returns
|
||||
(0, 0) if the version couldn't be determined.
|
||||
|
@ -527,30 +224,6 @@ def get_git_version(
|
|||
return int(version[0]), int(version[1])
|
||||
|
||||
|
||||
def _http_to_git(repo: str) -> str:
|
||||
if repo.startswith("http://"):
|
||||
repo = repo.replace(r"http://", r"https://")
|
||||
if repo.startswith(r"https://"):
|
||||
repo = repo.replace("https://", "git@").replace("/", ":", 1)
|
||||
if repo.endswith("/"):
|
||||
repo = repo[:-1]
|
||||
repo = f"{repo}.git"
|
||||
return repo
|
||||
|
||||
|
||||
def is_subpath_of(parent, child):
|
||||
"""
|
||||
Check whether `child` is a path contained within `parent`.
|
||||
"""
|
||||
# Based on https://stackoverflow.com/a/37095733 .
|
||||
|
||||
# In Python 3.9, the `Path.is_relative_to()` method will supplant this, so
|
||||
# we can stop using crusty old os.path functions.
|
||||
parent_realpath = os.path.realpath(parent)
|
||||
child_realpath = os.path.realpath(child)
|
||||
return os.path.commonpath([parent_realpath, child_realpath]) == parent_realpath
|
||||
|
||||
|
||||
@overload
|
||||
def string_to_list(value: str, intify: Literal[False] = ...) -> List[str]:
|
||||
...
|
||||
|
|
|
@ -133,7 +133,9 @@ def apply(
|
|||
if len(text_files) > 0:
|
||||
streams.append(_stream_texts(text_files))
|
||||
datagen = cast(DocOrStrStream, chain(*streams))
|
||||
for doc in tqdm.tqdm(nlp.pipe(datagen, batch_size=batch_size, n_process=n_process)):
|
||||
for doc in tqdm.tqdm(
|
||||
nlp.pipe(datagen, batch_size=batch_size, n_process=n_process), disable=None
|
||||
):
|
||||
docbin.add(doc)
|
||||
if output_file.suffix == "":
|
||||
output_file = output_file.with_suffix(".spacy")
|
||||
|
|
|
@ -89,7 +89,7 @@ class Quartiles:
|
|||
def annotate(
|
||||
nlp: Language, docs: List[Doc], batch_size: Optional[int]
|
||||
) -> numpy.ndarray:
|
||||
docs = nlp.pipe(tqdm(docs, unit="doc"), batch_size=batch_size)
|
||||
docs = nlp.pipe(tqdm(docs, unit="doc", disable=None), batch_size=batch_size)
|
||||
wps = []
|
||||
while True:
|
||||
with time_context() as elapsed:
|
||||
|
|
|
@ -28,6 +28,7 @@ def evaluate_cli(
|
|||
displacy_path: Optional[Path] = Opt(None, "--displacy-path", "-dp", help="Directory to output rendered parses as HTML", exists=True, file_okay=False),
|
||||
displacy_limit: int = Opt(25, "--displacy-limit", "-dl", help="Limit of parses to render as HTML"),
|
||||
per_component: bool = Opt(False, "--per-component", "-P", help="Return scores per component, only applicable when an output JSON file is specified."),
|
||||
spans_key: str = Opt("sc", "--spans-key", "-sk", help="Spans key to use when evaluating Doc.spans"),
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
|
@ -53,6 +54,7 @@ def evaluate_cli(
|
|||
displacy_limit=displacy_limit,
|
||||
per_component=per_component,
|
||||
silent=False,
|
||||
spans_key=spans_key,
|
||||
)
|
||||
|
||||
|
||||
|
|
|
@ -71,7 +71,7 @@ def profile(model: str, inputs: Optional[Path] = None, n_texts: int = 10000) ->
|
|||
|
||||
|
||||
def parse_texts(nlp: Language, texts: Sequence[str]) -> None:
|
||||
for doc in nlp.pipe(tqdm.tqdm(texts), batch_size=16):
|
||||
for doc in nlp.pipe(tqdm.tqdm(texts, disable=None), batch_size=16):
|
||||
pass
|
||||
|
||||
|
||||
|
|
|
@ -1,217 +0,0 @@
|
|||
import os
|
||||
import re
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import requests
|
||||
import typer
|
||||
from wasabi import msg
|
||||
|
||||
from ...util import ensure_path, working_dir
|
||||
from .._util import (
|
||||
PROJECT_FILE,
|
||||
Arg,
|
||||
Opt,
|
||||
SimpleFrozenDict,
|
||||
download_file,
|
||||
get_checksum,
|
||||
get_git_version,
|
||||
git_checkout,
|
||||
load_project_config,
|
||||
parse_config_overrides,
|
||||
project_cli,
|
||||
)
|
||||
|
||||
# Whether assets are extra if `extra` is not set.
|
||||
EXTRA_DEFAULT = False
|
||||
|
||||
|
||||
@project_cli.command(
|
||||
"assets",
|
||||
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
|
||||
)
|
||||
def project_assets_cli(
|
||||
# fmt: off
|
||||
ctx: typer.Context, # This is only used to read additional arguments
|
||||
project_dir: Path = Arg(Path.cwd(), help="Path to cloned project. Defaults to current working directory.", exists=True, file_okay=False),
|
||||
sparse_checkout: bool = Opt(False, "--sparse", "-S", help="Use sparse checkout for assets provided via Git, to only check out and clone the files needed. Requires Git v22.2+."),
|
||||
extra: bool = Opt(False, "--extra", "-e", help="Download all assets, including those marked as 'extra'.")
|
||||
# fmt: on
|
||||
):
|
||||
"""Fetch project assets like datasets and pretrained weights. Assets are
|
||||
defined in the "assets" section of the project.yml. If a checksum is
|
||||
provided in the project.yml, the file is only downloaded if no local file
|
||||
with the same checksum exists.
|
||||
|
||||
DOCS: https://spacy.io/api/cli#project-assets
|
||||
"""
|
||||
overrides = parse_config_overrides(ctx.args)
|
||||
project_assets(
|
||||
project_dir,
|
||||
overrides=overrides,
|
||||
sparse_checkout=sparse_checkout,
|
||||
extra=extra,
|
||||
)
|
||||
|
||||
|
||||
def project_assets(
|
||||
project_dir: Path,
|
||||
*,
|
||||
overrides: Dict[str, Any] = SimpleFrozenDict(),
|
||||
sparse_checkout: bool = False,
|
||||
extra: bool = False,
|
||||
) -> None:
|
||||
"""Fetch assets for a project using DVC if possible.
|
||||
|
||||
project_dir (Path): Path to project directory.
|
||||
sparse_checkout (bool): Use sparse checkout for assets provided via Git, to only check out and clone the files
|
||||
needed.
|
||||
extra (bool): Whether to download all assets, including those marked as 'extra'.
|
||||
"""
|
||||
project_path = ensure_path(project_dir)
|
||||
config = load_project_config(project_path, overrides=overrides)
|
||||
assets = [
|
||||
asset
|
||||
for asset in config.get("assets", [])
|
||||
if extra or not asset.get("extra", EXTRA_DEFAULT)
|
||||
]
|
||||
if not assets:
|
||||
msg.warn(
|
||||
f"No assets specified in {PROJECT_FILE} (if assets are marked as extra, download them with --extra)",
|
||||
exits=0,
|
||||
)
|
||||
msg.info(f"Fetching {len(assets)} asset(s)")
|
||||
|
||||
for asset in assets:
|
||||
dest = (project_dir / asset["dest"]).resolve()
|
||||
checksum = asset.get("checksum")
|
||||
if "git" in asset:
|
||||
git_err = (
|
||||
f"Cloning spaCy project templates requires Git and the 'git' command. "
|
||||
f"Make sure it's installed and that the executable is available."
|
||||
)
|
||||
get_git_version(error=git_err)
|
||||
if dest.exists():
|
||||
# If there's already a file, check for checksum
|
||||
if checksum and checksum == get_checksum(dest):
|
||||
msg.good(
|
||||
f"Skipping download with matching checksum: {asset['dest']}"
|
||||
)
|
||||
continue
|
||||
else:
|
||||
if dest.is_dir():
|
||||
shutil.rmtree(dest)
|
||||
else:
|
||||
dest.unlink()
|
||||
if "repo" not in asset["git"] or asset["git"]["repo"] is None:
|
||||
msg.fail(
|
||||
"A git asset must include 'repo', the repository address.", exits=1
|
||||
)
|
||||
if "path" not in asset["git"] or asset["git"]["path"] is None:
|
||||
msg.fail(
|
||||
"A git asset must include 'path' - use \"\" to get the entire repository.",
|
||||
exits=1,
|
||||
)
|
||||
git_checkout(
|
||||
asset["git"]["repo"],
|
||||
asset["git"]["path"],
|
||||
dest,
|
||||
branch=asset["git"].get("branch"),
|
||||
sparse=sparse_checkout,
|
||||
)
|
||||
msg.good(f"Downloaded asset {dest}")
|
||||
else:
|
||||
url = asset.get("url")
|
||||
if not url:
|
||||
# project.yml defines asset without URL that the user has to place
|
||||
check_private_asset(dest, checksum)
|
||||
continue
|
||||
fetch_asset(project_path, url, dest, checksum)
|
||||
|
||||
|
||||
def check_private_asset(dest: Path, checksum: Optional[str] = None) -> None:
|
||||
"""Check and validate assets without a URL (private assets that the user
|
||||
has to provide themselves) and give feedback about the checksum.
|
||||
|
||||
dest (Path): Destination path of the asset.
|
||||
checksum (Optional[str]): Optional checksum of the expected file.
|
||||
"""
|
||||
if not Path(dest).exists():
|
||||
err = f"No URL provided for asset. You need to add this file yourself: {dest}"
|
||||
msg.warn(err)
|
||||
else:
|
||||
if not checksum:
|
||||
msg.good(f"Asset already exists: {dest}")
|
||||
elif checksum == get_checksum(dest):
|
||||
msg.good(f"Asset exists with matching checksum: {dest}")
|
||||
else:
|
||||
msg.fail(f"Asset available but with incorrect checksum: {dest}")
|
||||
|
||||
|
||||
def fetch_asset(
|
||||
project_path: Path, url: str, dest: Path, checksum: Optional[str] = None
|
||||
) -> None:
|
||||
"""Fetch an asset from a given URL or path. If a checksum is provided and a
|
||||
local file exists, it's only re-downloaded if the checksum doesn't match.
|
||||
|
||||
project_path (Path): Path to project directory.
|
||||
url (str): URL or path to asset.
|
||||
checksum (Optional[str]): Optional expected checksum of local file.
|
||||
RETURNS (Optional[Path]): The path to the fetched asset or None if fetching
|
||||
the asset failed.
|
||||
"""
|
||||
dest_path = (project_path / dest).resolve()
|
||||
if dest_path.exists():
|
||||
# If there's already a file, check for checksum
|
||||
if checksum:
|
||||
if checksum == get_checksum(dest_path):
|
||||
msg.good(f"Skipping download with matching checksum: {dest}")
|
||||
return
|
||||
else:
|
||||
# If there's not a checksum, make sure the file is a possibly valid size
|
||||
if os.path.getsize(dest_path) == 0:
|
||||
msg.warn(f"Asset exists but with size of 0 bytes, deleting: {dest}")
|
||||
os.remove(dest_path)
|
||||
# We might as well support the user here and create parent directories in
|
||||
# case the asset dir isn't listed as a dir to create in the project.yml
|
||||
if not dest_path.parent.exists():
|
||||
dest_path.parent.mkdir(parents=True)
|
||||
with working_dir(project_path):
|
||||
url = convert_asset_url(url)
|
||||
try:
|
||||
download_file(url, dest_path)
|
||||
msg.good(f"Downloaded asset {dest}")
|
||||
except requests.exceptions.RequestException as e:
|
||||
if Path(url).exists() and Path(url).is_file():
|
||||
# If it's a local file, copy to destination
|
||||
shutil.copy(url, str(dest_path))
|
||||
msg.good(f"Copied local asset {dest}")
|
||||
else:
|
||||
msg.fail(f"Download failed: {dest}", e)
|
||||
if checksum and checksum != get_checksum(dest_path):
|
||||
msg.fail(f"Checksum doesn't match value defined in {PROJECT_FILE}: {dest}")
|
||||
|
||||
|
||||
def convert_asset_url(url: str) -> str:
|
||||
"""Check and convert the asset URL if needed.
|
||||
|
||||
url (str): The asset URL.
|
||||
RETURNS (str): The converted URL.
|
||||
"""
|
||||
# If the asset URL is a regular GitHub URL it's likely a mistake
|
||||
if (
|
||||
re.match(r"(http(s?)):\/\/github.com", url)
|
||||
and "releases/download" not in url
|
||||
and "/raw/" not in url
|
||||
):
|
||||
converted = url.replace("github.com", "raw.githubusercontent.com")
|
||||
converted = re.sub(r"/(tree|blob)/", "/", converted)
|
||||
msg.warn(
|
||||
"Downloading from a regular GitHub URL. This will only download "
|
||||
"the source of the page, not the actual file. Converting the URL "
|
||||
"to a raw URL.",
|
||||
converted,
|
||||
)
|
||||
return converted
|
||||
return url
|
|
@ -1,124 +0,0 @@
|
|||
import re
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from wasabi import msg
|
||||
|
||||
from ... import about
|
||||
from ...util import ensure_path
|
||||
from .._util import (
|
||||
COMMAND,
|
||||
PROJECT_FILE,
|
||||
Arg,
|
||||
Opt,
|
||||
get_git_version,
|
||||
git_checkout,
|
||||
git_repo_branch_exists,
|
||||
project_cli,
|
||||
)
|
||||
|
||||
DEFAULT_REPO = about.__projects__
|
||||
DEFAULT_PROJECTS_BRANCH = about.__projects_branch__
|
||||
DEFAULT_BRANCHES = ["main", "master"]
|
||||
|
||||
|
||||
@project_cli.command("clone")
|
||||
def project_clone_cli(
|
||||
# fmt: off
|
||||
name: str = Arg(..., help="The name of the template to clone"),
|
||||
dest: Optional[Path] = Arg(None, help="Where to clone the project. Defaults to current working directory", exists=False),
|
||||
repo: str = Opt(DEFAULT_REPO, "--repo", "-r", help="The repository to clone from"),
|
||||
branch: Optional[str] = Opt(None, "--branch", "-b", help=f"The branch to clone from. If not provided, will attempt {', '.join(DEFAULT_BRANCHES)}"),
|
||||
sparse_checkout: bool = Opt(False, "--sparse", "-S", help="Use sparse Git checkout to only check out and clone the files needed. Requires Git v22.2+.")
|
||||
# fmt: on
|
||||
):
|
||||
"""Clone a project template from a repository. Calls into "git" and will
|
||||
only download the files from the given subdirectory. The GitHub repo
|
||||
defaults to the official spaCy template repo, but can be customized
|
||||
(including using a private repo).
|
||||
|
||||
DOCS: https://spacy.io/api/cli#project-clone
|
||||
"""
|
||||
if dest is None:
|
||||
dest = Path.cwd() / Path(name).parts[-1]
|
||||
if repo == DEFAULT_REPO and branch is None:
|
||||
branch = DEFAULT_PROJECTS_BRANCH
|
||||
|
||||
if branch is None:
|
||||
for default_branch in DEFAULT_BRANCHES:
|
||||
if git_repo_branch_exists(repo, default_branch):
|
||||
branch = default_branch
|
||||
break
|
||||
if branch is None:
|
||||
default_branches_msg = ", ".join(f"'{b}'" for b in DEFAULT_BRANCHES)
|
||||
msg.fail(
|
||||
"No branch provided and attempted default "
|
||||
f"branches {default_branches_msg} do not exist.",
|
||||
exits=1,
|
||||
)
|
||||
else:
|
||||
if not git_repo_branch_exists(repo, branch):
|
||||
msg.fail(f"repo: {repo} (branch: {branch}) does not exist.", exits=1)
|
||||
assert isinstance(branch, str)
|
||||
project_clone(name, dest, repo=repo, branch=branch, sparse_checkout=sparse_checkout)
|
||||
|
||||
|
||||
def project_clone(
|
||||
name: str,
|
||||
dest: Path,
|
||||
*,
|
||||
repo: str = about.__projects__,
|
||||
branch: str = about.__projects_branch__,
|
||||
sparse_checkout: bool = False,
|
||||
) -> None:
|
||||
"""Clone a project template from a repository.
|
||||
|
||||
name (str): Name of subdirectory to clone.
|
||||
dest (Path): Destination path of cloned project.
|
||||
repo (str): URL of Git repo containing project templates.
|
||||
branch (str): The branch to clone from
|
||||
"""
|
||||
dest = ensure_path(dest)
|
||||
check_clone(name, dest, repo)
|
||||
project_dir = dest.resolve()
|
||||
repo_name = re.sub(r"(http(s?)):\/\/github.com/", "", repo)
|
||||
try:
|
||||
git_checkout(repo, name, dest, branch=branch, sparse=sparse_checkout)
|
||||
except subprocess.CalledProcessError:
|
||||
err = f"Could not clone '{name}' from repo '{repo_name}' (branch '{branch}')"
|
||||
msg.fail(err, exits=1)
|
||||
msg.good(f"Cloned '{name}' from '{repo_name}' (branch '{branch}')", project_dir)
|
||||
if not (project_dir / PROJECT_FILE).exists():
|
||||
msg.warn(f"No {PROJECT_FILE} found in directory")
|
||||
else:
|
||||
msg.good(f"Your project is now ready!")
|
||||
print(f"To fetch the assets, run:\n{COMMAND} project assets {dest}")
|
||||
|
||||
|
||||
def check_clone(name: str, dest: Path, repo: str) -> None:
|
||||
"""Check and validate that the destination path can be used to clone. Will
|
||||
check that Git is available and that the destination path is suitable.
|
||||
|
||||
name (str): Name of the directory to clone from the repo.
|
||||
dest (Path): Local destination of cloned directory.
|
||||
repo (str): URL of the repo to clone from.
|
||||
"""
|
||||
git_err = (
|
||||
f"Cloning spaCy project templates requires Git and the 'git' command. "
|
||||
f"To clone a project without Git, copy the files from the '{name}' "
|
||||
f"directory in the {repo} to {dest} manually."
|
||||
)
|
||||
get_git_version(error=git_err)
|
||||
if not dest:
|
||||
msg.fail(f"Not a valid directory to clone project: {dest}", exits=1)
|
||||
if dest.exists():
|
||||
# Directory already exists (not allowed, clone needs to create it)
|
||||
msg.fail(f"Can't clone project, directory already exists: {dest}", exits=1)
|
||||
if not dest.parent.exists():
|
||||
# We're not creating parents, parent dir should exist
|
||||
msg.fail(
|
||||
f"Can't clone project, parent directory doesn't exist: {dest.parent}. "
|
||||
f"Create the necessary folder(s) first before continuing.",
|
||||
exits=1,
|
||||
)
|
|
@ -1,115 +0,0 @@
|
|||
from pathlib import Path
|
||||
|
||||
from wasabi import MarkdownRenderer, msg
|
||||
|
||||
from ...util import working_dir
|
||||
from .._util import PROJECT_FILE, Arg, Opt, load_project_config, project_cli
|
||||
|
||||
DOCS_URL = "https://spacy.io"
|
||||
INTRO_PROJECT = f"""The [`{PROJECT_FILE}`]({PROJECT_FILE}) defines the data assets required by the
|
||||
project, as well as the available commands and workflows. For details, see the
|
||||
[spaCy projects documentation]({DOCS_URL}/usage/projects)."""
|
||||
INTRO_COMMANDS = f"""The following commands are defined by the project. They
|
||||
can be executed using [`spacy project run [name]`]({DOCS_URL}/api/cli#project-run).
|
||||
Commands are only re-run if their inputs have changed."""
|
||||
INTRO_WORKFLOWS = f"""The following workflows are defined by the project. They
|
||||
can be executed using [`spacy project run [name]`]({DOCS_URL}/api/cli#project-run)
|
||||
and will run the specified commands in order. Commands are only re-run if their
|
||||
inputs have changed."""
|
||||
INTRO_ASSETS = f"""The following assets are defined by the project. They can
|
||||
be fetched by running [`spacy project assets`]({DOCS_URL}/api/cli#project-assets)
|
||||
in the project directory."""
|
||||
# These markers are added to the Markdown and can be used to update the file in
|
||||
# place if it already exists. Only the auto-generated part will be replaced.
|
||||
MARKER_START = "<!-- SPACY PROJECT: AUTO-GENERATED DOCS START (do not remove) -->"
|
||||
MARKER_END = "<!-- SPACY PROJECT: AUTO-GENERATED DOCS END (do not remove) -->"
|
||||
# If this marker is used in an existing README, it's ignored and not replaced
|
||||
MARKER_IGNORE = "<!-- SPACY PROJECT: IGNORE -->"
|
||||
|
||||
|
||||
@project_cli.command("document")
|
||||
def project_document_cli(
|
||||
# fmt: off
|
||||
project_dir: Path = Arg(Path.cwd(), help="Path to cloned project. Defaults to current working directory.", exists=True, file_okay=False),
|
||||
output_file: Path = Opt("-", "--output", "-o", help="Path to output Markdown file for output. Defaults to - for standard output"),
|
||||
no_emoji: bool = Opt(False, "--no-emoji", "-NE", help="Don't use emoji")
|
||||
# fmt: on
|
||||
):
|
||||
"""
|
||||
Auto-generate a README.md for a project. If the content is saved to a file,
|
||||
hidden markers are added so you can add custom content before or after the
|
||||
auto-generated section and only the auto-generated docs will be replaced
|
||||
when you re-run the command.
|
||||
|
||||
DOCS: https://spacy.io/api/cli#project-document
|
||||
"""
|
||||
project_document(project_dir, output_file, no_emoji=no_emoji)
|
||||
|
||||
|
||||
def project_document(
|
||||
project_dir: Path, output_file: Path, *, no_emoji: bool = False
|
||||
) -> None:
|
||||
is_stdout = str(output_file) == "-"
|
||||
config = load_project_config(project_dir)
|
||||
md = MarkdownRenderer(no_emoji=no_emoji)
|
||||
md.add(MARKER_START)
|
||||
title = config.get("title")
|
||||
description = config.get("description")
|
||||
md.add(md.title(1, f"spaCy Project{f': {title}' if title else ''}", "🪐"))
|
||||
if description:
|
||||
md.add(description)
|
||||
md.add(md.title(2, PROJECT_FILE, "📋"))
|
||||
md.add(INTRO_PROJECT)
|
||||
# Commands
|
||||
cmds = config.get("commands", [])
|
||||
data = [(md.code(cmd["name"]), cmd.get("help", "")) for cmd in cmds]
|
||||
if data:
|
||||
md.add(md.title(3, "Commands", "⏯"))
|
||||
md.add(INTRO_COMMANDS)
|
||||
md.add(md.table(data, ["Command", "Description"]))
|
||||
# Workflows
|
||||
wfs = config.get("workflows", {}).items()
|
||||
data = [(md.code(n), " → ".join(md.code(w) for w in stp)) for n, stp in wfs]
|
||||
if data:
|
||||
md.add(md.title(3, "Workflows", "⏭"))
|
||||
md.add(INTRO_WORKFLOWS)
|
||||
md.add(md.table(data, ["Workflow", "Steps"]))
|
||||
# Assets
|
||||
assets = config.get("assets", [])
|
||||
data = []
|
||||
for a in assets:
|
||||
source = "Git" if a.get("git") else "URL" if a.get("url") else "Local"
|
||||
dest_path = a["dest"]
|
||||
dest = md.code(dest_path)
|
||||
if source == "Local":
|
||||
# Only link assets if they're in the repo
|
||||
with working_dir(project_dir) as p:
|
||||
if (p / dest_path).exists():
|
||||
dest = md.link(dest, dest_path)
|
||||
data.append((dest, source, a.get("description", "")))
|
||||
if data:
|
||||
md.add(md.title(3, "Assets", "🗂"))
|
||||
md.add(INTRO_ASSETS)
|
||||
md.add(md.table(data, ["File", "Source", "Description"]))
|
||||
md.add(MARKER_END)
|
||||
# Output result
|
||||
if is_stdout:
|
||||
print(md.text)
|
||||
else:
|
||||
content = md.text
|
||||
if output_file.exists():
|
||||
with output_file.open("r", encoding="utf8") as f:
|
||||
existing = f.read()
|
||||
if MARKER_IGNORE in existing:
|
||||
msg.warn("Found ignore marker in existing file: skipping", output_file)
|
||||
return
|
||||
if MARKER_START in existing and MARKER_END in existing:
|
||||
msg.info("Found existing file: only replacing auto-generated docs")
|
||||
before = existing.split(MARKER_START)[0]
|
||||
after = existing.split(MARKER_END)[1]
|
||||
content = f"{before}{content}{after}"
|
||||
else:
|
||||
msg.warn("Replacing existing file")
|
||||
with output_file.open("w", encoding="utf8") as f:
|
||||
f.write(content)
|
||||
msg.good("Saved project documentation", output_file)
|
|
@ -1,220 +0,0 @@
|
|||
"""This module contains helpers and subcommands for integrating spaCy projects
|
||||
with Data Version Controk (DVC). https://dvc.org"""
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Iterable, List, Optional
|
||||
|
||||
from wasabi import msg
|
||||
|
||||
from ...util import (
|
||||
SimpleFrozenList,
|
||||
join_command,
|
||||
run_command,
|
||||
split_command,
|
||||
working_dir,
|
||||
)
|
||||
from .._util import (
|
||||
COMMAND,
|
||||
NAME,
|
||||
PROJECT_FILE,
|
||||
Arg,
|
||||
Opt,
|
||||
get_hash,
|
||||
load_project_config,
|
||||
project_cli,
|
||||
)
|
||||
|
||||
DVC_CONFIG = "dvc.yaml"
|
||||
DVC_DIR = ".dvc"
|
||||
UPDATE_COMMAND = "dvc"
|
||||
DVC_CONFIG_COMMENT = f"""# This file is auto-generated by spaCy based on your {PROJECT_FILE}. If you've
|
||||
# edited your {PROJECT_FILE}, you can regenerate this file by running:
|
||||
# {COMMAND} project {UPDATE_COMMAND}"""
|
||||
|
||||
|
||||
@project_cli.command(UPDATE_COMMAND)
|
||||
def project_update_dvc_cli(
|
||||
# fmt: off
|
||||
project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False),
|
||||
workflow: Optional[str] = Arg(None, help=f"Name of workflow defined in {PROJECT_FILE}. Defaults to first workflow if not set."),
|
||||
verbose: bool = Opt(False, "--verbose", "-V", help="Print more info"),
|
||||
quiet: bool = Opt(False, "--quiet", "-q", help="Print less info"),
|
||||
force: bool = Opt(False, "--force", "-F", help="Force update DVC config"),
|
||||
# fmt: on
|
||||
):
|
||||
"""Auto-generate Data Version Control (DVC) config. A DVC
|
||||
project can only define one pipeline, so you need to specify one workflow
|
||||
defined in the project.yml. If no workflow is specified, the first defined
|
||||
workflow is used. The DVC config will only be updated if the project.yml
|
||||
changed.
|
||||
|
||||
DOCS: https://spacy.io/api/cli#project-dvc
|
||||
"""
|
||||
project_update_dvc(project_dir, workflow, verbose=verbose, quiet=quiet, force=force)
|
||||
|
||||
|
||||
def project_update_dvc(
|
||||
project_dir: Path,
|
||||
workflow: Optional[str] = None,
|
||||
*,
|
||||
verbose: bool = False,
|
||||
quiet: bool = False,
|
||||
force: bool = False,
|
||||
) -> None:
|
||||
"""Update the auto-generated Data Version Control (DVC) config file. A DVC
|
||||
project can only define one pipeline, so you need to specify one workflow
|
||||
defined in the project.yml. Will only update the file if the checksum changed.
|
||||
|
||||
project_dir (Path): The project directory.
|
||||
workflow (Optional[str]): Optional name of workflow defined in project.yml.
|
||||
If not set, the first workflow will be used.
|
||||
verbose (bool): Print more info.
|
||||
quiet (bool): Print less info.
|
||||
force (bool): Force update DVC config.
|
||||
"""
|
||||
config = load_project_config(project_dir)
|
||||
updated = update_dvc_config(
|
||||
project_dir, config, workflow, verbose=verbose, quiet=quiet, force=force
|
||||
)
|
||||
help_msg = "To execute the workflow with DVC, run: dvc repro"
|
||||
if updated:
|
||||
msg.good(f"Updated DVC config from {PROJECT_FILE}", help_msg)
|
||||
else:
|
||||
msg.info(f"No changes found in {PROJECT_FILE}, no update needed", help_msg)
|
||||
|
||||
|
||||
def update_dvc_config(
|
||||
path: Path,
|
||||
config: Dict[str, Any],
|
||||
workflow: Optional[str] = None,
|
||||
verbose: bool = False,
|
||||
quiet: bool = False,
|
||||
force: bool = False,
|
||||
) -> bool:
|
||||
"""Re-run the DVC commands in dry mode and update dvc.yaml file in the
|
||||
project directory. The file is auto-generated based on the config. The
|
||||
first line of the auto-generated file specifies the hash of the config
|
||||
dict, so if any of the config values change, the DVC config is regenerated.
|
||||
|
||||
path (Path): The path to the project directory.
|
||||
config (Dict[str, Any]): The loaded project.yml.
|
||||
verbose (bool): Whether to print additional info (via DVC).
|
||||
quiet (bool): Don't output anything (via DVC).
|
||||
force (bool): Force update, even if hashes match.
|
||||
RETURNS (bool): Whether the DVC config file was updated.
|
||||
"""
|
||||
ensure_dvc(path)
|
||||
workflows = config.get("workflows", {})
|
||||
workflow_names = list(workflows.keys())
|
||||
check_workflows(workflow_names, workflow)
|
||||
if not workflow:
|
||||
workflow = workflow_names[0]
|
||||
config_hash = get_hash(config)
|
||||
path = path.resolve()
|
||||
dvc_config_path = path / DVC_CONFIG
|
||||
if dvc_config_path.exists():
|
||||
# Check if the file was generated using the current config, if not, redo
|
||||
with dvc_config_path.open("r", encoding="utf8") as f:
|
||||
ref_hash = f.readline().strip().replace("# ", "")
|
||||
if ref_hash == config_hash and not force:
|
||||
return False # Nothing has changed in project.yml, don't need to update
|
||||
dvc_config_path.unlink()
|
||||
dvc_commands = []
|
||||
config_commands = {cmd["name"]: cmd for cmd in config.get("commands", [])}
|
||||
|
||||
# some flags that apply to every command
|
||||
flags = []
|
||||
if verbose:
|
||||
flags.append("--verbose")
|
||||
if quiet:
|
||||
flags.append("--quiet")
|
||||
|
||||
for name in workflows[workflow]:
|
||||
command = config_commands[name]
|
||||
deps = command.get("deps", [])
|
||||
outputs = command.get("outputs", [])
|
||||
outputs_no_cache = command.get("outputs_no_cache", [])
|
||||
if not deps and not outputs and not outputs_no_cache:
|
||||
continue
|
||||
# Default to the working dir as the project path since dvc.yaml is auto-generated
|
||||
# and we don't want arbitrary paths in there
|
||||
project_cmd = ["python", "-m", NAME, "project", "run", name]
|
||||
deps_cmd = [c for cl in [["-d", p] for p in deps] for c in cl]
|
||||
outputs_cmd = [c for cl in [["-o", p] for p in outputs] for c in cl]
|
||||
outputs_nc_cmd = [c for cl in [["-O", p] for p in outputs_no_cache] for c in cl]
|
||||
|
||||
dvc_cmd = ["run", *flags, "-n", name, "-w", str(path), "--no-exec"]
|
||||
if command.get("no_skip"):
|
||||
dvc_cmd.append("--always-changed")
|
||||
full_cmd = [*dvc_cmd, *deps_cmd, *outputs_cmd, *outputs_nc_cmd, *project_cmd]
|
||||
dvc_commands.append(join_command(full_cmd))
|
||||
|
||||
if not dvc_commands:
|
||||
# If we don't check for this, then there will be an error when reading the
|
||||
# config, since DVC wouldn't create it.
|
||||
msg.fail(
|
||||
"No usable commands for DVC found. This can happen if none of your "
|
||||
"commands have dependencies or outputs.",
|
||||
exits=1,
|
||||
)
|
||||
|
||||
with working_dir(path):
|
||||
for c in dvc_commands:
|
||||
dvc_command = "dvc " + c
|
||||
run_command(dvc_command)
|
||||
with dvc_config_path.open("r+", encoding="utf8") as f:
|
||||
content = f.read()
|
||||
f.seek(0, 0)
|
||||
f.write(f"# {config_hash}\n{DVC_CONFIG_COMMENT}\n{content}")
|
||||
return True
|
||||
|
||||
|
||||
def check_workflows(workflows: List[str], workflow: Optional[str] = None) -> None:
|
||||
"""Validate workflows provided in project.yml and check that a given
|
||||
workflow can be used to generate a DVC config.
|
||||
|
||||
workflows (List[str]): Names of the available workflows.
|
||||
workflow (Optional[str]): The name of the workflow to convert.
|
||||
"""
|
||||
if not workflows:
|
||||
msg.fail(
|
||||
f"No workflows defined in {PROJECT_FILE}. To generate a DVC config, "
|
||||
f"define at least one list of commands.",
|
||||
exits=1,
|
||||
)
|
||||
if workflow is not None and workflow not in workflows:
|
||||
msg.fail(
|
||||
f"Workflow '{workflow}' not defined in {PROJECT_FILE}. "
|
||||
f"Available workflows: {', '.join(workflows)}",
|
||||
exits=1,
|
||||
)
|
||||
if not workflow:
|
||||
msg.warn(
|
||||
f"No workflow specified for DVC pipeline. Using the first workflow "
|
||||
f"defined in {PROJECT_FILE}: '{workflows[0]}'"
|
||||
)
|
||||
|
||||
|
||||
def ensure_dvc(project_dir: Path) -> None:
|
||||
"""Ensure that the "dvc" command is available and that the current project
|
||||
directory is an initialized DVC project.
|
||||
"""
|
||||
try:
|
||||
subprocess.run(["dvc", "--version"], stdout=subprocess.DEVNULL)
|
||||
except Exception:
|
||||
msg.fail(
|
||||
"To use spaCy projects with DVC (Data Version Control), DVC needs "
|
||||
"to be installed and the 'dvc' command needs to be available",
|
||||
"You can install the Python package from pip (pip install dvc) or "
|
||||
"conda (conda install -c conda-forge dvc). For more details, see the "
|
||||
"documentation: https://dvc.org/doc/install",
|
||||
exits=1,
|
||||
)
|
||||
if not (project_dir / ".dvc").exists():
|
||||
msg.fail(
|
||||
"Project not initialized as a DVC project",
|
||||
"To initialize a DVC project, you can run 'dvc init' in the project "
|
||||
"directory. For more details, see the documentation: "
|
||||
"https://dvc.org/doc/command-reference/init",
|
||||
exits=1,
|
||||
)
|
|
@ -1,67 +0,0 @@
|
|||
from pathlib import Path
|
||||
|
||||
from wasabi import msg
|
||||
|
||||
from .._util import Arg, load_project_config, logger, project_cli
|
||||
from .remote_storage import RemoteStorage, get_command_hash
|
||||
from .run import update_lockfile
|
||||
|
||||
|
||||
@project_cli.command("pull")
|
||||
def project_pull_cli(
|
||||
# fmt: off
|
||||
remote: str = Arg("default", help="Name or path of remote storage"),
|
||||
project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False),
|
||||
# fmt: on
|
||||
):
|
||||
"""Retrieve available precomputed outputs from a remote storage.
|
||||
You can alias remotes in your project.yml by mapping them to storage paths.
|
||||
A storage can be anything that the smart-open library can upload to, e.g.
|
||||
AWS, Google Cloud Storage, SSH, local directories etc.
|
||||
|
||||
DOCS: https://spacy.io/api/cli#project-pull
|
||||
"""
|
||||
for url, output_path in project_pull(project_dir, remote):
|
||||
if url is not None:
|
||||
msg.good(f"Pulled {output_path} from {url}")
|
||||
|
||||
|
||||
def project_pull(project_dir: Path, remote: str, *, verbose: bool = False):
|
||||
# TODO: We don't have tests for this :(. It would take a bit of mockery to
|
||||
# set up. I guess see if it breaks first?
|
||||
config = load_project_config(project_dir)
|
||||
if remote in config.get("remotes", {}):
|
||||
remote = config["remotes"][remote]
|
||||
storage = RemoteStorage(project_dir, remote)
|
||||
commands = list(config.get("commands", []))
|
||||
# We use a while loop here because we don't know how the commands
|
||||
# will be ordered. A command might need dependencies from one that's later
|
||||
# in the list.
|
||||
while commands:
|
||||
for i, cmd in enumerate(list(commands)):
|
||||
logger.debug("CMD: %s.", cmd["name"])
|
||||
deps = [project_dir / dep for dep in cmd.get("deps", [])]
|
||||
if all(dep.exists() for dep in deps):
|
||||
cmd_hash = get_command_hash("", "", deps, cmd["script"])
|
||||
for output_path in cmd.get("outputs", []):
|
||||
url = storage.pull(output_path, command_hash=cmd_hash)
|
||||
logger.debug(
|
||||
"URL: %s for %s with command hash %s",
|
||||
url,
|
||||
output_path,
|
||||
cmd_hash,
|
||||
)
|
||||
yield url, output_path
|
||||
|
||||
out_locs = [project_dir / out for out in cmd.get("outputs", [])]
|
||||
if all(loc.exists() for loc in out_locs):
|
||||
update_lockfile(project_dir, cmd)
|
||||
# We remove the command from the list here, and break, so that
|
||||
# we iterate over the loop again.
|
||||
commands.pop(i)
|
||||
break
|
||||
else:
|
||||
logger.debug("Dependency missing. Skipping %s outputs.", cmd["name"])
|
||||
else:
|
||||
# If we didn't break the for loop, break the while loop.
|
||||
break
|
|
@ -1,69 +0,0 @@
|
|||
from pathlib import Path
|
||||
|
||||
from wasabi import msg
|
||||
|
||||
from .._util import Arg, load_project_config, logger, project_cli
|
||||
from .remote_storage import RemoteStorage, get_command_hash, get_content_hash
|
||||
|
||||
|
||||
@project_cli.command("push")
|
||||
def project_push_cli(
|
||||
# fmt: off
|
||||
remote: str = Arg("default", help="Name or path of remote storage"),
|
||||
project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False),
|
||||
# fmt: on
|
||||
):
|
||||
"""Persist outputs to a remote storage. You can alias remotes in your
|
||||
project.yml by mapping them to storage paths. A storage can be anything that
|
||||
the smart-open library can upload to, e.g. AWS, Google Cloud Storage, SSH,
|
||||
local directories etc.
|
||||
|
||||
DOCS: https://spacy.io/api/cli#project-push
|
||||
"""
|
||||
for output_path, url in project_push(project_dir, remote):
|
||||
if url is None:
|
||||
msg.info(f"Skipping {output_path}")
|
||||
else:
|
||||
msg.good(f"Pushed {output_path} to {url}")
|
||||
|
||||
|
||||
def project_push(project_dir: Path, remote: str):
|
||||
"""Persist outputs to a remote storage. You can alias remotes in your project.yml
|
||||
by mapping them to storage paths. A storage can be anything that the smart-open
|
||||
library can upload to, e.g. gcs, aws, ssh, local directories etc
|
||||
"""
|
||||
config = load_project_config(project_dir)
|
||||
if remote in config.get("remotes", {}):
|
||||
remote = config["remotes"][remote]
|
||||
storage = RemoteStorage(project_dir, remote)
|
||||
for cmd in config.get("commands", []):
|
||||
logger.debug("CMD: %s", cmd["name"])
|
||||
deps = [project_dir / dep for dep in cmd.get("deps", [])]
|
||||
if any(not dep.exists() for dep in deps):
|
||||
logger.debug("Dependency missing. Skipping %s outputs", cmd["name"])
|
||||
continue
|
||||
cmd_hash = get_command_hash(
|
||||
"", "", [project_dir / dep for dep in cmd.get("deps", [])], cmd["script"]
|
||||
)
|
||||
logger.debug("CMD_HASH: %s", cmd_hash)
|
||||
for output_path in cmd.get("outputs", []):
|
||||
output_loc = project_dir / output_path
|
||||
if output_loc.exists() and _is_not_empty_dir(output_loc):
|
||||
url = storage.push(
|
||||
output_path,
|
||||
command_hash=cmd_hash,
|
||||
content_hash=get_content_hash(output_loc),
|
||||
)
|
||||
logger.debug(
|
||||
"URL: %s for output %s with cmd_hash %s", url, output_path, cmd_hash
|
||||
)
|
||||
yield output_path, url
|
||||
|
||||
|
||||
def _is_not_empty_dir(loc: Path):
|
||||
if not loc.is_dir():
|
||||
return True
|
||||
elif any(_is_not_empty_dir(child) for child in loc.iterdir()):
|
||||
return True
|
||||
else:
|
||||
return False
|
|
@ -1,212 +0,0 @@
|
|||
import hashlib
|
||||
import os
|
||||
import site
|
||||
import tarfile
|
||||
import urllib.parse
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional
|
||||
|
||||
from wasabi import msg
|
||||
|
||||
from ... import about
|
||||
from ...errors import Errors
|
||||
from ...git_info import GIT_VERSION
|
||||
from ...util import ENV_VARS, check_bool_env_var, get_minor_version
|
||||
from .._util import (
|
||||
download_file,
|
||||
ensure_pathy,
|
||||
get_checksum,
|
||||
get_hash,
|
||||
make_tempdir,
|
||||
upload_file,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pathy import FluidPath # noqa: F401
|
||||
|
||||
|
||||
class RemoteStorage:
|
||||
"""Push and pull outputs to and from a remote file storage.
|
||||
|
||||
Remotes can be anything that `smart-open` can support: AWS, GCS, file system,
|
||||
ssh, etc.
|
||||
"""
|
||||
|
||||
def __init__(self, project_root: Path, url: str, *, compression="gz"):
|
||||
self.root = project_root
|
||||
self.url = ensure_pathy(url)
|
||||
self.compression = compression
|
||||
|
||||
def push(self, path: Path, command_hash: str, content_hash: str) -> "FluidPath":
|
||||
"""Compress a file or directory within a project and upload it to a remote
|
||||
storage. If an object exists at the full URL, nothing is done.
|
||||
|
||||
Within the remote storage, files are addressed by their project path
|
||||
(url encoded) and two user-supplied hashes, representing their creation
|
||||
context and their file contents. If the URL already exists, the data is
|
||||
not uploaded. Paths are archived and compressed prior to upload.
|
||||
"""
|
||||
loc = self.root / path
|
||||
if not loc.exists():
|
||||
raise IOError(f"Cannot push {loc}: does not exist.")
|
||||
url = self.make_url(path, command_hash, content_hash)
|
||||
if url.exists():
|
||||
return url
|
||||
tmp: Path
|
||||
with make_tempdir() as tmp:
|
||||
tar_loc = tmp / self.encode_name(str(path))
|
||||
mode_string = f"w:{self.compression}" if self.compression else "w"
|
||||
with tarfile.open(tar_loc, mode=mode_string) as tar_file:
|
||||
tar_file.add(str(loc), arcname=str(path))
|
||||
upload_file(tar_loc, url)
|
||||
return url
|
||||
|
||||
def pull(
|
||||
self,
|
||||
path: Path,
|
||||
*,
|
||||
command_hash: Optional[str] = None,
|
||||
content_hash: Optional[str] = None,
|
||||
) -> Optional["FluidPath"]:
|
||||
"""Retrieve a file from the remote cache. If the file already exists,
|
||||
nothing is done.
|
||||
|
||||
If the command_hash and/or content_hash are specified, only matching
|
||||
results are returned. If no results are available, an error is raised.
|
||||
"""
|
||||
dest = self.root / path
|
||||
if dest.exists():
|
||||
return None
|
||||
url = self.find(path, command_hash=command_hash, content_hash=content_hash)
|
||||
if url is None:
|
||||
return url
|
||||
else:
|
||||
# Make sure the destination exists
|
||||
if not dest.parent.exists():
|
||||
dest.parent.mkdir(parents=True)
|
||||
tmp: Path
|
||||
with make_tempdir() as tmp:
|
||||
tar_loc = tmp / url.parts[-1]
|
||||
download_file(url, tar_loc)
|
||||
mode_string = f"r:{self.compression}" if self.compression else "r"
|
||||
with tarfile.open(tar_loc, mode=mode_string) as tar_file:
|
||||
# This requires that the path is added correctly, relative
|
||||
# to root. This is how we set things up in push()
|
||||
|
||||
# Disallow paths outside the current directory for the tar
|
||||
# file (CVE-2007-4559, directory traversal vulnerability)
|
||||
def is_within_directory(directory, target):
|
||||
abs_directory = os.path.abspath(directory)
|
||||
abs_target = os.path.abspath(target)
|
||||
prefix = os.path.commonprefix([abs_directory, abs_target])
|
||||
return prefix == abs_directory
|
||||
|
||||
def safe_extract(tar, path):
|
||||
for member in tar.getmembers():
|
||||
member_path = os.path.join(path, member.name)
|
||||
if not is_within_directory(path, member_path):
|
||||
raise ValueError(Errors.E852)
|
||||
tar.extractall(path)
|
||||
|
||||
safe_extract(tar_file, self.root)
|
||||
return url
|
||||
|
||||
def find(
|
||||
self,
|
||||
path: Path,
|
||||
*,
|
||||
command_hash: Optional[str] = None,
|
||||
content_hash: Optional[str] = None,
|
||||
) -> Optional["FluidPath"]:
|
||||
"""Find the best matching version of a file within the storage,
|
||||
or `None` if no match can be found. If both the creation and content hash
|
||||
are specified, only exact matches will be returned. Otherwise, the most
|
||||
recent matching file is preferred.
|
||||
"""
|
||||
name = self.encode_name(str(path))
|
||||
urls = []
|
||||
if command_hash is not None and content_hash is not None:
|
||||
url = self.url / name / command_hash / content_hash
|
||||
urls = [url] if url.exists() else []
|
||||
elif command_hash is not None:
|
||||
if (self.url / name / command_hash).exists():
|
||||
urls = list((self.url / name / command_hash).iterdir())
|
||||
else:
|
||||
if (self.url / name).exists():
|
||||
for sub_dir in (self.url / name).iterdir():
|
||||
urls.extend(sub_dir.iterdir())
|
||||
if content_hash is not None:
|
||||
urls = [url for url in urls if url.parts[-1] == content_hash]
|
||||
if len(urls) >= 2:
|
||||
try:
|
||||
urls.sort(key=lambda x: x.stat().last_modified) # type: ignore
|
||||
except Exception:
|
||||
msg.warn(
|
||||
"Unable to sort remote files by last modified. The file(s) "
|
||||
"pulled from the cache may not be the most recent."
|
||||
)
|
||||
return urls[-1] if urls else None
|
||||
|
||||
def make_url(self, path: Path, command_hash: str, content_hash: str) -> "FluidPath":
|
||||
"""Construct a URL from a subpath, a creation hash and a content hash."""
|
||||
return self.url / self.encode_name(str(path)) / command_hash / content_hash
|
||||
|
||||
def encode_name(self, name: str) -> str:
|
||||
"""Encode a subpath into a URL-safe name."""
|
||||
return urllib.parse.quote_plus(name)
|
||||
|
||||
|
||||
def get_content_hash(loc: Path) -> str:
|
||||
return get_checksum(loc)
|
||||
|
||||
|
||||
def get_command_hash(
|
||||
site_hash: str, env_hash: str, deps: List[Path], cmd: List[str]
|
||||
) -> str:
|
||||
"""Create a hash representing the execution of a command. This includes the
|
||||
currently installed packages, whatever environment variables have been marked
|
||||
as relevant, and the command.
|
||||
"""
|
||||
if check_bool_env_var(ENV_VARS.PROJECT_USE_GIT_VERSION):
|
||||
spacy_v = GIT_VERSION
|
||||
else:
|
||||
spacy_v = str(get_minor_version(about.__version__) or "")
|
||||
dep_checksums = [get_checksum(dep) for dep in sorted(deps)]
|
||||
hashes = [spacy_v, site_hash, env_hash] + dep_checksums
|
||||
hashes.extend(cmd)
|
||||
creation_bytes = "".join(hashes).encode("utf8")
|
||||
return hashlib.md5(creation_bytes).hexdigest()
|
||||
|
||||
|
||||
def get_site_hash():
|
||||
"""Hash the current Python environment's site-packages contents, including
|
||||
the name and version of the libraries. The list we're hashing is what
|
||||
`pip freeze` would output.
|
||||
"""
|
||||
site_dirs = site.getsitepackages()
|
||||
if site.ENABLE_USER_SITE:
|
||||
site_dirs.extend(site.getusersitepackages())
|
||||
packages = set()
|
||||
for site_dir in site_dirs:
|
||||
site_dir = Path(site_dir)
|
||||
for subpath in site_dir.iterdir():
|
||||
if subpath.parts[-1].endswith("dist-info"):
|
||||
packages.add(subpath.parts[-1].replace(".dist-info", ""))
|
||||
package_bytes = "".join(sorted(packages)).encode("utf8")
|
||||
return hashlib.md5sum(package_bytes).hexdigest()
|
||||
|
||||
|
||||
def get_env_hash(env: Dict[str, str]) -> str:
|
||||
"""Construct a hash of the environment variables that will be passed into
|
||||
the commands.
|
||||
|
||||
Values in the env dict may be references to the current os.environ, using
|
||||
the syntax $ENV_VAR to mean os.environ[ENV_VAR]
|
||||
"""
|
||||
env_vars = {}
|
||||
for key, value in env.items():
|
||||
if value.startswith("$"):
|
||||
env_vars[key] = os.environ.get(value[1:], "")
|
||||
else:
|
||||
env_vars[key] = value
|
||||
return get_hash(env_vars)
|
|
@ -1,379 +0,0 @@
|
|||
import os.path
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Iterable, List, Optional, Sequence, Tuple
|
||||
|
||||
import srsly
|
||||
import typer
|
||||
from wasabi import msg
|
||||
from wasabi.util import locale_escape
|
||||
|
||||
from ... import about
|
||||
from ...git_info import GIT_VERSION
|
||||
from ...util import (
|
||||
ENV_VARS,
|
||||
SimpleFrozenDict,
|
||||
SimpleFrozenList,
|
||||
check_bool_env_var,
|
||||
is_cwd,
|
||||
is_minor_version_match,
|
||||
join_command,
|
||||
run_command,
|
||||
split_command,
|
||||
working_dir,
|
||||
)
|
||||
from .._util import (
|
||||
COMMAND,
|
||||
PROJECT_FILE,
|
||||
PROJECT_LOCK,
|
||||
Arg,
|
||||
Opt,
|
||||
get_checksum,
|
||||
get_hash,
|
||||
load_project_config,
|
||||
parse_config_overrides,
|
||||
project_cli,
|
||||
)
|
||||
|
||||
|
||||
@project_cli.command(
|
||||
"run", context_settings={"allow_extra_args": True, "ignore_unknown_options": True}
|
||||
)
|
||||
def project_run_cli(
|
||||
# fmt: off
|
||||
ctx: typer.Context, # This is only used to read additional arguments
|
||||
subcommand: str = Arg(None, help=f"Name of command defined in the {PROJECT_FILE}"),
|
||||
project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False),
|
||||
force: bool = Opt(False, "--force", "-F", help="Force re-running steps, even if nothing changed"),
|
||||
dry: bool = Opt(False, "--dry", "-D", help="Perform a dry run and don't execute scripts"),
|
||||
show_help: bool = Opt(False, "--help", help="Show help message and available subcommands")
|
||||
# fmt: on
|
||||
):
|
||||
"""Run a named command or workflow defined in the project.yml. If a workflow
|
||||
name is specified, all commands in the workflow are run, in order. If
|
||||
commands define dependencies and/or outputs, they will only be re-run if
|
||||
state has changed.
|
||||
|
||||
DOCS: https://spacy.io/api/cli#project-run
|
||||
"""
|
||||
if show_help or not subcommand:
|
||||
print_run_help(project_dir, subcommand)
|
||||
else:
|
||||
overrides = parse_config_overrides(ctx.args)
|
||||
project_run(project_dir, subcommand, overrides=overrides, force=force, dry=dry)
|
||||
|
||||
|
||||
def project_run(
|
||||
project_dir: Path,
|
||||
subcommand: str,
|
||||
*,
|
||||
overrides: Dict[str, Any] = SimpleFrozenDict(),
|
||||
force: bool = False,
|
||||
dry: bool = False,
|
||||
capture: bool = False,
|
||||
skip_requirements_check: bool = False,
|
||||
) -> None:
|
||||
"""Run a named script defined in the project.yml. If the script is part
|
||||
of the default pipeline (defined in the "run" section), DVC is used to
|
||||
execute the command, so it can determine whether to rerun it. It then
|
||||
calls into "exec" to execute it.
|
||||
|
||||
project_dir (Path): Path to project directory.
|
||||
subcommand (str): Name of command to run.
|
||||
overrides (Dict[str, Any]): Optional config overrides.
|
||||
force (bool): Force re-running, even if nothing changed.
|
||||
dry (bool): Perform a dry run and don't execute commands.
|
||||
capture (bool): Whether to capture the output and errors of individual commands.
|
||||
If False, the stdout and stderr will not be redirected, and if there's an error,
|
||||
sys.exit will be called with the return code. You should use capture=False
|
||||
when you want to turn over execution to the command, and capture=True
|
||||
when you want to run the command more like a function.
|
||||
skip_requirements_check (bool): Whether to skip the requirements check.
|
||||
"""
|
||||
config = load_project_config(project_dir, overrides=overrides)
|
||||
commands = {cmd["name"]: cmd for cmd in config.get("commands", [])}
|
||||
workflows = config.get("workflows", {})
|
||||
validate_subcommand(list(commands.keys()), list(workflows.keys()), subcommand)
|
||||
|
||||
req_path = project_dir / "requirements.txt"
|
||||
if not skip_requirements_check:
|
||||
if config.get("check_requirements", True) and os.path.exists(req_path):
|
||||
with req_path.open() as requirements_file:
|
||||
_check_requirements([req.strip() for req in requirements_file])
|
||||
|
||||
if subcommand in workflows:
|
||||
msg.info(f"Running workflow '{subcommand}'")
|
||||
for cmd in workflows[subcommand]:
|
||||
project_run(
|
||||
project_dir,
|
||||
cmd,
|
||||
overrides=overrides,
|
||||
force=force,
|
||||
dry=dry,
|
||||
capture=capture,
|
||||
skip_requirements_check=True,
|
||||
)
|
||||
else:
|
||||
cmd = commands[subcommand]
|
||||
for dep in cmd.get("deps", []):
|
||||
if not (project_dir / dep).exists():
|
||||
err = f"Missing dependency specified by command '{subcommand}': {dep}"
|
||||
err_help = "Maybe you forgot to run the 'project assets' command or a previous step?"
|
||||
err_exits = 1 if not dry else None
|
||||
msg.fail(err, err_help, exits=err_exits)
|
||||
check_spacy_commit = check_bool_env_var(ENV_VARS.PROJECT_USE_GIT_VERSION)
|
||||
with working_dir(project_dir) as current_dir:
|
||||
msg.divider(subcommand)
|
||||
rerun = check_rerun(current_dir, cmd, check_spacy_commit=check_spacy_commit)
|
||||
if not rerun and not force:
|
||||
msg.info(f"Skipping '{cmd['name']}': nothing changed")
|
||||
else:
|
||||
run_commands(cmd["script"], dry=dry, capture=capture)
|
||||
if not dry:
|
||||
update_lockfile(current_dir, cmd)
|
||||
|
||||
|
||||
def print_run_help(project_dir: Path, subcommand: Optional[str] = None) -> None:
|
||||
"""Simulate a CLI help prompt using the info available in the project.yml.
|
||||
|
||||
project_dir (Path): The project directory.
|
||||
subcommand (Optional[str]): The subcommand or None. If a subcommand is
|
||||
provided, the subcommand help is shown. Otherwise, the top-level help
|
||||
and a list of available commands is printed.
|
||||
"""
|
||||
config = load_project_config(project_dir)
|
||||
config_commands = config.get("commands", [])
|
||||
commands = {cmd["name"]: cmd for cmd in config_commands}
|
||||
workflows = config.get("workflows", {})
|
||||
project_loc = "" if is_cwd(project_dir) else project_dir
|
||||
if subcommand:
|
||||
validate_subcommand(list(commands.keys()), list(workflows.keys()), subcommand)
|
||||
print(f"Usage: {COMMAND} project run {subcommand} {project_loc}")
|
||||
if subcommand in commands:
|
||||
help_text = commands[subcommand].get("help")
|
||||
if help_text:
|
||||
print(f"\n{help_text}\n")
|
||||
elif subcommand in workflows:
|
||||
steps = workflows[subcommand]
|
||||
print(f"\nWorkflow consisting of {len(steps)} commands:")
|
||||
steps_data = [
|
||||
(f"{i + 1}. {step}", commands[step].get("help", ""))
|
||||
for i, step in enumerate(steps)
|
||||
]
|
||||
msg.table(steps_data)
|
||||
help_cmd = f"{COMMAND} project run [COMMAND] {project_loc} --help"
|
||||
print(f"For command details, run: {help_cmd}")
|
||||
else:
|
||||
print("")
|
||||
title = config.get("title")
|
||||
if title:
|
||||
print(f"{locale_escape(title)}\n")
|
||||
if config_commands:
|
||||
print(f"Available commands in {PROJECT_FILE}")
|
||||
print(f"Usage: {COMMAND} project run [COMMAND] {project_loc}")
|
||||
msg.table([(cmd["name"], cmd.get("help", "")) for cmd in config_commands])
|
||||
if workflows:
|
||||
print(f"Available workflows in {PROJECT_FILE}")
|
||||
print(f"Usage: {COMMAND} project run [WORKFLOW] {project_loc}")
|
||||
msg.table([(name, " -> ".join(steps)) for name, steps in workflows.items()])
|
||||
|
||||
|
||||
def run_commands(
|
||||
commands: Iterable[str] = SimpleFrozenList(),
|
||||
silent: bool = False,
|
||||
dry: bool = False,
|
||||
capture: bool = False,
|
||||
) -> None:
|
||||
"""Run a sequence of commands in a subprocess, in order.
|
||||
|
||||
commands (List[str]): The string commands.
|
||||
silent (bool): Don't print the commands.
|
||||
dry (bool): Perform a dry run and don't execut anything.
|
||||
capture (bool): Whether to capture the output and errors of individual commands.
|
||||
If False, the stdout and stderr will not be redirected, and if there's an error,
|
||||
sys.exit will be called with the return code. You should use capture=False
|
||||
when you want to turn over execution to the command, and capture=True
|
||||
when you want to run the command more like a function.
|
||||
"""
|
||||
for c in commands:
|
||||
command = split_command(c)
|
||||
# Not sure if this is needed or a good idea. Motivation: users may often
|
||||
# use commands in their config that reference "python" and we want to
|
||||
# make sure that it's always executing the same Python that spaCy is
|
||||
# executed with and the pip in the same env, not some other Python/pip.
|
||||
# Also ensures cross-compatibility if user 1 writes "python3" (because
|
||||
# that's how it's set up on their system), and user 2 without the
|
||||
# shortcut tries to re-run the command.
|
||||
if len(command) and command[0] in ("python", "python3"):
|
||||
command[0] = sys.executable
|
||||
elif len(command) and command[0] in ("pip", "pip3"):
|
||||
command = [sys.executable, "-m", "pip", *command[1:]]
|
||||
if not silent:
|
||||
print(f"Running command: {join_command(command)}")
|
||||
if not dry:
|
||||
run_command(command, capture=capture)
|
||||
|
||||
|
||||
def validate_subcommand(
|
||||
commands: Sequence[str], workflows: Sequence[str], subcommand: str
|
||||
) -> None:
|
||||
"""Check that a subcommand is valid and defined. Raises an error otherwise.
|
||||
|
||||
commands (Sequence[str]): The available commands.
|
||||
subcommand (str): The subcommand.
|
||||
"""
|
||||
if not commands and not workflows:
|
||||
msg.fail(f"No commands or workflows defined in {PROJECT_FILE}", exits=1)
|
||||
if subcommand not in commands and subcommand not in workflows:
|
||||
help_msg = []
|
||||
if subcommand in ["assets", "asset"]:
|
||||
help_msg.append("Did you mean to run: python -m spacy project assets?")
|
||||
if commands:
|
||||
help_msg.append(f"Available commands: {', '.join(commands)}")
|
||||
if workflows:
|
||||
help_msg.append(f"Available workflows: {', '.join(workflows)}")
|
||||
msg.fail(
|
||||
f"Can't find command or workflow '{subcommand}' in {PROJECT_FILE}",
|
||||
". ".join(help_msg),
|
||||
exits=1,
|
||||
)
|
||||
|
||||
|
||||
def check_rerun(
|
||||
project_dir: Path,
|
||||
command: Dict[str, Any],
|
||||
*,
|
||||
check_spacy_version: bool = True,
|
||||
check_spacy_commit: bool = False,
|
||||
) -> bool:
|
||||
"""Check if a command should be rerun because its settings or inputs/outputs
|
||||
changed.
|
||||
|
||||
project_dir (Path): The current project directory.
|
||||
command (Dict[str, Any]): The command, as defined in the project.yml.
|
||||
strict_version (bool):
|
||||
RETURNS (bool): Whether to re-run the command.
|
||||
"""
|
||||
# Always rerun if no-skip is set
|
||||
if command.get("no_skip", False):
|
||||
return True
|
||||
lock_path = project_dir / PROJECT_LOCK
|
||||
if not lock_path.exists(): # We don't have a lockfile, run command
|
||||
return True
|
||||
data = srsly.read_yaml(lock_path)
|
||||
if command["name"] not in data: # We don't have info about this command
|
||||
return True
|
||||
entry = data[command["name"]]
|
||||
# Always run commands with no outputs (otherwise they'd always be skipped)
|
||||
if not entry.get("outs", []):
|
||||
return True
|
||||
# Always rerun if spaCy version or commit hash changed
|
||||
spacy_v = entry.get("spacy_version")
|
||||
commit = entry.get("spacy_git_version")
|
||||
if check_spacy_version and not is_minor_version_match(spacy_v, about.__version__):
|
||||
info = f"({spacy_v} in {PROJECT_LOCK}, {about.__version__} current)"
|
||||
msg.info(f"Re-running '{command['name']}': spaCy minor version changed {info}")
|
||||
return True
|
||||
if check_spacy_commit and commit != GIT_VERSION:
|
||||
info = f"({commit} in {PROJECT_LOCK}, {GIT_VERSION} current)"
|
||||
msg.info(f"Re-running '{command['name']}': spaCy commit changed {info}")
|
||||
return True
|
||||
# If the entry in the lockfile matches the lockfile entry that would be
|
||||
# generated from the current command, we don't rerun because it means that
|
||||
# all inputs/outputs, hashes and scripts are the same and nothing changed
|
||||
lock_entry = get_lock_entry(project_dir, command)
|
||||
exclude = ["spacy_version", "spacy_git_version"]
|
||||
return get_hash(lock_entry, exclude=exclude) != get_hash(entry, exclude=exclude)
|
||||
|
||||
|
||||
def update_lockfile(project_dir: Path, command: Dict[str, Any]) -> None:
|
||||
"""Update the lockfile after running a command. Will create a lockfile if
|
||||
it doesn't yet exist and will add an entry for the current command, its
|
||||
script and dependencies/outputs.
|
||||
|
||||
project_dir (Path): The current project directory.
|
||||
command (Dict[str, Any]): The command, as defined in the project.yml.
|
||||
"""
|
||||
lock_path = project_dir / PROJECT_LOCK
|
||||
if not lock_path.exists():
|
||||
srsly.write_yaml(lock_path, {})
|
||||
data = {}
|
||||
else:
|
||||
data = srsly.read_yaml(lock_path)
|
||||
data[command["name"]] = get_lock_entry(project_dir, command)
|
||||
srsly.write_yaml(lock_path, data)
|
||||
|
||||
|
||||
def get_lock_entry(project_dir: Path, command: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Get a lockfile entry for a given command. An entry includes the command,
|
||||
the script (command steps) and a list of dependencies and outputs with
|
||||
their paths and file hashes, if available. The format is based on the
|
||||
dvc.lock files, to keep things consistent.
|
||||
|
||||
project_dir (Path): The current project directory.
|
||||
command (Dict[str, Any]): The command, as defined in the project.yml.
|
||||
RETURNS (Dict[str, Any]): The lockfile entry.
|
||||
"""
|
||||
deps = get_fileinfo(project_dir, command.get("deps", []))
|
||||
outs = get_fileinfo(project_dir, command.get("outputs", []))
|
||||
outs_nc = get_fileinfo(project_dir, command.get("outputs_no_cache", []))
|
||||
return {
|
||||
"cmd": f"{COMMAND} run {command['name']}",
|
||||
"script": command["script"],
|
||||
"deps": deps,
|
||||
"outs": [*outs, *outs_nc],
|
||||
"spacy_version": about.__version__,
|
||||
"spacy_git_version": GIT_VERSION,
|
||||
}
|
||||
|
||||
|
||||
def get_fileinfo(project_dir: Path, paths: List[str]) -> List[Dict[str, Optional[str]]]:
|
||||
"""Generate the file information for a list of paths (dependencies, outputs).
|
||||
Includes the file path and the file's checksum.
|
||||
|
||||
project_dir (Path): The current project directory.
|
||||
paths (List[str]): The file paths.
|
||||
RETURNS (List[Dict[str, str]]): The lockfile entry for a file.
|
||||
"""
|
||||
data = []
|
||||
for path in paths:
|
||||
file_path = project_dir / path
|
||||
md5 = get_checksum(file_path) if file_path.exists() else None
|
||||
data.append({"path": path, "md5": md5})
|
||||
return data
|
||||
|
||||
|
||||
def _check_requirements(requirements: List[str]) -> Tuple[bool, bool]:
|
||||
"""Checks whether requirements are installed and free of version conflicts.
|
||||
requirements (List[str]): List of requirements.
|
||||
RETURNS (Tuple[bool, bool]): Whether (1) any packages couldn't be imported, (2) any packages with version conflicts
|
||||
exist.
|
||||
"""
|
||||
import pkg_resources
|
||||
|
||||
failed_pkgs_msgs: List[str] = []
|
||||
conflicting_pkgs_msgs: List[str] = []
|
||||
|
||||
for req in requirements:
|
||||
try:
|
||||
pkg_resources.require(req)
|
||||
except pkg_resources.DistributionNotFound as dnf:
|
||||
failed_pkgs_msgs.append(dnf.report())
|
||||
except pkg_resources.VersionConflict as vc:
|
||||
conflicting_pkgs_msgs.append(vc.report())
|
||||
except Exception:
|
||||
msg.warn(
|
||||
f"Unable to check requirement: {req} "
|
||||
"Checks are currently limited to requirement specifiers "
|
||||
"(PEP 508)"
|
||||
)
|
||||
|
||||
if len(failed_pkgs_msgs) or len(conflicting_pkgs_msgs):
|
||||
msg.warn(
|
||||
title="Missing requirements or requirement conflicts detected. Make sure your Python environment is set up "
|
||||
"correctly and you installed all requirements specified in your project's requirements.txt: "
|
||||
)
|
||||
for pgk_msg in failed_pkgs_msgs + conflicting_pkgs_msgs:
|
||||
msg.text(pgk_msg)
|
||||
|
||||
return len(failed_pkgs_msgs) > 0, len(conflicting_pkgs_msgs) > 0
|
|
@ -26,6 +26,9 @@ batch_size = 1000
|
|||
[nlp.tokenizer]
|
||||
@tokenizers = "spacy.Tokenizer.v1"
|
||||
|
||||
[nlp.vectors]
|
||||
@vectors = "spacy.Vectors.v1"
|
||||
|
||||
# The pipeline components and their models
|
||||
[components]
|
||||
|
||||
|
|
|
@ -219,6 +219,7 @@ class Warnings(metaclass=ErrorsWithCodes):
|
|||
W125 = ("The StaticVectors key_attr is no longer used. To set a custom "
|
||||
"key attribute for vectors, configure it through Vectors(attr=) or "
|
||||
"'spacy init vectors --attr'")
|
||||
W126 = ("These keys are unsupported: {unsupported}")
|
||||
|
||||
|
||||
class Errors(metaclass=ErrorsWithCodes):
|
||||
|
@ -553,12 +554,12 @@ class Errors(metaclass=ErrorsWithCodes):
|
|||
"during training, make sure to include it in 'annotating components'")
|
||||
|
||||
# New errors added in v3.x
|
||||
E849 = ("The vocab only supports {method} for vectors of type "
|
||||
"spacy.vectors.Vectors, not {vectors_type}.")
|
||||
E850 = ("The PretrainVectors objective currently only supports default or "
|
||||
"floret vectors, not {mode} vectors.")
|
||||
E851 = ("The 'textcat' component labels should only have values of 0 or 1, "
|
||||
"but found value of '{val}'.")
|
||||
E852 = ("The tar file pulled from the remote attempted an unsafe path "
|
||||
"traversal.")
|
||||
E853 = ("Unsupported component factory name '{name}'. The character '.' is "
|
||||
"not permitted in factory names.")
|
||||
E854 = ("Unable to set doc.ents. Check that the 'ents_filter' does not "
|
||||
|
@ -981,6 +982,8 @@ class Errors(metaclass=ErrorsWithCodes):
|
|||
" 'min_length': {min_length}, 'max_length': {max_length}")
|
||||
E1054 = ("The text, including whitespace, must match between reference and "
|
||||
"predicted docs when training {component}.")
|
||||
E1055 = ("The 'replace_listener' callback expects {num_params} parameters, "
|
||||
"but only callbacks with one or three parameters are supported")
|
||||
|
||||
|
||||
# Deprecated model shortcuts, only used in errors and warnings
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True
|
||||
# cython: infer_types=True
|
||||
|
||||
from typing import Iterable
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True
|
||||
# cython: infer_types=True
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Iterable, Tuple, Union
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True
|
||||
# cython: infer_types=True
|
||||
from typing import Any, Callable, Dict, Iterable
|
||||
|
||||
import srsly
|
||||
|
|
|
@ -163,7 +163,7 @@ class SpanishLemmatizer(Lemmatizer):
|
|||
for old, new in self.lookups.get_table("lemma_rules").get("det", []):
|
||||
if word == old:
|
||||
return [new]
|
||||
# If none of the specfic rules apply, search in the common rules for
|
||||
# If none of the specific rules apply, search in the common rules for
|
||||
# determiners and pronouns that follow a unique pattern for
|
||||
# lemmatization. If the word is in the list, return the corresponding
|
||||
# lemma.
|
||||
|
@ -291,7 +291,7 @@ class SpanishLemmatizer(Lemmatizer):
|
|||
for old, new in self.lookups.get_table("lemma_rules").get("pron", []):
|
||||
if word == old:
|
||||
return [new]
|
||||
# If none of the specfic rules apply, search in the common rules for
|
||||
# If none of the specific rules apply, search in the common rules for
|
||||
# determiners and pronouns that follow a unique pattern for
|
||||
# lemmatization. If the word is in the list, return the corresponding
|
||||
# lemma.
|
||||
|
|
|
@ -15,6 +15,7 @@ _prefixes = (
|
|||
[
|
||||
"†",
|
||||
"⸏",
|
||||
"〈",
|
||||
]
|
||||
+ LIST_PUNCT
|
||||
+ LIST_ELLIPSES
|
||||
|
@ -31,6 +32,7 @@ _suffixes = (
|
|||
+ [
|
||||
"†",
|
||||
"⸎",
|
||||
"〉",
|
||||
r"(?<=[\u1F00-\u1FFF\u0370-\u03FF])[\-\.⸏]",
|
||||
]
|
||||
)
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import functools
|
||||
import inspect
|
||||
import itertools
|
||||
import multiprocessing as mp
|
||||
import random
|
||||
|
@ -64,6 +65,7 @@ from .util import (
|
|||
registry,
|
||||
warn_if_jupyter_cupy,
|
||||
)
|
||||
from .vectors import BaseVectors
|
||||
from .vocab import Vocab, create_vocab
|
||||
|
||||
PipeCallable = Callable[[Doc], Doc]
|
||||
|
@ -157,6 +159,7 @@ class Language:
|
|||
max_length: int = 10**6,
|
||||
meta: Dict[str, Any] = {},
|
||||
create_tokenizer: Optional[Callable[["Language"], Callable[[str], Doc]]] = None,
|
||||
create_vectors: Optional[Callable[["Vocab"], BaseVectors]] = None,
|
||||
batch_size: int = 1000,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
|
@ -197,6 +200,10 @@ class Language:
|
|||
if vocab is True:
|
||||
vectors_name = meta.get("vectors", {}).get("name")
|
||||
vocab = create_vocab(self.lang, self.Defaults, vectors_name=vectors_name)
|
||||
if not create_vectors:
|
||||
vectors_cfg = {"vectors": self._config["nlp"]["vectors"]}
|
||||
create_vectors = registry.resolve(vectors_cfg)["vectors"]
|
||||
vocab.vectors = create_vectors(vocab)
|
||||
else:
|
||||
if (self.lang and vocab.lang) and (self.lang != vocab.lang):
|
||||
raise ValueError(Errors.E150.format(nlp=self.lang, vocab=vocab.lang))
|
||||
|
@ -1764,6 +1771,10 @@ class Language:
|
|||
).merge(config)
|
||||
if "nlp" not in config:
|
||||
raise ValueError(Errors.E985.format(config=config))
|
||||
# fill in [nlp.vectors] if not present (as a narrower alternative to
|
||||
# auto-filling [nlp] from the default config)
|
||||
if "vectors" not in config["nlp"]:
|
||||
config["nlp"]["vectors"] = {"@vectors": "spacy.Vectors.v1"}
|
||||
config_lang = config["nlp"].get("lang")
|
||||
if config_lang is not None and config_lang != cls.lang:
|
||||
raise ValueError(
|
||||
|
@ -1795,6 +1806,7 @@ class Language:
|
|||
filled["nlp"], validate=validate, schema=ConfigSchemaNlp
|
||||
)
|
||||
create_tokenizer = resolved_nlp["tokenizer"]
|
||||
create_vectors = resolved_nlp["vectors"]
|
||||
before_creation = resolved_nlp["before_creation"]
|
||||
after_creation = resolved_nlp["after_creation"]
|
||||
after_pipeline_creation = resolved_nlp["after_pipeline_creation"]
|
||||
|
@ -1815,7 +1827,12 @@ class Language:
|
|||
# inside stuff like the spacy train function. If we loaded them here,
|
||||
# then we would load them twice at runtime: once when we make from config,
|
||||
# and then again when we load from disk.
|
||||
nlp = lang_cls(vocab=vocab, create_tokenizer=create_tokenizer, meta=meta)
|
||||
nlp = lang_cls(
|
||||
vocab=vocab,
|
||||
create_tokenizer=create_tokenizer,
|
||||
create_vectors=create_vectors,
|
||||
meta=meta,
|
||||
)
|
||||
if after_creation is not None:
|
||||
nlp = after_creation(nlp)
|
||||
if not isinstance(nlp, cls):
|
||||
|
@ -2032,8 +2049,20 @@ class Language:
|
|||
# Go over the listener layers and replace them
|
||||
for listener in pipe_listeners:
|
||||
new_model = tok2vec_model.copy()
|
||||
if "replace_listener" in tok2vec_model.attrs:
|
||||
new_model = tok2vec_model.attrs["replace_listener"](new_model)
|
||||
replace_listener_func = tok2vec_model.attrs.get("replace_listener")
|
||||
if replace_listener_func is not None:
|
||||
# Pass the extra args to the callback without breaking compatibility with
|
||||
# old library versions that only expect a single parameter.
|
||||
num_params = len(
|
||||
inspect.signature(replace_listener_func).parameters
|
||||
)
|
||||
if num_params == 1:
|
||||
new_model = replace_listener_func(new_model)
|
||||
elif num_params == 3:
|
||||
new_model = replace_listener_func(new_model, listener, tok2vec)
|
||||
else:
|
||||
raise ValueError(Errors.E1055.format(num_params=num_params))
|
||||
|
||||
util.replace_model_node(pipe.model, listener, new_model) # type: ignore[attr-defined]
|
||||
tok2vec.remove_listener(listener, pipe_name)
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: embedsignature=True
|
||||
# cython: profile=False
|
||||
# Compiler crashes on memory view coercion without this. Should report bug.
|
||||
cimport numpy as np
|
||||
from libc.string cimport memset
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True
|
||||
# cython: infer_types=True
|
||||
import warnings
|
||||
from collections import defaultdict
|
||||
from itertools import product
|
||||
|
@ -129,6 +129,7 @@ cdef class DependencyMatcher:
|
|||
else:
|
||||
required_keys = {"RIGHT_ID", "RIGHT_ATTRS", "REL_OP", "LEFT_ID"}
|
||||
relation_keys = set(relation.keys())
|
||||
# Identify required keys that have not been specified
|
||||
missing = required_keys - relation_keys
|
||||
if missing:
|
||||
missing_txt = ", ".join(list(missing))
|
||||
|
@ -136,6 +137,13 @@ cdef class DependencyMatcher:
|
|||
required=required_keys,
|
||||
missing=missing_txt
|
||||
))
|
||||
# Identify additional, unsupported keys
|
||||
unsupported = relation_keys - required_keys
|
||||
if unsupported:
|
||||
unsupported_txt = ", ".join(list(unsupported))
|
||||
warnings.warn(Warnings.W126.format(
|
||||
unsupported=unsupported_txt
|
||||
))
|
||||
if (
|
||||
relation["RIGHT_ID"] in visited_nodes
|
||||
or relation["LEFT_ID"] not in visited_nodes
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: profile=True, binding=True, infer_types=True
|
||||
# cython: binding=True, infer_types=True
|
||||
from cpython.object cimport PyObject
|
||||
from libc.stdint cimport int64_t
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: binding=True, infer_types=True, profile=True
|
||||
# cython: binding=True, infer_types=True
|
||||
from typing import Iterable, List
|
||||
|
||||
from cymem.cymem cimport Pool
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True
|
||||
# cython: infer_types=True
|
||||
from preshed.maps cimport map_clear, map_get, map_init, map_iter, map_set
|
||||
|
||||
import warnings
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: infer_types=True, cdivision=True, boundscheck=False
|
||||
# cython: profile=False
|
||||
cimport numpy as np
|
||||
from libc.math cimport exp
|
||||
from libc.stdlib cimport calloc, free, realloc
|
||||
|
|
|
@ -9,7 +9,7 @@ from thinc.util import partial
|
|||
from ..attrs import ORTH
|
||||
from ..errors import Errors, Warnings
|
||||
from ..tokens import Doc
|
||||
from ..vectors import Mode
|
||||
from ..vectors import Mode, Vectors
|
||||
from ..vocab import Vocab
|
||||
|
||||
|
||||
|
@ -48,11 +48,14 @@ def forward(
|
|||
key_attr: int = getattr(vocab.vectors, "attr", ORTH)
|
||||
keys = model.ops.flatten([cast(Ints1d, doc.to_array(key_attr)) for doc in docs])
|
||||
W = cast(Floats2d, model.ops.as_contig(model.get_param("W")))
|
||||
if vocab.vectors.mode == Mode.default:
|
||||
if isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.default:
|
||||
V = model.ops.asarray(vocab.vectors.data)
|
||||
rows = vocab.vectors.find(keys=keys)
|
||||
V = model.ops.as_contig(V[rows])
|
||||
elif vocab.vectors.mode == Mode.floret:
|
||||
elif isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.floret:
|
||||
V = vocab.vectors.get_batch(keys)
|
||||
V = model.ops.as_contig(V)
|
||||
elif hasattr(vocab.vectors, "get_batch"):
|
||||
V = vocab.vectors.get_batch(keys)
|
||||
V = model.ops.as_contig(V)
|
||||
else:
|
||||
|
@ -61,7 +64,7 @@ def forward(
|
|||
vectors_data = model.ops.gemm(V, W, trans2=True)
|
||||
except ValueError:
|
||||
raise RuntimeError(Errors.E896)
|
||||
if vocab.vectors.mode == Mode.default:
|
||||
if isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.default:
|
||||
# Convert negative indices to 0-vectors
|
||||
# TODO: more options for UNK tokens
|
||||
vectors_data[rows < 0] = 0
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: infer_types
|
||||
# cython: profile=False
|
||||
import warnings
|
||||
|
||||
import numpy
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
|
||||
# cython: profile=False
|
||||
IDS = {
|
||||
"": NO_TAG,
|
||||
"ADJ": ADJ,
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: infer_types=True, binding=True
|
||||
# cython: profile=False
|
||||
from cython.operator cimport dereference as deref
|
||||
from libc.stdint cimport UINT32_MAX, uint32_t
|
||||
from libc.string cimport memset
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
# cython: infer_types=True
|
||||
# cython: profile=True
|
||||
import numpy
|
||||
|
||||
from thinc.extra.search cimport Beam
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
# cython: profile=False
|
|
@ -1,4 +1,4 @@
|
|||
# cython: profile=True, cdivision=True, infer_types=True
|
||||
# cython: cdivision=True, infer_types=True
|
||||
from cymem.cymem cimport Address, Pool
|
||||
from libc.stdint cimport int32_t
|
||||
from libcpp.vector cimport vector
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# cython: profile=False
|
||||
from cymem.cymem cimport Pool
|
||||
from libc.stdint cimport int32_t
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: profile=True, infer_types=True
|
||||
# cython: infer_types=True
|
||||
"""Implements the projectivize/deprojectivize mechanism in Nivre & Nilsson 2005
|
||||
for doing pseudo-projective parsing implementation uses the HEAD decoration
|
||||
scheme.
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: infer_types=True
|
||||
# cython: profile=False
|
||||
from libcpp.vector cimport vector
|
||||
|
||||
from ...tokens.doc cimport Doc
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: infer_types=True
|
||||
# cython: profile=False
|
||||
from __future__ import print_function
|
||||
|
||||
from cymem.cymem cimport Pool
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
# cython: infer_types=True, binding=True
|
||||
from collections import defaultdict
|
||||
from typing import Callable, Optional
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
# cython: infer_types=True, binding=True
|
||||
from itertools import islice
|
||||
from typing import Callable, Dict, Optional, Union
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
# cython: infer_types=True, binding=True
|
||||
from typing import Optional
|
||||
|
||||
import numpy
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
# cython: infer_types=True, binding=True
|
||||
from collections import defaultdict
|
||||
from typing import Callable, Optional
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
# cython: infer_types=True, binding=True
|
||||
import warnings
|
||||
from typing import Callable, Dict, Iterable, Iterator, Tuple, Union
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
# cython: infer_types=True, binding=True
|
||||
from typing import Callable, List, Optional
|
||||
|
||||
import srsly
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
# cython: infer_types=True, binding=True
|
||||
from itertools import islice
|
||||
from typing import Callable, Optional
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
# cython: infer_types=True, binding=True
|
||||
from itertools import islice
|
||||
from typing import Callable, Optional
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
# cython: infer_types=True, binding=True
|
||||
from typing import Callable, Dict, Iterable, Iterator, Optional, Tuple
|
||||
|
||||
import srsly
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: infer_types=True, cdivision=True, boundscheck=False, binding=True
|
||||
# cython: profile=False
|
||||
from __future__ import print_function
|
||||
|
||||
cimport numpy as np
|
||||
|
|
|
@ -412,6 +412,7 @@ class ConfigSchemaNlp(BaseModel):
|
|||
after_creation: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after creation and before the pipeline is constructed")
|
||||
after_pipeline_creation: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after the pipeline is constructed")
|
||||
batch_size: Optional[int] = Field(..., title="Default batch size")
|
||||
vectors: Callable = Field(..., title="Vectors implementation")
|
||||
# fmt: on
|
||||
|
||||
class Config:
|
||||
|
@ -480,66 +481,6 @@ CONFIG_SCHEMAS = {
|
|||
"initialize": ConfigSchemaInit,
|
||||
}
|
||||
|
||||
|
||||
# Project config Schema
|
||||
|
||||
|
||||
class ProjectConfigAssetGitItem(BaseModel):
|
||||
# fmt: off
|
||||
repo: StrictStr = Field(..., title="URL of Git repo to download from")
|
||||
path: StrictStr = Field(..., title="File path or sub-directory to download (used for sparse checkout)")
|
||||
branch: StrictStr = Field("master", title="Branch to clone from")
|
||||
# fmt: on
|
||||
|
||||
|
||||
class ProjectConfigAssetURL(BaseModel):
|
||||
# fmt: off
|
||||
dest: StrictStr = Field(..., title="Destination of downloaded asset")
|
||||
url: Optional[StrictStr] = Field(None, title="URL of asset")
|
||||
checksum: Optional[str] = Field(None, title="MD5 hash of file", regex=r"([a-fA-F\d]{32})")
|
||||
description: StrictStr = Field("", title="Description of asset")
|
||||
# fmt: on
|
||||
|
||||
|
||||
class ProjectConfigAssetGit(BaseModel):
|
||||
# fmt: off
|
||||
git: ProjectConfigAssetGitItem = Field(..., title="Git repo information")
|
||||
checksum: Optional[str] = Field(None, title="MD5 hash of file", regex=r"([a-fA-F\d]{32})")
|
||||
description: Optional[StrictStr] = Field(None, title="Description of asset")
|
||||
# fmt: on
|
||||
|
||||
|
||||
class ProjectConfigCommand(BaseModel):
|
||||
# fmt: off
|
||||
name: StrictStr = Field(..., title="Name of command")
|
||||
help: Optional[StrictStr] = Field(None, title="Command description")
|
||||
script: List[StrictStr] = Field([], title="List of CLI commands to run, in order")
|
||||
deps: List[StrictStr] = Field([], title="File dependencies required by this command")
|
||||
outputs: List[StrictStr] = Field([], title="Outputs produced by this command")
|
||||
outputs_no_cache: List[StrictStr] = Field([], title="Outputs not tracked by DVC (DVC only)")
|
||||
no_skip: bool = Field(False, title="Never skip this command, even if nothing changed")
|
||||
# fmt: on
|
||||
|
||||
class Config:
|
||||
title = "A single named command specified in a project config"
|
||||
extra = "forbid"
|
||||
|
||||
|
||||
class ProjectConfigSchema(BaseModel):
|
||||
# fmt: off
|
||||
vars: Dict[StrictStr, Any] = Field({}, title="Optional variables to substitute in commands")
|
||||
env: Dict[StrictStr, Any] = Field({}, title="Optional variable names to substitute in commands, mapped to environment variable names")
|
||||
assets: List[Union[ProjectConfigAssetURL, ProjectConfigAssetGit]] = Field([], title="Data assets")
|
||||
workflows: Dict[StrictStr, List[StrictStr]] = Field({}, title="Named workflows, mapped to list of project commands to run in order")
|
||||
commands: List[ProjectConfigCommand] = Field([], title="Project command shortucts")
|
||||
title: Optional[str] = Field(None, title="Project title")
|
||||
spacy_version: Optional[StrictStr] = Field(None, title="spaCy version range that the project is compatible with")
|
||||
# fmt: on
|
||||
|
||||
class Config:
|
||||
title = "Schema for project configuration file"
|
||||
|
||||
|
||||
# Recommendations for init config workflows
|
||||
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: infer_types=True
|
||||
# cython: profile=False
|
||||
cimport cython
|
||||
from libc.stdint cimport uint32_t
|
||||
from libc.string cimport memcpy
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: optimize.unpack_method_calls=False
|
||||
# cython: profile=False
|
||||
IDS = {
|
||||
"": NIL,
|
||||
"IS_ALPHA": IS_ALPHA,
|
||||
|
|
|
@ -216,6 +216,11 @@ def test_dependency_matcher_pattern_validation(en_vocab):
|
|||
pattern2 = copy.deepcopy(pattern)
|
||||
pattern2[1]["RIGHT_ID"] = "fox"
|
||||
matcher.add("FOUNDED", [pattern2])
|
||||
# invalid key
|
||||
with pytest.warns(UserWarning):
|
||||
pattern2 = copy.deepcopy(pattern)
|
||||
pattern2[1]["FOO"] = "BAR"
|
||||
matcher.add("FOUNDED", [pattern2])
|
||||
|
||||
|
||||
def test_dependency_matcher_callback(en_vocab, doc):
|
||||
|
|
|
@ -4,8 +4,8 @@ from pathlib import Path
|
|||
|
||||
def test_build_dependencies():
|
||||
# Check that library requirements are pinned exactly the same across different setup files.
|
||||
# TODO: correct checks for numpy rather than ignoring
|
||||
libs_ignore_requirements = [
|
||||
"numpy",
|
||||
"pytest",
|
||||
"pytest-timeout",
|
||||
"mock",
|
||||
|
@ -23,6 +23,7 @@ def test_build_dependencies():
|
|||
]
|
||||
# ignore language-specific packages that shouldn't be installed by all
|
||||
libs_ignore_setup = [
|
||||
"numpy",
|
||||
"fugashi",
|
||||
"natto-py",
|
||||
"pythainlp",
|
||||
|
|
|
@ -1,31 +1,19 @@
|
|||
import math
|
||||
import os
|
||||
import time
|
||||
from collections import Counter
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Tuple
|
||||
|
||||
import numpy
|
||||
import pytest
|
||||
import srsly
|
||||
from click import NoSuchOption
|
||||
from packaging.specifiers import SpecifierSet
|
||||
from thinc.api import Config, ConfigValidationError
|
||||
from thinc.api import Config
|
||||
|
||||
import spacy
|
||||
from spacy import about
|
||||
from spacy.cli import info
|
||||
from spacy.cli._util import (
|
||||
download_file,
|
||||
is_subpath_of,
|
||||
load_project_config,
|
||||
parse_config_overrides,
|
||||
string_to_list,
|
||||
substitute_project_variables,
|
||||
upload_file,
|
||||
validate_project_commands,
|
||||
walk_directory,
|
||||
)
|
||||
from spacy.cli._util import parse_config_overrides, string_to_list, walk_directory
|
||||
from spacy.cli.apply import apply
|
||||
from spacy.cli.debug_data import (
|
||||
_compile_gold,
|
||||
|
@ -43,13 +31,11 @@ from spacy.cli.find_threshold import find_threshold
|
|||
from spacy.cli.init_config import RECOMMENDATIONS, fill_config, init_config
|
||||
from spacy.cli.init_pipeline import _init_labels
|
||||
from spacy.cli.package import _is_permitted_package_name, get_third_party_dependencies
|
||||
from spacy.cli.project.remote_storage import RemoteStorage
|
||||
from spacy.cli.project.run import _check_requirements
|
||||
from spacy.cli.validate import get_model_pkgs
|
||||
from spacy.lang.en import English
|
||||
from spacy.lang.nl import Dutch
|
||||
from spacy.language import Language
|
||||
from spacy.schemas import ProjectConfigSchema, RecommendationSchema, validate
|
||||
from spacy.schemas import RecommendationSchema
|
||||
from spacy.tokens import Doc, DocBin
|
||||
from spacy.tokens.span import Span
|
||||
from spacy.training import Example, docs_to_json, offsets_to_biluo_tags
|
||||
|
@ -134,25 +120,6 @@ def test_issue7055():
|
|||
assert "model" in filled_cfg["components"]["ner"]
|
||||
|
||||
|
||||
@pytest.mark.issue(11235)
|
||||
def test_issue11235():
|
||||
"""
|
||||
Test that the cli handles interpolation in the directory names correctly when loading project config.
|
||||
"""
|
||||
lang_var = "en"
|
||||
variables = {"lang": lang_var}
|
||||
commands = [{"name": "x", "script": ["hello ${vars.lang}"]}]
|
||||
directories = ["cfg", "${vars.lang}_model"]
|
||||
project = {"commands": commands, "vars": variables, "directories": directories}
|
||||
with make_tempdir() as d:
|
||||
srsly.write_yaml(d / "project.yml", project)
|
||||
cfg = load_project_config(d)
|
||||
# Check that the directories are interpolated and created correctly
|
||||
assert os.path.exists(d / "cfg")
|
||||
assert os.path.exists(d / f"{lang_var}_model")
|
||||
assert cfg["commands"][0]["script"][0] == f"hello {lang_var}"
|
||||
|
||||
|
||||
@pytest.mark.issue(12566)
|
||||
@pytest.mark.parametrize(
|
||||
"factory,output_file",
|
||||
|
@ -443,136 +410,6 @@ def test_cli_converters_conll_ner_to_docs():
|
|||
assert ent.text in ["New York City", "London"]
|
||||
|
||||
|
||||
def test_project_config_validation_full():
|
||||
config = {
|
||||
"vars": {"some_var": 20},
|
||||
"directories": ["assets", "configs", "corpus", "scripts", "training"],
|
||||
"assets": [
|
||||
{
|
||||
"dest": "x",
|
||||
"extra": True,
|
||||
"url": "https://example.com",
|
||||
"checksum": "63373dd656daa1fd3043ce166a59474c",
|
||||
},
|
||||
{
|
||||
"dest": "y",
|
||||
"git": {
|
||||
"repo": "https://github.com/example/repo",
|
||||
"branch": "develop",
|
||||
"path": "y",
|
||||
},
|
||||
},
|
||||
{
|
||||
"dest": "z",
|
||||
"extra": False,
|
||||
"url": "https://example.com",
|
||||
"checksum": "63373dd656daa1fd3043ce166a59474c",
|
||||
},
|
||||
],
|
||||
"commands": [
|
||||
{
|
||||
"name": "train",
|
||||
"help": "Train a model",
|
||||
"script": ["python -m spacy train config.cfg -o training"],
|
||||
"deps": ["config.cfg", "corpus/training.spcy"],
|
||||
"outputs": ["training/model-best"],
|
||||
},
|
||||
{"name": "test", "script": ["pytest", "custom.py"], "no_skip": True},
|
||||
],
|
||||
"workflows": {"all": ["train", "test"], "train": ["train"]},
|
||||
}
|
||||
errors = validate(ProjectConfigSchema, config)
|
||||
assert not errors
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"config",
|
||||
[
|
||||
{"commands": [{"name": "a"}, {"name": "a"}]},
|
||||
{"commands": [{"name": "a"}], "workflows": {"a": []}},
|
||||
{"commands": [{"name": "a"}], "workflows": {"b": ["c"]}},
|
||||
],
|
||||
)
|
||||
def test_project_config_validation1(config):
|
||||
with pytest.raises(SystemExit):
|
||||
validate_project_commands(config)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"config,n_errors",
|
||||
[
|
||||
({"commands": {"a": []}}, 1),
|
||||
({"commands": [{"help": "..."}]}, 1),
|
||||
({"commands": [{"name": "a", "extra": "b"}]}, 1),
|
||||
({"commands": [{"extra": "b"}]}, 2),
|
||||
({"commands": [{"name": "a", "deps": [123]}]}, 1),
|
||||
],
|
||||
)
|
||||
def test_project_config_validation2(config, n_errors):
|
||||
errors = validate(ProjectConfigSchema, config)
|
||||
assert len(errors) == n_errors
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"int_value",
|
||||
[10, pytest.param("10", marks=pytest.mark.xfail)],
|
||||
)
|
||||
def test_project_config_interpolation(int_value):
|
||||
variables = {"a": int_value, "b": {"c": "foo", "d": True}}
|
||||
commands = [
|
||||
{"name": "x", "script": ["hello ${vars.a} ${vars.b.c}"]},
|
||||
{"name": "y", "script": ["${vars.b.c} ${vars.b.d}"]},
|
||||
]
|
||||
project = {"commands": commands, "vars": variables}
|
||||
with make_tempdir() as d:
|
||||
srsly.write_yaml(d / "project.yml", project)
|
||||
cfg = load_project_config(d)
|
||||
assert type(cfg) == dict
|
||||
assert type(cfg["commands"]) == list
|
||||
assert cfg["commands"][0]["script"][0] == "hello 10 foo"
|
||||
assert cfg["commands"][1]["script"][0] == "foo true"
|
||||
commands = [{"name": "x", "script": ["hello ${vars.a} ${vars.b.e}"]}]
|
||||
project = {"commands": commands, "vars": variables}
|
||||
with pytest.raises(ConfigValidationError):
|
||||
substitute_project_variables(project)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"greeting",
|
||||
[342, "everyone", "tout le monde", pytest.param("42", marks=pytest.mark.xfail)],
|
||||
)
|
||||
def test_project_config_interpolation_override(greeting):
|
||||
variables = {"a": "world"}
|
||||
commands = [
|
||||
{"name": "x", "script": ["hello ${vars.a}"]},
|
||||
]
|
||||
overrides = {"vars.a": greeting}
|
||||
project = {"commands": commands, "vars": variables}
|
||||
with make_tempdir() as d:
|
||||
srsly.write_yaml(d / "project.yml", project)
|
||||
cfg = load_project_config(d, overrides=overrides)
|
||||
assert type(cfg) == dict
|
||||
assert type(cfg["commands"]) == list
|
||||
assert cfg["commands"][0]["script"][0] == f"hello {greeting}"
|
||||
|
||||
|
||||
def test_project_config_interpolation_env():
|
||||
variables = {"a": 10}
|
||||
env_var = "SPACY_TEST_FOO"
|
||||
env_vars = {"foo": env_var}
|
||||
commands = [{"name": "x", "script": ["hello ${vars.a} ${env.foo}"]}]
|
||||
project = {"commands": commands, "vars": variables, "env": env_vars}
|
||||
with make_tempdir() as d:
|
||||
srsly.write_yaml(d / "project.yml", project)
|
||||
cfg = load_project_config(d)
|
||||
assert cfg["commands"][0]["script"][0] == "hello 10 "
|
||||
os.environ[env_var] = "123"
|
||||
with make_tempdir() as d:
|
||||
srsly.write_yaml(d / "project.yml", project)
|
||||
cfg = load_project_config(d)
|
||||
assert cfg["commands"][0]["script"][0] == "hello 10 123"
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"args,expected",
|
||||
[
|
||||
|
@ -782,21 +619,6 @@ def test_get_third_party_dependencies():
|
|||
get_third_party_dependencies(nlp.config)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"parent,child,expected",
|
||||
[
|
||||
("/tmp", "/tmp", True),
|
||||
("/tmp", "/", False),
|
||||
("/tmp", "/tmp/subdir", True),
|
||||
("/tmp", "/tmpdir", False),
|
||||
("/tmp", "/tmp/subdir/..", True),
|
||||
("/tmp", "/tmp/..", False),
|
||||
],
|
||||
)
|
||||
def test_is_subpath_of(parent, child, expected):
|
||||
assert is_subpath_of(parent, child) == expected
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize(
|
||||
"factory_name,pipe_name",
|
||||
|
@ -1042,60 +864,6 @@ def test_applycli_user_data():
|
|||
assert result[0]._.ext == val
|
||||
|
||||
|
||||
def test_local_remote_storage():
|
||||
with make_tempdir() as d:
|
||||
filename = "a.txt"
|
||||
|
||||
content_hashes = ("aaaa", "cccc", "bbbb")
|
||||
for i, content_hash in enumerate(content_hashes):
|
||||
# make sure that each subsequent file has a later timestamp
|
||||
if i > 0:
|
||||
time.sleep(1)
|
||||
content = f"{content_hash} content"
|
||||
loc_file = d / "root" / filename
|
||||
if not loc_file.parent.exists():
|
||||
loc_file.parent.mkdir(parents=True)
|
||||
with loc_file.open(mode="w") as file_:
|
||||
file_.write(content)
|
||||
|
||||
# push first version to remote storage
|
||||
remote = RemoteStorage(d / "root", str(d / "remote"))
|
||||
remote.push(filename, "aaaa", content_hash)
|
||||
|
||||
# retrieve with full hashes
|
||||
loc_file.unlink()
|
||||
remote.pull(filename, command_hash="aaaa", content_hash=content_hash)
|
||||
with loc_file.open(mode="r") as file_:
|
||||
assert file_.read() == content
|
||||
|
||||
# retrieve with command hash
|
||||
loc_file.unlink()
|
||||
remote.pull(filename, command_hash="aaaa")
|
||||
with loc_file.open(mode="r") as file_:
|
||||
assert file_.read() == content
|
||||
|
||||
# retrieve with content hash
|
||||
loc_file.unlink()
|
||||
remote.pull(filename, content_hash=content_hash)
|
||||
with loc_file.open(mode="r") as file_:
|
||||
assert file_.read() == content
|
||||
|
||||
# retrieve with no hashes
|
||||
loc_file.unlink()
|
||||
remote.pull(filename)
|
||||
with loc_file.open(mode="r") as file_:
|
||||
assert file_.read() == content
|
||||
|
||||
|
||||
def test_local_remote_storage_pull_missing():
|
||||
# pulling from a non-existent remote pulls nothing gracefully
|
||||
with make_tempdir() as d:
|
||||
filename = "a.txt"
|
||||
remote = RemoteStorage(d / "root", str(d / "remote"))
|
||||
assert remote.pull(filename, command_hash="aaaa") is None
|
||||
assert remote.pull(filename) is None
|
||||
|
||||
|
||||
def test_cli_find_threshold(capsys):
|
||||
def make_examples(nlp: Language) -> List[Example]:
|
||||
docs: List[Example] = []
|
||||
|
@ -1206,63 +974,6 @@ def test_cli_find_threshold(capsys):
|
|||
)
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::DeprecationWarning")
|
||||
@pytest.mark.parametrize(
|
||||
"reqs,output",
|
||||
[
|
||||
[
|
||||
"""
|
||||
spacy
|
||||
|
||||
# comment
|
||||
|
||||
thinc""",
|
||||
(False, False),
|
||||
],
|
||||
[
|
||||
"""# comment
|
||||
--some-flag
|
||||
spacy""",
|
||||
(False, False),
|
||||
],
|
||||
[
|
||||
"""# comment
|
||||
--some-flag
|
||||
spacy; python_version >= '3.6'""",
|
||||
(False, False),
|
||||
],
|
||||
[
|
||||
"""# comment
|
||||
spacyunknowndoesnotexist12345""",
|
||||
(True, False),
|
||||
],
|
||||
],
|
||||
)
|
||||
def test_project_check_requirements(reqs, output):
|
||||
import pkg_resources
|
||||
|
||||
# excessive guard against unlikely package name
|
||||
try:
|
||||
pkg_resources.require("spacyunknowndoesnotexist12345")
|
||||
except pkg_resources.DistributionNotFound:
|
||||
assert output == _check_requirements([req.strip() for req in reqs.split("\n")])
|
||||
|
||||
|
||||
def test_upload_download_local_file():
|
||||
with make_tempdir() as d1, make_tempdir() as d2:
|
||||
filename = "f.txt"
|
||||
content = "content"
|
||||
local_file = d1 / filename
|
||||
remote_file = d2 / filename
|
||||
with local_file.open(mode="w") as file_:
|
||||
file_.write(content)
|
||||
upload_file(local_file, remote_file)
|
||||
local_file.unlink()
|
||||
download_file(remote_file, local_file)
|
||||
with local_file.open(mode="r") as file_:
|
||||
assert file_.read() == content
|
||||
|
||||
|
||||
def test_walk_directory():
|
||||
with make_tempdir() as d:
|
||||
files = [
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
@ -213,6 +214,9 @@ def test_project_clone(options):
|
|||
assert (out / "README.md").is_file()
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
sys.version_info >= (3, 12), reason="Python 3.12+ not supported for remotes"
|
||||
)
|
||||
def test_project_push_pull(project_dir):
|
||||
proj = dict(SAMPLE_PROJECT)
|
||||
remote = "xyz"
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: embedsignature=True, profile=True, binding=True
|
||||
# cython: embedsignature=True, binding=True
|
||||
cimport cython
|
||||
from cymem.cymem cimport Pool
|
||||
from cython.operator cimport dereference as deref
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, bounds_check=False, profile=True
|
||||
# cython: infer_types=True, bounds_check=False
|
||||
from cymem.cymem cimport Pool
|
||||
from libc.string cimport memset
|
||||
|
||||
|
|
|
@ -8,6 +8,7 @@ from typing import (
|
|||
List,
|
||||
Optional,
|
||||
Protocol,
|
||||
Sequence,
|
||||
Tuple,
|
||||
Union,
|
||||
overload,
|
||||
|
@ -134,7 +135,12 @@ class Doc:
|
|||
def text(self) -> str: ...
|
||||
@property
|
||||
def text_with_ws(self) -> str: ...
|
||||
ents: Tuple[Span]
|
||||
# Ideally the getter would output Tuple[Span]
|
||||
# see https://github.com/python/mypy/issues/3004
|
||||
@property
|
||||
def ents(self) -> Sequence[Span]: ...
|
||||
@ents.setter
|
||||
def ents(self, value: Sequence[Span]) -> None: ...
|
||||
def set_ents(
|
||||
self,
|
||||
entities: List[Span],
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, bounds_check=False, profile=True
|
||||
# cython: infer_types=True, bounds_check=False
|
||||
from typing import Set
|
||||
|
||||
cimport cython
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: infer_types=True, cdivision=True, boundscheck=False, binding=True
|
||||
# cython: profile=False
|
||||
from typing import Generator, List, Tuple
|
||||
|
||||
cimport cython
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# cython: profile=False
|
||||
cimport numpy as np
|
||||
from libc.string cimport memset
|
||||
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# cython: profile=False
|
||||
cimport numpy as np
|
||||
|
||||
import copy
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# cython: profile=False
|
||||
import struct
|
||||
import weakref
|
||||
from copy import deepcopy
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
# cython: infer_types=True
|
||||
# cython: profile=False
|
||||
# Compiler crashes on memory view coercion without this. Should report bug.
|
||||
cimport numpy as np
|
||||
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# cython: profile=False
|
||||
import re
|
||||
from itertools import chain
|
||||
from typing import List, Tuple
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# cython: profile=False
|
||||
from typing import List
|
||||
|
||||
import numpy
|
||||
|
|
|
@ -63,7 +63,7 @@ def create_plain_text_reader(
|
|||
path: Optional[Path],
|
||||
min_length: int = 0,
|
||||
max_length: int = 0,
|
||||
) -> Callable[["Language"], Iterable[Doc]]:
|
||||
) -> Callable[["Language"], Iterable[Example]]:
|
||||
"""Iterate Example objects from a file or directory of plain text
|
||||
UTF-8 files with one line per doc.
|
||||
|
||||
|
|
66
spacy/training/example.pyi
Normal file
66
spacy/training/example.pyi
Normal file
|
@ -0,0 +1,66 @@
|
|||
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
|
||||
|
||||
from ..tokens import Doc, Span
|
||||
from ..vocab import Vocab
|
||||
from .alignment import Alignment
|
||||
|
||||
def annotations_to_doc(
|
||||
vocab: Vocab,
|
||||
tok_annot: Dict[str, Any],
|
||||
doc_annot: Dict[str, Any],
|
||||
) -> Doc: ...
|
||||
def validate_examples(
|
||||
examples: Iterable[Example],
|
||||
method: str,
|
||||
) -> None: ...
|
||||
def validate_get_examples(
|
||||
get_examples: Callable[[], Iterable[Example]],
|
||||
method: str,
|
||||
): ...
|
||||
|
||||
class Example:
|
||||
x: Doc
|
||||
y: Doc
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
predicted: Doc,
|
||||
reference: Doc,
|
||||
*,
|
||||
alignment: Optional[Alignment] = None,
|
||||
): ...
|
||||
def __len__(self) -> int: ...
|
||||
@property
|
||||
def predicted(self) -> Doc: ...
|
||||
@predicted.setter
|
||||
def predicted(self, doc: Doc) -> None: ...
|
||||
@property
|
||||
def reference(self) -> Doc: ...
|
||||
@reference.setter
|
||||
def reference(self, doc: Doc) -> None: ...
|
||||
def copy(self) -> Example: ...
|
||||
@classmethod
|
||||
def from_dict(cls, predicted: Doc, example_dict: Dict[str, Any]) -> Example: ...
|
||||
@property
|
||||
def alignment(self) -> Alignment: ...
|
||||
def get_aligned(self, field: str, as_string=False): ...
|
||||
def get_aligned_parse(self, projectivize=True): ...
|
||||
def get_aligned_sent_starts(self): ...
|
||||
def get_aligned_spans_x2y(
|
||||
self, x_spans: Iterable[Span], allow_overlap=False
|
||||
) -> List[Span]: ...
|
||||
def get_aligned_spans_y2x(
|
||||
self, y_spans: Iterable[Span], allow_overlap=False
|
||||
) -> List[Span]: ...
|
||||
def get_aligned_ents_and_ner(self) -> Tuple[List[Span], List[str]]: ...
|
||||
def get_aligned_ner(self) -> List[str]: ...
|
||||
def get_matching_ents(self, check_label: bool = True) -> List[Span]: ...
|
||||
def to_dict(self) -> Dict[str, Any]: ...
|
||||
def split_sents(self) -> List[Example]: ...
|
||||
@property
|
||||
def text(self) -> str: ...
|
||||
def __str__(self) -> str: ...
|
||||
def __repr__(self) -> str: ...
|
||||
|
||||
def _parse_example_dict_data(example_dict): ...
|
||||
def _fix_legacy_dict_data(example_dict): ...
|
|
@ -1,3 +1,4 @@
|
|||
# cython: profile=False
|
||||
from collections.abc import Iterable as IterableInstance
|
||||
|
||||
import numpy
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
# cython: profile=False
|
||||
import warnings
|
||||
|
||||
import srsly
|
||||
|
|
|
@ -302,7 +302,7 @@ def read_vectors(
|
|||
shape = (truncate_vectors, shape[1])
|
||||
vectors_data = numpy.zeros(shape=shape, dtype="f")
|
||||
vectors_keys = []
|
||||
for i, line in enumerate(tqdm.tqdm(f)):
|
||||
for i, line in enumerate(tqdm.tqdm(f, disable=None)):
|
||||
line = line.rstrip()
|
||||
pieces = line.rsplit(" ", vectors_data.shape[1])
|
||||
word = pieces.pop(0)
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
# cython: profile=False
|
|
@ -101,7 +101,6 @@ logger.addHandler(logger_stream_handler)
|
|||
|
||||
class ENV_VARS:
|
||||
CONFIG_OVERRIDES = "SPACY_CONFIG_OVERRIDES"
|
||||
PROJECT_USE_GIT_VERSION = "SPACY_PROJECT_USE_GIT_VERSION"
|
||||
|
||||
|
||||
class registry(thinc.registry):
|
||||
|
@ -119,6 +118,7 @@ class registry(thinc.registry):
|
|||
augmenters = catalogue.create("spacy", "augmenters", entry_points=True)
|
||||
loggers = catalogue.create("spacy", "loggers", entry_points=True)
|
||||
scorers = catalogue.create("spacy", "scorers", entry_points=True)
|
||||
vectors = catalogue.create("spacy", "vectors", entry_points=True)
|
||||
# These are factories registered via third-party packages and the
|
||||
# spacy_factories entry point. This registry only exists so we can easily
|
||||
# load them via the entry points. The "true" factories are added via the
|
||||
|
@ -974,23 +974,12 @@ def replace_model_node(model: Model, target: Model, replacement: Model) -> None:
|
|||
|
||||
def split_command(command: str) -> List[str]:
|
||||
"""Split a string command using shlex. Handles platform compatibility.
|
||||
|
||||
command (str) : The command to split
|
||||
RETURNS (List[str]): The split command.
|
||||
"""
|
||||
return shlex.split(command, posix=not is_windows)
|
||||
|
||||
|
||||
def join_command(command: List[str]) -> str:
|
||||
"""Join a command using shlex. shlex.join is only available for Python 3.8+,
|
||||
so we're using a workaround here.
|
||||
|
||||
command (List[str]): The command to join.
|
||||
RETURNS (str): The joined command
|
||||
"""
|
||||
return " ".join(shlex.quote(cmd) for cmd in command)
|
||||
|
||||
|
||||
def run_command(
|
||||
command: Union[str, List[str]],
|
||||
*,
|
||||
|
@ -999,7 +988,6 @@ def run_command(
|
|||
) -> subprocess.CompletedProcess:
|
||||
"""Run a command on the command line as a subprocess. If the subprocess
|
||||
returns a non-zero exit code, a system exit is performed.
|
||||
|
||||
command (str / List[str]): The command. If provided as a string, the
|
||||
string will be split using shlex.split.
|
||||
stdin (Optional[Any]): stdin to read from or None.
|
||||
|
@ -1050,7 +1038,6 @@ def run_command(
|
|||
@contextmanager
|
||||
def working_dir(path: Union[str, Path]) -> Iterator[Path]:
|
||||
"""Change current working directory and returns to previous on exit.
|
||||
|
||||
path (str / Path): The directory to navigate to.
|
||||
YIELDS (Path): The absolute path to the current working directory. This
|
||||
should be used if the block needs to perform actions within the working
|
||||
|
@ -1069,7 +1056,6 @@ def working_dir(path: Union[str, Path]) -> Iterator[Path]:
|
|||
def make_tempdir() -> Generator[Path, None, None]:
|
||||
"""Execute a block in a temporary directory and remove the directory and
|
||||
its contents at the end of the with block.
|
||||
|
||||
YIELDS (Path): The path of the temp directory.
|
||||
"""
|
||||
d = Path(tempfile.mkdtemp())
|
||||
|
@ -1082,20 +1068,14 @@ def make_tempdir() -> Generator[Path, None, None]:
|
|||
rmfunc(path)
|
||||
|
||||
try:
|
||||
if sys.version_info >= (3, 12):
|
||||
shutil.rmtree(str(d), onexc=force_remove)
|
||||
else:
|
||||
shutil.rmtree(str(d), onerror=force_remove)
|
||||
except PermissionError as e:
|
||||
warnings.warn(Warnings.W091.format(dir=d, msg=e))
|
||||
|
||||
|
||||
def is_cwd(path: Union[Path, str]) -> bool:
|
||||
"""Check whether a path is the current working directory.
|
||||
|
||||
path (Union[Path, str]): The directory path.
|
||||
RETURNS (bool): Whether the path is the current working directory.
|
||||
"""
|
||||
return str(Path(path).resolve()).lower() == str(Path.cwd().resolve()).lower()
|
||||
|
||||
|
||||
def is_in_jupyter() -> bool:
|
||||
"""Check if user is running spaCy from a Jupyter notebook by detecting the
|
||||
IPython kernel. Mainly used for the displaCy visualizer.
|
||||
|
|
|
@ -1,3 +1,6 @@
|
|||
# cython: infer_types=True, binding=True
|
||||
from typing import Callable
|
||||
|
||||
from cython.operator cimport dereference as deref
|
||||
from libc.stdint cimport uint32_t, uint64_t
|
||||
from libcpp.set cimport set as cppset
|
||||
|
@ -5,7 +8,8 @@ from murmurhash.mrmr cimport hash128_x64
|
|||
|
||||
import warnings
|
||||
from enum import Enum
|
||||
from typing import cast
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Union, cast
|
||||
|
||||
import numpy
|
||||
import srsly
|
||||
|
@ -21,6 +25,9 @@ from .attrs import IDS
|
|||
from .errors import Errors, Warnings
|
||||
from .strings import get_string_id
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .vocab import Vocab # noqa: F401 # no-cython-lint
|
||||
|
||||
|
||||
def unpickle_vectors(bytes_data):
|
||||
return Vectors().from_bytes(bytes_data)
|
||||
|
@ -35,7 +42,71 @@ class Mode(str, Enum):
|
|||
return list(cls.__members__.keys())
|
||||
|
||||
|
||||
cdef class Vectors:
|
||||
cdef class BaseVectors:
|
||||
def __init__(self, *, strings=None):
|
||||
# Make sure abstract BaseVectors is not instantiated.
|
||||
if self.__class__ == BaseVectors:
|
||||
raise TypeError(
|
||||
Errors.E1046.format(cls_name=self.__class__.__name__)
|
||||
)
|
||||
|
||||
def __getitem__(self, key):
|
||||
raise NotImplementedError
|
||||
|
||||
def __contains__(self, key):
|
||||
raise NotImplementedError
|
||||
|
||||
def is_full(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def get_batch(self, keys):
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def __len__(self):
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def vectors_length(self):
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def size(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def add(self, key, *, vector=None):
|
||||
raise NotImplementedError
|
||||
|
||||
def to_ops(self, ops: Ops):
|
||||
pass
|
||||
|
||||
# add dummy methods for to_bytes, from_bytes, to_disk and from_disk to
|
||||
# allow serialization
|
||||
def to_bytes(self, **kwargs):
|
||||
return b""
|
||||
|
||||
def from_bytes(self, data: bytes, **kwargs):
|
||||
return self
|
||||
|
||||
def to_disk(self, path: Union[str, Path], **kwargs):
|
||||
return None
|
||||
|
||||
def from_disk(self, path: Union[str, Path], **kwargs):
|
||||
return self
|
||||
|
||||
|
||||
@util.registry.vectors("spacy.Vectors.v1")
|
||||
def create_mode_vectors() -> Callable[["Vocab"], BaseVectors]:
|
||||
def vectors_factory(vocab: "Vocab") -> BaseVectors:
|
||||
return Vectors(strings=vocab.strings)
|
||||
|
||||
return vectors_factory
|
||||
|
||||
|
||||
cdef class Vectors(BaseVectors):
|
||||
"""Store, save and load word vectors.
|
||||
|
||||
Vectors data is kept in the vectors.data attribute, which should be an
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
# cython: profile=True
|
||||
import functools
|
||||
|
||||
import numpy
|
||||
|
@ -94,6 +93,7 @@ cdef class Vocab:
|
|||
return self._vectors
|
||||
|
||||
def __set__(self, vectors):
|
||||
if hasattr(vectors, "strings"):
|
||||
for s in vectors.strings:
|
||||
self.strings.add(s)
|
||||
self._vectors = vectors
|
||||
|
@ -193,7 +193,7 @@ cdef class Vocab:
|
|||
lex = <LexemeC*>mem.alloc(1, sizeof(LexemeC))
|
||||
lex.orth = self.strings.add(string)
|
||||
lex.length = len(string)
|
||||
if self.vectors is not None:
|
||||
if self.vectors is not None and hasattr(self.vectors, "key2row"):
|
||||
lex.id = self.vectors.key2row.get(lex.orth, OOV_RANK)
|
||||
else:
|
||||
lex.id = OOV_RANK
|
||||
|
@ -289,12 +289,17 @@ cdef class Vocab:
|
|||
|
||||
@property
|
||||
def vectors_length(self):
|
||||
if hasattr(self.vectors, "shape"):
|
||||
return self.vectors.shape[1]
|
||||
else:
|
||||
return -1
|
||||
|
||||
def reset_vectors(self, *, width=None, shape=None):
|
||||
"""Drop the current vector table. Because all vectors must be the same
|
||||
width, you have to call this to change the size of the vectors.
|
||||
"""
|
||||
if not isinstance(self.vectors, Vectors):
|
||||
raise ValueError(Errors.E849.format(method="reset_vectors", vectors_type=type(self.vectors)))
|
||||
if width is not None and shape is not None:
|
||||
raise ValueError(Errors.E065.format(width=width, shape=shape))
|
||||
elif shape is not None:
|
||||
|
@ -304,6 +309,8 @@ cdef class Vocab:
|
|||
self.vectors = Vectors(strings=self.strings, shape=(self.vectors.shape[0], width))
|
||||
|
||||
def deduplicate_vectors(self):
|
||||
if not isinstance(self.vectors, Vectors):
|
||||
raise ValueError(Errors.E849.format(method="deduplicate_vectors", vectors_type=type(self.vectors)))
|
||||
if self.vectors.mode != VectorsMode.default:
|
||||
raise ValueError(Errors.E858.format(
|
||||
mode=self.vectors.mode,
|
||||
|
@ -357,6 +364,8 @@ cdef class Vocab:
|
|||
|
||||
DOCS: https://spacy.io/api/vocab#prune_vectors
|
||||
"""
|
||||
if not isinstance(self.vectors, Vectors):
|
||||
raise ValueError(Errors.E849.format(method="prune_vectors", vectors_type=type(self.vectors)))
|
||||
if self.vectors.mode != VectorsMode.default:
|
||||
raise ValueError(Errors.E858.format(
|
||||
mode=self.vectors.mode,
|
||||
|
|
|
@ -481,6 +481,286 @@ The other arguments are shared between all versions.
|
|||
|
||||
</Accordion>
|
||||
|
||||
## Curated Transformer architectures {id="curated-trf",source="https://github.com/explosion/spacy-curated-transformers/blob/main/spacy_curated_transformers/models/architectures.py"}
|
||||
|
||||
The following architectures are provided by the package
|
||||
[`spacy-curated-transformers`](https://github.com/explosion/spacy-curated-transformers).
|
||||
See the [usage documentation](/usage/embeddings-transformers#transformers) for
|
||||
how to integrate the architectures into your training config.
|
||||
|
||||
When loading the model
|
||||
[from the Hugging Face Hub](/api/curatedtransformer#hf_trfencoder_loader), the
|
||||
model config's parameters must be same as the hyperparameters used by the
|
||||
pre-trained model. The
|
||||
[`init fill-curated-transformer`](/api/cli#init-fill-curated-transformer) CLI
|
||||
command can be used to automatically fill in these values.
|
||||
|
||||
### spacy-curated-transformers.AlbertTransformer.v1
|
||||
|
||||
Construct an ALBERT transformer model.
|
||||
|
||||
| Name | Description |
|
||||
| ------------------------------ | ---------------------------------------------------------------------------------------- |
|
||||
| `vocab_size` | Vocabulary size. ~~int~~ |
|
||||
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
|
||||
| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ |
|
||||
| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ |
|
||||
| `embedding_width` | Width of the embedding representations. ~~int~~ |
|
||||
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
|
||||
| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ |
|
||||
| `hidden_width` | Width of the final representations. ~~int~~ |
|
||||
| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ |
|
||||
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
|
||||
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
|
||||
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
|
||||
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
|
||||
| `num_hidden_groups` | Number of layer groups whose constituents share parameters. ~~int~~ |
|
||||
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
|
||||
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
|
||||
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
|
||||
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
|
||||
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
|
||||
| **CREATES** | The model using the architecture ~~Model~~ |
|
||||
|
||||
### spacy-curated-transformers.BertTransformer.v1
|
||||
|
||||
Construct a BERT transformer model.
|
||||
|
||||
| Name | Description |
|
||||
| ------------------------------ | ---------------------------------------------------------------------------------------- |
|
||||
| `vocab_size` | Vocabulary size. ~~int~~ |
|
||||
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
|
||||
| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ |
|
||||
| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ |
|
||||
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
|
||||
| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ |
|
||||
| `hidden_width` | Width of the final representations. ~~int~~ |
|
||||
| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ |
|
||||
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
|
||||
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
|
||||
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
|
||||
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
|
||||
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
|
||||
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
|
||||
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
|
||||
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
|
||||
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
|
||||
| **CREATES** | The model using the architecture ~~Model~~ |
|
||||
|
||||
### spacy-curated-transformers.CamembertTransformer.v1
|
||||
|
||||
Construct a CamemBERT transformer model.
|
||||
|
||||
| Name | Description |
|
||||
| ------------------------------ | ---------------------------------------------------------------------------------------- |
|
||||
| `vocab_size` | Vocabulary size. ~~int~~ |
|
||||
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
|
||||
| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ |
|
||||
| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ |
|
||||
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
|
||||
| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ |
|
||||
| `hidden_width` | Width of the final representations. ~~int~~ |
|
||||
| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ |
|
||||
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
|
||||
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
|
||||
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
|
||||
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
|
||||
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
|
||||
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
|
||||
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
|
||||
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
|
||||
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
|
||||
| **CREATES** | The model using the architecture ~~Model~~ |
|
||||
|
||||
### spacy-curated-transformers.RobertaTransformer.v1
|
||||
|
||||
Construct a RoBERTa transformer model.
|
||||
|
||||
| Name | Description |
|
||||
| ------------------------------ | ---------------------------------------------------------------------------------------- |
|
||||
| `vocab_size` | Vocabulary size. ~~int~~ |
|
||||
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
|
||||
| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ |
|
||||
| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ |
|
||||
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
|
||||
| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ |
|
||||
| `hidden_width` | Width of the final representations. ~~int~~ |
|
||||
| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ |
|
||||
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
|
||||
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
|
||||
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
|
||||
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
|
||||
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
|
||||
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
|
||||
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
|
||||
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
|
||||
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
|
||||
| **CREATES** | The model using the architecture ~~Model~~ |
|
||||
|
||||
### spacy-curated-transformers.XlmrTransformer.v1
|
||||
|
||||
Construct a XLM-RoBERTa transformer model.
|
||||
|
||||
| Name | Description |
|
||||
| ------------------------------ | ---------------------------------------------------------------------------------------- |
|
||||
| `vocab_size` | Vocabulary size. ~~int~~ |
|
||||
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
|
||||
| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ |
|
||||
| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ |
|
||||
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
|
||||
| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ |
|
||||
| `hidden_width` | Width of the final representations. ~~int~~ |
|
||||
| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ |
|
||||
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
|
||||
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
|
||||
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
|
||||
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
|
||||
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
|
||||
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
|
||||
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
|
||||
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
|
||||
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
|
||||
| **CREATES** | The model using the architecture ~~Model~~ |
|
||||
|
||||
### spacy-curated-transformers.ScalarWeight.v1
|
||||
|
||||
Construct a model that accepts a list of transformer layer outputs and returns a
|
||||
weighted representation of the same.
|
||||
|
||||
| Name | Description |
|
||||
| -------------------- | ----------------------------------------------------------------------------- |
|
||||
| `num_layers` | Number of transformer hidden layers. ~~int~~ |
|
||||
| `dropout_prob` | Dropout probability. ~~float~~ |
|
||||
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
|
||||
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
|
||||
| **CREATES** | The model using the architecture ~~Model[ScalarWeightInT, ScalarWeightOutT]~~ |
|
||||
|
||||
### spacy-curated-transformers.TransformerLayersListener.v1
|
||||
|
||||
Construct a listener layer that communicates with one or more upstream
|
||||
Transformer components. This layer extracts the output of the last transformer
|
||||
layer and performs pooling over the individual pieces of each `Doc` token,
|
||||
returning their corresponding representations. The upstream name should either
|
||||
be the wildcard string '\*', or the name of the Transformer component.
|
||||
|
||||
In almost all cases, the wildcard string will suffice as there'll only be one
|
||||
upstream Transformer component. But in certain situations, e.g: you have
|
||||
disjoint datasets for certain tasks, or you'd like to use a pre-trained pipeline
|
||||
but a downstream task requires its own token representations, you could end up
|
||||
with more than one Transformer component in the pipeline.
|
||||
|
||||
| Name | Description |
|
||||
| --------------- | ---------------------------------------------------------------------------------------------------------------------- |
|
||||
| `layers` | The number of layers produced by the upstream transformer component, excluding the embedding layer. ~~int~~ |
|
||||
| `width` | The width of the vectors produced by the upstream transformer component. ~~int~~ |
|
||||
| `pooling` | Model that is used to perform pooling over the piece representations. ~~Model~~ |
|
||||
| `upstream_name` | A string to identify the 'upstream' Transformer component to communicate with. ~~str~~ |
|
||||
| `grad_factor` | Factor to multiply gradients with. ~~float~~ |
|
||||
| **CREATES** | A model that returns the relevant vectors from an upstream transformer component. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
|
||||
### spacy-curated-transformers.LastTransformerLayerListener.v1
|
||||
|
||||
Construct a listener layer that communicates with one or more upstream
|
||||
Transformer components. This layer extracts the output of the last transformer
|
||||
layer and performs pooling over the individual pieces of each Doc token,
|
||||
returning their corresponding representations. The upstream name should either
|
||||
be the wildcard string '\*', or the name of the Transformer component.
|
||||
|
||||
In almost all cases, the wildcard string will suffice as there'll only be one
|
||||
upstream Transformer component. But in certain situations, e.g: you have
|
||||
disjoint datasets for certain tasks, or you'd like to use a pre-trained pipeline
|
||||
but a downstream task requires its own token representations, you could end up
|
||||
with more than one Transformer component in the pipeline.
|
||||
|
||||
| Name | Description |
|
||||
| --------------- | ---------------------------------------------------------------------------------------------------------------------- |
|
||||
| `width` | The width of the vectors produced by the upstream transformer component. ~~int~~ |
|
||||
| `pooling` | Model that is used to perform pooling over the piece representations. ~~Model~~ |
|
||||
| `upstream_name` | A string to identify the 'upstream' Transformer component to communicate with. ~~str~~ |
|
||||
| `grad_factor` | Factor to multiply gradients with. ~~float~~ |
|
||||
| **CREATES** | A model that returns the relevant vectors from an upstream transformer component. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
|
||||
### spacy-curated-transformers.ScalarWeightingListener.v1
|
||||
|
||||
Construct a listener layer that communicates with one or more upstream
|
||||
Transformer components. This layer calculates a weighted representation of all
|
||||
transformer layer outputs and performs pooling over the individual pieces of
|
||||
each Doc token, returning their corresponding representations.
|
||||
|
||||
Requires its upstream Transformer components to return all layer outputs from
|
||||
their models. The upstream name should either be the wildcard string '\*', or
|
||||
the name of the Transformer component.
|
||||
|
||||
In almost all cases, the wildcard string will suffice as there'll only be one
|
||||
upstream Transformer component. But in certain situations, e.g: you have
|
||||
disjoint datasets for certain tasks, or you'd like to use a pre-trained pipeline
|
||||
but a downstream task requires its own token representations, you could end up
|
||||
with more than one Transformer component in the pipeline.
|
||||
|
||||
| Name | Description |
|
||||
| --------------- | ---------------------------------------------------------------------------------------------------------------------- |
|
||||
| `width` | The width of the vectors produced by the upstream transformer component. ~~int~~ |
|
||||
| `weighting` | Model that is used to perform the weighting of the different layer outputs. ~~Model~~ |
|
||||
| `pooling` | Model that is used to perform pooling over the piece representations. ~~Model~~ |
|
||||
| `upstream_name` | A string to identify the 'upstream' Transformer component to communicate with. ~~str~~ |
|
||||
| `grad_factor` | Factor to multiply gradients with. ~~float~~ |
|
||||
| **CREATES** | A model that returns the relevant vectors from an upstream transformer component. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
|
||||
### spacy-curated-transformers.BertWordpieceEncoder.v1
|
||||
|
||||
Construct a WordPiece piece encoder model that accepts a list of token sequences
|
||||
or documents and returns a corresponding list of piece identifiers. This encoder
|
||||
also splits each token on punctuation characters, as expected by most BERT
|
||||
models.
|
||||
|
||||
This model must be separately initialized using an appropriate loader.
|
||||
|
||||
### spacy-curated-transformers.ByteBpeEncoder.v1
|
||||
|
||||
Construct a Byte-BPE piece encoder model that accepts a list of token sequences
|
||||
or documents and returns a corresponding list of piece identifiers.
|
||||
|
||||
This model must be separately initialized using an appropriate loader.
|
||||
|
||||
### spacy-curated-transformers.CamembertSentencepieceEncoder.v1
|
||||
|
||||
Construct a SentencePiece piece encoder model that accepts a list of token
|
||||
sequences or documents and returns a corresponding list of piece identifiers
|
||||
with CamemBERT post-processing applied.
|
||||
|
||||
This model must be separately initialized using an appropriate loader.
|
||||
|
||||
### spacy-curated-transformers.CharEncoder.v1
|
||||
|
||||
Construct a character piece encoder model that accepts a list of token sequences
|
||||
or documents and returns a corresponding list of piece identifiers.
|
||||
|
||||
This model must be separately initialized using an appropriate loader.
|
||||
|
||||
### spacy-curated-transformers.SentencepieceEncoder.v1
|
||||
|
||||
Construct a SentencePiece piece encoder model that accepts a list of token
|
||||
sequences or documents and returns a corresponding list of piece identifiers.
|
||||
|
||||
This model must be separately initialized using an appropriate loader.
|
||||
|
||||
### spacy-curated-transformers.WordpieceEncoder.v1
|
||||
|
||||
Construct a WordPiece piece encoder model that accepts a list of token sequences
|
||||
or documents and returns a corresponding list of piece identifiers. This encoder
|
||||
also splits each token on punctuation characters, as expected by most BERT
|
||||
models.
|
||||
|
||||
This model must be separately initialized using an appropriate loader.
|
||||
|
||||
### spacy-curated-transformers.XlmrSentencepieceEncoder.v1
|
||||
|
||||
Construct a SentencePiece piece encoder model that accepts a list of token
|
||||
sequences or documents and returns a corresponding list of piece identifiers
|
||||
with XLM-RoBERTa post-processing applied.
|
||||
|
||||
This model must be separately initialized using an appropriate loader.
|
||||
|
||||
## Pretraining architectures {id="pretrain",source="spacy/ml/models/multi_task.py"}
|
||||
|
||||
The spacy `pretrain` command lets you initialize a `Tok2Vec` layer in your
|
||||
|
|
143
website/docs/api/basevectors.mdx
Normal file
143
website/docs/api/basevectors.mdx
Normal file
|
@ -0,0 +1,143 @@
|
|||
---
|
||||
title: BaseVectors
|
||||
teaser: Abstract class for word vectors
|
||||
tag: class
|
||||
source: spacy/vectors.pyx
|
||||
version: 3.7
|
||||
---
|
||||
|
||||
`BaseVectors` is an abstract class to support the development of custom vectors
|
||||
implementations.
|
||||
|
||||
For use in training with [`StaticVectors`](/api/architectures#staticvectors),
|
||||
`get_batch` must be implemented. For improved performance, use efficient
|
||||
batching in `get_batch` and implement `to_ops` to copy the vector data to the
|
||||
current device. See an example custom implementation for
|
||||
[BPEmb subword embeddings](/usage/embeddings-transformers#custom-vectors).
|
||||
|
||||
## BaseVectors.\_\_init\_\_ {id="init",tag="method"}
|
||||
|
||||
Create a new vector store.
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | --------------------------------------------------------------------------------------------------------------------- |
|
||||
| _keyword-only_ | |
|
||||
| `strings` | The string store. A new string store is created if one is not provided. Defaults to `None`. ~~Optional[StringStore]~~ |
|
||||
|
||||
## BaseVectors.\_\_getitem\_\_ {id="getitem",tag="method"}
|
||||
|
||||
Get a vector by key. If the key is not found in the table, a `KeyError` should
|
||||
be raised.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ---------------------------------------------------------------- |
|
||||
| `key` | The key to get the vector for. ~~Union[int, str]~~ |
|
||||
| **RETURNS** | The vector for the key. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
|
||||
|
||||
## BaseVectors.\_\_len\_\_ {id="len",tag="method"}
|
||||
|
||||
Return the number of vectors in the table.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------------- |
|
||||
| **RETURNS** | The number of vectors in the table. ~~int~~ |
|
||||
|
||||
## BaseVectors.\_\_contains\_\_ {id="contains",tag="method"}
|
||||
|
||||
Check whether there is a vector entry for the given key.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | -------------------------------------------- |
|
||||
| `key` | The key to check. ~~int~~ |
|
||||
| **RETURNS** | Whether the key has a vector entry. ~~bool~~ |
|
||||
|
||||
## BaseVectors.add {id="add",tag="method"}
|
||||
|
||||
Add a key to the table, if possible. If no keys can be added, return `-1`.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ----------------------------------------------------------------------------------- |
|
||||
| `key` | The key to add. ~~Union[str, int]~~ |
|
||||
| **RETURNS** | The row the vector was added to, or `-1` if the operation is not supported. ~~int~~ |
|
||||
|
||||
## BaseVectors.shape {id="shape",tag="property"}
|
||||
|
||||
Get `(rows, dims)` tuples of number of rows and number of dimensions in the
|
||||
vector table.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------------ |
|
||||
| **RETURNS** | A `(rows, dims)` pair. ~~Tuple[int, int]~~ |
|
||||
|
||||
## BaseVectors.size {id="size",tag="property"}
|
||||
|
||||
The vector size, i.e. `rows * dims`.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------ |
|
||||
| **RETURNS** | The vector size. ~~int~~ |
|
||||
|
||||
## BaseVectors.is_full {id="is_full",tag="property"}
|
||||
|
||||
Whether the vectors table is full and no slots are available for new keys.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------------- |
|
||||
| **RETURNS** | Whether the vectors table is full. ~~bool~~ |
|
||||
|
||||
## BaseVectors.get_batch {id="get_batch",tag="method",version="3.2"}
|
||||
|
||||
Get the vectors for the provided keys efficiently as a batch. Required to use
|
||||
the vectors with [`StaticVectors`](/api/architectures#StaticVectors) for
|
||||
training.
|
||||
|
||||
| Name | Description |
|
||||
| ------ | --------------------------------------- |
|
||||
| `keys` | The keys. ~~Iterable[Union[int, str]]~~ |
|
||||
|
||||
## BaseVectors.to_ops {id="to_ops",tag="method"}
|
||||
|
||||
Dummy method. Implement this to change the embedding matrix to use different
|
||||
Thinc ops.
|
||||
|
||||
| Name | Description |
|
||||
| ----- | -------------------------------------------------------- |
|
||||
| `ops` | The Thinc ops to switch the embedding matrix to. ~~Ops~~ |
|
||||
|
||||
## BaseVectors.to_disk {id="to_disk",tag="method"}
|
||||
|
||||
Dummy method to allow serialization. Implement to save vector data with the
|
||||
pipeline.
|
||||
|
||||
| Name | Description |
|
||||
| ------ | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||||
|
||||
## BaseVectors.from_disk {id="from_disk",tag="method"}
|
||||
|
||||
Dummy method to allow serialization. Implement to load vector data from a saved
|
||||
pipeline.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ----------------------------------------------------------------------------------------------- |
|
||||
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||||
| **RETURNS** | The modified vectors object. ~~BaseVectors~~ |
|
||||
|
||||
## BaseVectors.to_bytes {id="to_bytes",tag="method"}
|
||||
|
||||
Dummy method to allow serialization. Implement to serialize vector data to a
|
||||
binary string.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ---------------------------------------------------- |
|
||||
| **RETURNS** | The serialized form of the vectors object. ~~bytes~~ |
|
||||
|
||||
## BaseVectors.from_bytes {id="from_bytes",tag="method"}
|
||||
|
||||
Dummy method to allow serialization. Implement to load vector data from a binary
|
||||
string.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ----------------------------------- |
|
||||
| `data` | The data to load from. ~~bytes~~ |
|
||||
| **RETURNS** | The vectors object. ~~BaseVectors~~ |
|
|
@ -186,6 +186,29 @@ $ python -m spacy init fill-config [base_path] [output_file] [--diff]
|
|||
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
|
||||
| **CREATES** | Complete and auto-filled config file for training. |
|
||||
|
||||
### init fill-curated-transformer {id="init-fill-curated-transformer",version="3.7",tag="command"}
|
||||
|
||||
Auto-fill the Hugging Face model hyperpameters and loader parameters of a
|
||||
[Curated Transformer](/api/curatedtransformer) pipeline component in a
|
||||
[.cfg file](/usage/training#config). The name and revision of the
|
||||
[Hugging Face model](https://huggingface.co/models) can either be passed as
|
||||
command-line arguments or read from the
|
||||
`initialize.components.transformer.encoder_loader` config section.
|
||||
|
||||
```bash
|
||||
$ python -m spacy init fill-curated-transformer [base_path] [output_file] [--model-name] [--model-revision] [--pipe-name] [--code]
|
||||
```
|
||||
|
||||
| Name | Description |
|
||||
| ------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `base_path` | Path to base config to fill, e.g. generated by the [quickstart widget](/usage/training#quickstart). ~~Path (positional)~~ |
|
||||
| `output_file` | Path to output `.cfg` file or "-" to write to stdout so you can pipe it to a file. Defaults to "-" (stdout). ~~Path (positional)~~ |
|
||||
| `--model-name`, `-m` | Name of the Hugging Face model. Defaults to the model name from the encoder loader config. ~~Optional[str] (option)~~ |
|
||||
| `--model-revision`, `-r` | Revision of the Hugging Face model. Defaults to `main`. ~~Optional[str] (option)~~ |
|
||||
| `--pipe-name`, `-n` | Name of the Curated Transformer pipe whose config is to be filled. Defaults to the first transformer pipe. ~~Optional[str] (option)~~ |
|
||||
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
|
||||
| **CREATES** | Complete and auto-filled config file for training. |
|
||||
|
||||
### init vectors {id="init-vectors",version="3",tag="command"}
|
||||
|
||||
Convert [word vectors](/usage/linguistic-features#vectors-similarity) for use
|
||||
|
@ -1041,6 +1064,42 @@ $ python -m spacy debug model ./config.cfg tagger -l "5,15" -DIM -PAR -P0 -P1 -P
|
|||
| overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ |
|
||||
| **PRINTS** | Debugging information. |
|
||||
|
||||
### debug pieces {id="debug-pieces",version="3.7",tag="command"}
|
||||
|
||||
Analyze word- or sentencepiece stats.
|
||||
|
||||
```bash
|
||||
$ python -m spacy debug pieces [config_path] [--code] [--name] [overrides]
|
||||
```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `config_path` | Path to config file. ~~Union[Path, str] (positional)~~ |
|
||||
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
|
||||
| `--name`, `-n` | Name of the Curated Transformer pipe whose config is to be filled. Defaults to the first transformer pipe. ~~Optional[str] (option)~~ |
|
||||
| overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ |
|
||||
| **PRINTS** | Debugging information. |
|
||||
|
||||
<Accordion title="Example outputs" spaced>
|
||||
|
||||
```bash
|
||||
$ python -m spacy debug pieces ./config.cfg
|
||||
```
|
||||
|
||||
```
|
||||
========================= Training corpus statistics =========================
|
||||
Median token length: 1.0
|
||||
Mean token length: 1.54
|
||||
Token length range: [1, 13]
|
||||
|
||||
======================= Development corpus statistics =======================
|
||||
Median token length: 1.0
|
||||
Mean token length: 1.44
|
||||
Token length range: [1, 8]
|
||||
```
|
||||
|
||||
</Accordion>
|
||||
|
||||
## train {id="train",tag="command"}
|
||||
|
||||
Train a pipeline. Expects data in spaCy's
|
||||
|
@ -1183,7 +1242,7 @@ skew. To render a sample of dependency parses in a HTML file using the
|
|||
`--displacy-path` argument.
|
||||
|
||||
```bash
|
||||
$ python -m spacy benchmark accuracy [model] [data_path] [--output] [--code] [--gold-preproc] [--gpu-id] [--displacy-path] [--displacy-limit]
|
||||
$ python -m spacy benchmark accuracy [model] [data_path] [--output] [--code] [--gold-preproc] [--gpu-id] [--displacy-path] [--displacy-limit] [--per-component] [--spans-key]
|
||||
```
|
||||
|
||||
| Name | Description |
|
||||
|
@ -1197,6 +1256,7 @@ $ python -m spacy benchmark accuracy [model] [data_path] [--output] [--code] [--
|
|||
| `--displacy-path`, `-dp` | Directory to output rendered parses as HTML. If not set, no visualizations will be generated. ~~Optional[Path] \(option)~~ |
|
||||
| `--displacy-limit`, `-dl` | Number of parses to generate per file. Defaults to `25`. Keep in mind that a significantly higher number might cause the `.html` files to render slowly. ~~int (option)~~ |
|
||||
| `--per-component`, `-P` <Tag variant="new">3.6</Tag> | Whether to return the scores keyed by component name. Defaults to `False`. ~~bool (flag)~~ |
|
||||
| `--spans-key`, `-sk` <Tag variant="new">3.6.2</Tag> | Spans key to use when evaluating `Doc.spans`. Defaults to `sc`. ~~str (option)~~ |
|
||||
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
|
||||
| **CREATES** | Training results and optional metrics and visualizations. |
|
||||
|
||||
|
@ -1484,9 +1544,9 @@ obsolete files is left up to you.
|
|||
|
||||
Remotes can be defined in the `remotes` section of the
|
||||
[`project.yml`](/usage/projects#project-yml). Under the hood, spaCy uses
|
||||
[`Pathy`](https://github.com/justindujardin/pathy) to communicate with the
|
||||
remote storages, so you can use any protocol that `Pathy` supports, including
|
||||
[S3](https://aws.amazon.com/s3/),
|
||||
[`cloudpathlib`](https://cloudpathlib.drivendata.org) to communicate with the
|
||||
remote storages, so you can use any protocol that `cloudpathlib` supports,
|
||||
including [S3](https://aws.amazon.com/s3/),
|
||||
[Google Cloud Storage](https://cloud.google.com/storage), and the local
|
||||
filesystem, although you may need to install extra dependencies to use certain
|
||||
protocols.
|
||||
|
|
572
website/docs/api/curatedtransformer.mdx
Normal file
572
website/docs/api/curatedtransformer.mdx
Normal file
|
@ -0,0 +1,572 @@
|
|||
---
|
||||
title: CuratedTransformer
|
||||
teaser:
|
||||
Pipeline component for multi-task learning with Curated Transformer models
|
||||
tag: class
|
||||
source: github.com/explosion/spacy-curated-transformers/blob/main/spacy_curated_transformers/pipeline/transformer.py
|
||||
version: 3.7
|
||||
api_base_class: /api/pipe
|
||||
api_string_name: curated_transformer
|
||||
---
|
||||
|
||||
<Infobox title="Important note" variant="warning">
|
||||
|
||||
This component is available via the extension package
|
||||
[`spacy-curated-transformers`](https://github.com/explosion/spacy-curated-transformers).
|
||||
It exposes the component via entry points, so if you have the package installed,
|
||||
using `factory = "curated_transformer"` in your
|
||||
[training config](/usage/training#config) will work out-of-the-box.
|
||||
|
||||
</Infobox>
|
||||
|
||||
This pipeline component lets you use a curated set of transformer models in your
|
||||
pipeline. spaCy Curated Transformers currently supports the following model
|
||||
types:
|
||||
|
||||
- ALBERT
|
||||
- BERT
|
||||
- CamemBERT
|
||||
- RoBERTa
|
||||
- XLM-RoBERT
|
||||
|
||||
If you want to use another type of model, use
|
||||
[spacy-transformers](/api/spacy-transformers), which allows you to use all
|
||||
Hugging Face transformer models with spaCy.
|
||||
|
||||
You will usually connect downstream components to a shared Curated Transformer
|
||||
pipe using one of the Curated Transformer listener layers. This works similarly
|
||||
to spaCy's [Tok2Vec](/api/tok2vec), and the
|
||||
[Tok2VecListener](/api/architectures/#Tok2VecListener) sublayer. The component
|
||||
assigns the output of the transformer to the `Doc`'s extension attributes. To
|
||||
access the values, you can use the custom
|
||||
[`Doc._.trf_data`](#assigned-attributes) attribute.
|
||||
|
||||
For more details, see the [usage documentation](/usage/embeddings-transformers).
|
||||
|
||||
## Assigned Attributes {id="assigned-attributes"}
|
||||
|
||||
The component sets the following
|
||||
[custom extension attribute](/usage/processing-pipeline#custom-components-attributes):
|
||||
|
||||
| Location | Value |
|
||||
| ---------------- | -------------------------------------------------------------------------- |
|
||||
| `Doc._.trf_data` | Curated Transformer outputs for the `Doc` object. ~~DocTransformerOutput~~ |
|
||||
|
||||
## Config and Implementation {id="config"}
|
||||
|
||||
The default config is defined by the pipeline component factory and describes
|
||||
how the component should be configured. You can override its settings via the
|
||||
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
|
||||
[`config.cfg` for training](/usage/training#config). See the
|
||||
[model architectures](/api/architectures#curated-trf) documentation for details
|
||||
on the curated transformer architectures and their arguments and
|
||||
hyperparameters.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy_curated_transformers.pipeline.transformer import DEFAULT_CONFIG
|
||||
>
|
||||
> nlp.add_pipe("curated_transformer", config=DEFAULT_CONFIG)
|
||||
> ```
|
||||
|
||||
| Setting | Description |
|
||||
| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) wrapping the transformer. Defaults to [`XlmrTransformer`](/api/architectures#curated-trf). ~~Model~~ |
|
||||
| `frozen` | If `True`, the model's weights are frozen and no backpropagation is performed. ~~bool~~ |
|
||||
| `all_layer_outputs` | If `True`, the model returns the outputs of all the layers. Otherwise, only the output of the last layer is returned. This must be set to `True` if any of the pipe's downstream listeners require the outputs of all transformer layers. ~~bool~~ |
|
||||
|
||||
```python
|
||||
https://github.com/explosion/spacy-curated-transformers/blob/main/spacy_curated_transformers/pipeline/transformer.py
|
||||
```
|
||||
|
||||
## CuratedTransformer.\_\_init\_\_ {id="init",tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> # Construction via add_pipe with default model
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
>
|
||||
> # Construction via add_pipe with custom config
|
||||
> config = {
|
||||
> "model": {
|
||||
> "@architectures": "spacy-curated-transformers.XlmrTransformer.v1",
|
||||
> "vocab_size": 250002,
|
||||
> "num_hidden_layers": 12,
|
||||
> "hidden_width": 768,
|
||||
> "piece_encoder": {
|
||||
> "@architectures": "spacy-curated-transformers.XlmrSentencepieceEncoder.v1"
|
||||
> }
|
||||
> }
|
||||
> }
|
||||
> trf = nlp.add_pipe("curated_transformer", config=config)
|
||||
>
|
||||
> # Construction from class
|
||||
> from spacy_curated_transformers import CuratedTransformer
|
||||
> trf = CuratedTransformer(nlp.vocab, model)
|
||||
> ```
|
||||
|
||||
Construct a `CuratedTransformer` component. One or more subsequent spaCy
|
||||
components can use the transformer outputs as features in its model, with
|
||||
gradients backpropagated to the single shared weights. The activations from the
|
||||
transformer are saved in the [`Doc._.trf_data`](#assigned-attributes) extension
|
||||
attribute. You can also provide a callback to set additional annotations. In
|
||||
your application, you would normally use a shortcut for this and instantiate the
|
||||
component using its string name and [`nlp.add_pipe`](/api/language#create_pipe).
|
||||
|
||||
| Name | Description |
|
||||
| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
||||
| `model` | One of the supported pre-trained transformer models. ~~Model~~ |
|
||||
| _keyword-only_ | |
|
||||
| `name` | The component instance name. ~~str~~ |
|
||||
| `frozen` | If `True`, the model's weights are frozen and no backpropagation is performed. ~~bool~~ |
|
||||
| `all_layer_outputs` | If `True`, the model returns the outputs of all the layers. Otherwise, only the output of the last layer is returned. This must be set to `True` if any of the pipe's downstream listeners require the outputs of all transformer layers. ~~bool~~ |
|
||||
|
||||
## CuratedTransformer.\_\_call\_\_ {id="call",tag="method"}
|
||||
|
||||
Apply the pipe to one document. The document is modified in place, and returned.
|
||||
This usually happens under the hood when the `nlp` object is called on a text
|
||||
and all pipeline components are applied to the `Doc` in order. Both
|
||||
[`__call__`](/api/curatedtransformer#call) and
|
||||
[`pipe`](/api/curatedtransformer#pipe) delegate to the
|
||||
[`predict`](/api/curatedtransformer#predict) and
|
||||
[`set_annotations`](/api/curatedtransformer#set_annotations) methods.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> doc = nlp("This is a sentence.")
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> # This usually happens under the hood
|
||||
> processed = trf(doc)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | -------------------------------- |
|
||||
| `doc` | The document to process. ~~Doc~~ |
|
||||
| **RETURNS** | The processed document. ~~Doc~~ |
|
||||
|
||||
## CuratedTransformer.pipe {id="pipe",tag="method"}
|
||||
|
||||
Apply the pipe to a stream of documents. This usually happens under the hood
|
||||
when the `nlp` object is called on a text and all pipeline components are
|
||||
applied to the `Doc` in order. Both [`__call__`](/api/curatedtransformer#call)
|
||||
and [`pipe`](/api/curatedtransformer#pipe) delegate to the
|
||||
[`predict`](/api/curatedtransformer#predict) and
|
||||
[`set_annotations`](/api/curatedtransformer#set_annotations) methods.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> for doc in trf.pipe(docs, batch_size=50):
|
||||
> pass
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------- |
|
||||
| `stream` | A stream of documents. ~~Iterable[Doc]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
|
||||
| **YIELDS** | The processed documents in order. ~~Doc~~ |
|
||||
|
||||
## CuratedTransformer.initialize {id="initialize",tag="method"}
|
||||
|
||||
Initialize the component for training and return an
|
||||
[`Optimizer`](https://thinc.ai/docs/api-optimizers). `get_examples` should be a
|
||||
function that returns an iterable of [`Example`](/api/example) objects. **At
|
||||
least one example should be supplied.** The data examples are used to
|
||||
**initialize the model** of the component and can either be the full training
|
||||
data or a representative sample. Initialization includes validating the network,
|
||||
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
|
||||
setting up the label scheme based on the data. This method is typically called
|
||||
by [`Language.initialize`](/api/language#initialize).
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> trf.initialize(lambda: examples, nlp=nlp)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ---------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
|
||||
| `encoder_loader` | Initialization callback for the transformer model. ~~Optional[Callable]~~ |
|
||||
| `piece_loader` | Initialization callback for the input piece encoder. ~~Optional[Callable]~~ |
|
||||
|
||||
## CuratedTransformer.predict {id="predict",tag="method"}
|
||||
|
||||
Apply the component's model to a batch of [`Doc`](/api/doc) objects without
|
||||
modifying them.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> scores = trf.predict([doc1, doc2])
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------------- |
|
||||
| `docs` | The documents to predict. ~~Iterable[Doc]~~ |
|
||||
| **RETURNS** | The model's prediction for each document. |
|
||||
|
||||
## CuratedTransformer.set_annotations {id="set_annotations",tag="method"}
|
||||
|
||||
Assign the extracted features to the `Doc` objects. By default, the
|
||||
[`DocTransformerOutput`](/api/curatedtransformer#doctransformeroutput) object is
|
||||
written to the [`Doc._.trf_data`](#assigned-attributes) attribute. Your
|
||||
`set_extra_annotations` callback is then called, if provided.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> scores = trf.predict(docs)
|
||||
> trf.set_annotations(docs, scores)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------- | ------------------------------------------------------------ |
|
||||
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
|
||||
| `scores` | The scores to set, produced by `CuratedTransformer.predict`. |
|
||||
|
||||
## CuratedTransformer.update {id="update",tag="method"}
|
||||
|
||||
Prepare for an update to the transformer.
|
||||
|
||||
Like the [`Tok2Vec`](api/tok2vec) component, the `CuratedTransformer` component
|
||||
is unusual in that it does not receive "gold standard" annotations to calculate
|
||||
a weight update. The optimal output of the transformer data is unknown; it's a
|
||||
hidden layer inside the network that is updated by backpropagating from output
|
||||
layers.
|
||||
|
||||
The `CuratedTransformer` component therefore does not perform a weight update
|
||||
during its own `update` method. Instead, it runs its transformer model and
|
||||
communicates the output and the backpropagation callback to any downstream
|
||||
components that have been connected to it via the transformer listener sublayer.
|
||||
If there are multiple listeners, the last layer will actually backprop to the
|
||||
transformer and call the optimizer, while the others simply increment the
|
||||
gradients.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> optimizer = nlp.initialize()
|
||||
> losses = trf.update(examples, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | A batch of [`Example`](/api/example) objects. Only the [`Example.predicted`](/api/example#predicted) `Doc` object is used, the reference `Doc` is ignored. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | The dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## CuratedTransformer.create_optimizer {id="create_optimizer",tag="method"}
|
||||
|
||||
Create an optimizer for the pipeline component.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> optimizer = trf.create_optimizer()
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ---------------------------- |
|
||||
| **RETURNS** | The optimizer. ~~Optimizer~~ |
|
||||
|
||||
## CuratedTransformer.use_params {id="use_params",tag="method, contextmanager"}
|
||||
|
||||
Modify the pipe's model to use the given parameter values. At the end of the
|
||||
context, the original parameters are restored.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> with trf.use_params(optimizer.averages):
|
||||
> trf.to_disk("/best_model")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------- | -------------------------------------------------- |
|
||||
| `params` | The parameter values to use in the model. ~~dict~~ |
|
||||
|
||||
## CuratedTransformer.to_disk {id="to_disk",tag="method"}
|
||||
|
||||
Serialize the pipe to disk.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> trf.to_disk("/path/to/transformer")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
|
||||
## CuratedTransformer.from_disk {id="from_disk",tag="method"}
|
||||
|
||||
Load the pipe from disk. Modifies the object in place and returns it.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> trf.from_disk("/path/to/transformer")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ----------------------------------------------------------------------------------------------- |
|
||||
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The modified `CuratedTransformer` object. ~~CuratedTransformer~~ |
|
||||
|
||||
## CuratedTransformer.to_bytes {id="to_bytes",tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> trf_bytes = trf.to_bytes()
|
||||
> ```
|
||||
|
||||
Serialize the pipe to a bytestring.
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------- |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The serialized form of the `CuratedTransformer` object. ~~bytes~~ |
|
||||
|
||||
## CuratedTransformer.from_bytes {id="from_bytes",tag="method"}
|
||||
|
||||
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> trf_bytes = trf.to_bytes()
|
||||
> trf = nlp.add_pipe("curated_transformer")
|
||||
> trf.from_bytes(trf_bytes)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------- |
|
||||
| `bytes_data` | The data to load from. ~~bytes~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The `CuratedTransformer` object. ~~CuratedTransformer~~ |
|
||||
|
||||
## Serialization Fields {id="serialization-fields"}
|
||||
|
||||
During serialization, spaCy will export several data fields used to restore
|
||||
different aspects of the object. If needed, you can exclude them from
|
||||
serialization by passing in the string names via the `exclude` argument.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> data = trf.to_disk("/path", exclude=["vocab"])
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ------- | -------------------------------------------------------------- |
|
||||
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
||||
| `cfg` | The config file. You usually don't want to exclude this. |
|
||||
| `model` | The binary model data. You usually don't want to exclude this. |
|
||||
|
||||
## DocTransformerOutput {id="doctransformeroutput",tag="dataclass"}
|
||||
|
||||
Curated Transformer outputs for one `Doc` object. Stores the dense
|
||||
representations generated by the transformer for each piece identifier. Piece
|
||||
identifiers are grouped by token. Instances of this class are typically assigned
|
||||
to the [`Doc._.trf_data`](/api/curatedtransformer#assigned-attributes) extension
|
||||
attribute.
|
||||
|
||||
| Name | Description |
|
||||
| ----------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `all_outputs` | List of `Ragged` tensors that correspends to outputs of the different transformer layers. Each tensor element corresponds to a piece identifier's representation. ~~List[Ragged]~~ |
|
||||
| `last_layer_only` | If only the last transformer layer's outputs are preserved. ~~bool~~ |
|
||||
|
||||
### DocTransformerOutput.embedding_layer {id="doctransformeroutput-embeddinglayer",tag="property"}
|
||||
|
||||
Return the output of the transformer's embedding layer or `None` if
|
||||
`last_layer_only` is `True`.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | -------------------------------------------- |
|
||||
| **RETURNS** | Embedding layer output. ~~Optional[Ragged]~~ |
|
||||
|
||||
### DocTransformerOutput.last_hidden_layer_state {id="doctransformeroutput-lasthiddenlayerstate",tag="property"}
|
||||
|
||||
Return the output of the transformer's last hidden layer.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------ |
|
||||
| **RETURNS** | Last hidden layer output. ~~Ragged~~ |
|
||||
|
||||
### DocTransformerOutput.all_hidden_layer_states {id="doctransformeroutput-allhiddenlayerstates",tag="property"}
|
||||
|
||||
Return the outputs of all transformer layers (excluding the embedding layer).
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | -------------------------------------- |
|
||||
| **RETURNS** | Hidden layer outputs. ~~List[Ragged]~~ |
|
||||
|
||||
### DocTransformerOutput.num_outputs {id="doctransformeroutput-numoutputs",tag="property"}
|
||||
|
||||
Return the number of layer outputs stored in the `DocTransformerOutput` instance
|
||||
(including the embedding layer).
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | -------------------------- |
|
||||
| **RETURNS** | Numbef of outputs. ~~int~~ |
|
||||
|
||||
## Span Getters {id="span_getters",source="github.com/explosion/spacy-transformers/blob/master/spacy_curated_transformers/span_getters.py"}
|
||||
|
||||
Span getters are functions that take a batch of [`Doc`](/api/doc) objects and
|
||||
return a lists of [`Span`](/api/span) objects for each doc to be processed by
|
||||
the transformer. This is used to manage long documents by cutting them into
|
||||
smaller sequences before running the transformer. The spans are allowed to
|
||||
overlap, and you can also omit sections of the `Doc` if they are not relevant.
|
||||
Span getters can be referenced in the
|
||||
`[components.transformer.model.with_spans]` block of the config to customize the
|
||||
sequences processed by the transformer.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------------------------------- |
|
||||
| `docs` | A batch of `Doc` objects. ~~Iterable[Doc]~~ |
|
||||
| **RETURNS** | The spans to process by the transformer. ~~List[List[Span]]~~ |
|
||||
|
||||
### WithStridedSpans.v1 {id="strided_spans",tag="registered function"}
|
||||
|
||||
> #### Example config
|
||||
>
|
||||
> ```ini
|
||||
> [transformer.model.with_spans]
|
||||
> @architectures = "spacy-curated-transformers.WithStridedSpans.v1"
|
||||
> stride = 96
|
||||
> window = 128
|
||||
> ```
|
||||
|
||||
Create a span getter for strided spans. If you set the `window` and `stride` to
|
||||
the same value, the spans will cover each token once. Setting `stride` lower
|
||||
than `window` will allow for an overlap, so that some tokens are counted twice.
|
||||
This can be desirable, because it allows all tokens to have both a left and
|
||||
right context.
|
||||
|
||||
| Name | Description |
|
||||
| -------- | ------------------------ |
|
||||
| `window` | The window size. ~~int~~ |
|
||||
| `stride` | The stride size. ~~int~~ |
|
||||
|
||||
## Model Loaders
|
||||
|
||||
[Curated Transformer models](/api/architectures#curated-trf) are constructed
|
||||
with default hyperparameters and randomized weights when the pipeline is
|
||||
created. To load the weights of an existing pre-trained model into the pipeline,
|
||||
one of the following loader callbacks can be used. The pre-trained model must
|
||||
have the same hyperparameters as the model used by the pipeline.
|
||||
|
||||
### HFTransformerEncoderLoader.v1 {id="hf_trfencoder_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a supported transformer model with weights
|
||||
from a corresponding HuggingFace model.
|
||||
|
||||
| Name | Description |
|
||||
| ---------- | ------------------------------------------ |
|
||||
| `name` | Name of the HuggingFace model. ~~str~~ |
|
||||
| `revision` | Name of the model revision/branch. ~~str~~ |
|
||||
|
||||
### PyTorchCheckpointLoader.v1 {id="pytorch_checkpoint_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a supported transformer model with weights
|
||||
from a PyTorch checkpoint.
|
||||
|
||||
| Name | Description |
|
||||
| ------ | ---------------------------------------- |
|
||||
| `path` | Path to the PyTorch checkpoint. ~~Path~~ |
|
||||
|
||||
## Tokenizer Loaders
|
||||
|
||||
[Curated Transformer models](/api/architectures#curated-trf) must be paired with
|
||||
a matching tokenizer (piece encoder) model in a spaCy pipeline. As with the
|
||||
transformer models, tokenizers are constructed with an empty vocabulary during
|
||||
pipeline creation - They need to be initialized with an appropriate loader
|
||||
before use in training/inference.
|
||||
|
||||
### ByteBPELoader.v1 {id="bytebpe_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a Byte-BPE piece encoder model.
|
||||
|
||||
| Name | Description |
|
||||
| ------------- | ------------------------------------- |
|
||||
| `vocab_path` | Path to the vocabulary file. ~~Path~~ |
|
||||
| `merges_path` | Path to the merges file. ~~Path~~ |
|
||||
|
||||
### CharEncoderLoader.v1 {id="charencoder_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a character piece encoder model.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | --------------------------------------------------------------------------- |
|
||||
| `path` | Path to the serialized character model. ~~Path~~ |
|
||||
| `bos_piece` | Piece used as a beginning-of-sentence token. Defaults to `"[BOS]"`. ~~str~~ |
|
||||
| `eos_piece` | Piece used as a end-of-sentence token. Defaults to `"[EOS]"`. ~~str~~ |
|
||||
| `unk_piece` | Piece used as a stand-in for unknown tokens. Defaults to `"[UNK]"`. ~~str~~ |
|
||||
| `normalize` | Unicode normalization form to use. Defaults to `"NFKC"`. ~~str~~ |
|
||||
|
||||
### HFPieceEncoderLoader.v1 {id="hf_pieceencoder_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a HuggingFace piece encoder model. Used in
|
||||
conjunction with the HuggingFace model loader.
|
||||
|
||||
| Name | Description |
|
||||
| ---------- | ------------------------------------------ |
|
||||
| `name` | Name of the HuggingFace model. ~~str~~ |
|
||||
| `revision` | Name of the model revision/branch. ~~str~~ |
|
||||
|
||||
### SentencepieceLoader.v1 {id="sentencepiece_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a SentencePiece piece encoder model.
|
||||
|
||||
| Name | Description |
|
||||
| ------ | ---------------------------------------------------- |
|
||||
| `path` | Path to the serialized SentencePiece model. ~~Path~~ |
|
||||
|
||||
### WordpieceLoader.v1 {id="wordpiece_loader",tag="registered_function"}
|
||||
|
||||
Construct a callback that initializes a WordPiece piece encoder model.
|
||||
|
||||
| Name | Description |
|
||||
| ------ | ------------------------------------------------ |
|
||||
| `path` | Path to the serialized WordPiece model. ~~Path~~ |
|
||||
|
||||
## Callbacks
|
||||
|
||||
### gradual_transformer_unfreezing.v1 {id="gradual_transformer_unfreezing",tag="registered_function"}
|
||||
|
||||
Construct a callback that can be used to gradually unfreeze the weights of one
|
||||
or more Transformer components during training. This can be used to prevent
|
||||
catastrophic forgetting during fine-tuning.
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `target_pipes` | A dictionary whose keys and values correspond to the names of Transformer components and the training step at which they should be unfrozen respectively. ~~Dict[str, int]~~ |
|
|
@ -19,8 +19,8 @@ prototyping** and **prompting**, and turning unstructured responses into
|
|||
An LLM component is implemented through the `LLMWrapper` class. It is accessible
|
||||
through a generic `llm`
|
||||
[component factory](https://spacy.io/usage/processing-pipelines#custom-components-factories)
|
||||
as well as through task-specific component factories: `llm_ner`, `llm_spancat`, `llm_rel`,
|
||||
`llm_textcat`, `llm_sentiment` and `llm_summarization`.
|
||||
as well as through task-specific component factories: `llm_ner`, `llm_spancat`,
|
||||
`llm_rel`, `llm_textcat`, `llm_sentiment` and `llm_summarization`.
|
||||
|
||||
### LLMWrapper.\_\_init\_\_ {id="init",tag="method"}
|
||||
|
||||
|
@ -255,9 +255,11 @@ prompting.
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| --------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `template` | Custom prompt template to send to LLM model. Defaults to [summarization.v1.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/summarization.v1.jinja). ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SummarizationTask]]~~ |
|
||||
| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `SummarizationExample`. ~~Optional[Type[FewshotExample]]~~ |
|
||||
| `max_n_words` | Maximum number of words to be used in summary. Note that this should not expected to work exactly. Defaults to `None`. ~~Optional[int]~~ |
|
||||
| `field` | Name of extension attribute to store summary in (i. e. the summary will be available in `doc._.{field}`). Defaults to `summary`. ~~str~~ |
|
||||
|
||||
|
@ -326,12 +328,15 @@ the v3 implementation will use a dummy example in the prompt. Technically this
|
|||
means that the task will always perform few-shot prompting under the hood.
|
||||
|
||||
| Argument | Description |
|
||||
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `template` | Custom prompt template to send to LLM model. Defaults to [ner.v3.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/ner.v3.jinja). ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[NERTask]]~~ |
|
||||
| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `NERExample`. ~~Optional[Type[FewshotExample]]~~ |
|
||||
| `scorer` | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
|
||||
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||||
| `label_definitions` | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||||
| `template` | Custom prompt template to send to LLM model. Defaults to [ner.v3.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/ner.v3.jinja). ~~str~~ |
|
||||
| `description` (NEW) | A description of what to recognize or not recognize as entities. ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ |
|
||||
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ |
|
||||
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ |
|
||||
|
@ -416,11 +421,14 @@ v1.
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||||
| `label_definitions` (NEW) | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||||
| --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `template` (NEW) | Custom prompt template to send to LLM model. Defaults to [ner.v2.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/ner.v2.jinja). ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[NERTask]]~~ |
|
||||
| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `NERExample`. ~~Optional[Type[FewshotExample]]~~ |
|
||||
| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
|
||||
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||||
| `label_definitions` (NEW) | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||||
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ |
|
||||
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ |
|
||||
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ |
|
||||
|
@ -468,9 +476,12 @@ few-shot prompting.
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `labels` | Comma-separated list of labels. ~~str~~ |
|
||||
| --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[NERTask]]~~ |
|
||||
| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `NERExample`. ~~Optional[Type[FewshotExample]]~~ |
|
||||
| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
|
||||
| `labels` | Comma-separated list of labels. ~~str~~ |
|
||||
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
|
||||
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ |
|
||||
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ |
|
||||
|
@ -540,13 +551,16 @@ support overlapping entities and store its annotations in `doc.spans`.
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `template` | Custom prompt template to send to LLM model. Defaults to [`spancat.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/spancat.v3.jinja). ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SpanCatTask]]~~ |
|
||||
| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `SpanCatExample`. ~~Optional[Type[FewshotExample]]~~ |
|
||||
| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
|
||||
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||||
| `label_definitions` | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||||
| `template` | Custom prompt template to send to LLM model. Defaults to [`spancat.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/spancat.v3.jinja). ~~str~~ |
|
||||
| `description` (NEW) | A description of what to recognize or not recognize as entities. ~~str~~ |
|
||||
| `spans_key` | Key of the `Doc.spans` dict to save the spans under. Defaults to `"sc"`. ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
|
||||
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ |
|
||||
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ |
|
||||
|
@ -569,12 +583,15 @@ support overlapping entities and store its annotations in `doc.spans`.
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `template` (NEW) | Custom prompt template to send to LLM model. Defaults to [`spancat.v2.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/spancat.v2.jinja). ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SpanCatTask]]~~ |
|
||||
| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `SpanCatExample`. ~~Optional[Type[FewshotExample]]~~ |
|
||||
| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
|
||||
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||||
| `label_definitions` (NEW) | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||||
| `template` (NEW) | Custom prompt template to send to LLM model. Defaults to [`spancat.v2.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/spancat.v2.jinja). ~~str~~ |
|
||||
| `spans_key` | Key of the `Doc.spans` dict to save the spans under. Defaults to `"sc"`. ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
|
||||
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ |
|
||||
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ |
|
||||
|
@ -600,10 +617,13 @@ v1 NER task to support overlapping entities and store its annotations in
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SpanCatTask]]~~ |
|
||||
| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `SpanCatExample`. ~~Optional[Type[FewshotExample]]~~ |
|
||||
| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
|
||||
| `labels` | Comma-separated list of labels. ~~str~~ |
|
||||
| `spans_key` | Key of the `Doc.spans` dict to save the spans under. Defaults to `"sc"`. ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
|
||||
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ |
|
||||
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ |
|
||||
|
@ -637,11 +657,14 @@ prompt.
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||||
| `label_definitions` (NEW) | Dictionary of label definitions. Included in the prompt, if set. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||||
| --------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `template` | Custom prompt template to send to LLM model. Defaults to [`textcat.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/textcat.v3.jinja). ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SpanCatTask]]~~ |
|
||||
| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `TextCatExample`. ~~Optional[Type[FewshotExample]]~~ |
|
||||
| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
|
||||
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||||
| `label_definitions` (NEW) | Dictionary of label definitions. Included in the prompt, if set. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||||
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ |
|
||||
| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Defaults to `False`. ~~bool~~ |
|
||||
| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Defaults to `True`. ~~bool~~ |
|
||||
|
@ -664,10 +687,13 @@ V2 includes all v1 functionality, with an improved prompt template.
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||||
| --------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `template` (NEW) | Custom prompt template to send to LLM model. Defaults to [`textcat.v2.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/textcat.v2.jinja). ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SpanCatTask]]~~ |
|
||||
| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `TextCatExample`. ~~Optional[Type[FewshotExample]]~~ |
|
||||
| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
|
||||
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||||
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
|
||||
| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Defaults to `False`. ~~bool~~ |
|
||||
| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Defaults to `True`. ~~bool~~ |
|
||||
|
@ -691,13 +717,16 @@ prompting.
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `labels` | Comma-separated list of labels. ~~str~~ |
|
||||
| --------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Deafults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SpanCatTask]]~~ |
|
||||
| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `TextCatExample`. ~~Optional[Type[FewshotExample]]~~ |
|
||||
| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
|
||||
| `labels` | Comma-separated list of labels. ~~str~~ |
|
||||
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
|
||||
| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Deafults to `False`. ~~bool~~ |
|
||||
| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Deafults to `True`. ~~bool~~ |
|
||||
| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Deafults to `False`. ~~bool~~ |
|
||||
| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Defaults to `False`. ~~bool~~ |
|
||||
| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Defaults to `True`. ~~bool~~ |
|
||||
| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ |
|
||||
|
||||
To perform [few-shot learning](/usage/large-language-models#few-shot-prompts),
|
||||
you can write down a few examples in a separate file, and provide these to be
|
||||
|
@ -741,11 +770,14 @@ on an upstream NER component for entities extraction.
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||||
| --------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `template` | Custom prompt template to send to LLM model. Defaults to [`rel.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/rel.v1.jinja). ~~str~~ |
|
||||
| `label_definitions` | Dictionary providing a description for each relation label. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[RELTask]]~~ |
|
||||
| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `RELExample`. ~~Optional[Type[FewshotExample]]~~ |
|
||||
| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
|
||||
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||||
| `label_definitions` | Dictionary providing a description for each relation label. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||||
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ |
|
||||
| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ |
|
||||
|
||||
|
@ -794,9 +826,12 @@ This task supports both zero-shot and few-shot prompting.
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ---------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| --------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `template` | Custom prompt template to send to LLM model. Defaults to [lemma.v1.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/lemma.v1.jinja). ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[LemmaTask]]~~ |
|
||||
| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `LemmaExample`. ~~Optional[Type[FewshotExample]]~~ |
|
||||
| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
|
||||
|
||||
The task prompts the LLM to lemmatize the passed text and return the lemmatized
|
||||
version as a list of tokens and their corresponding lemma. E. g. the text
|
||||
|
@ -871,9 +906,12 @@ This task supports both zero-shot and few-shot prompting.
|
|||
> ```
|
||||
|
||||
| Argument | Description |
|
||||
| ---------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| --------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `template` | Custom prompt template to send to LLM model. Defaults to [sentiment.v1.jinja](./spacy_llm/tasks/templates/sentiment.v1.jinja). ~~str~~ |
|
||||
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||||
| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SentimentTask]]~~ |
|
||||
| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `SentimentExample`. ~~Optional[Type[FewshotExample]]~~ |
|
||||
| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ |
|
||||
| `field` | Name of extension attribute to store summary in (i. e. the summary will be available in `doc._.{field}`). Defaults to `sentiment`. ~~str~~ |
|
||||
|
||||
To perform [few-shot learning](/usage/large-language-models#few-shot-prompts),
|
||||
|
@ -953,11 +991,11 @@ provider's API.
|
|||
Currently, these models are provided as part of the core library:
|
||||
|
||||
| Model | Provider | Supported names | Default name | Default config |
|
||||
| ----------------------------- | --------- | ---------------------------------------------------------------------------------------- | ---------------------- | ------------------------------------ |
|
||||
| ----------------------------- | ----------------- | ------------------------------------------------------------------------------------------------------------------ | ---------------------- | ------------------------------------ |
|
||||
| `spacy.GPT-4.v1` | OpenAI | `["gpt-4", "gpt-4-0314", "gpt-4-32k", "gpt-4-32k-0314"]` | `"gpt-4"` | `{}` |
|
||||
| `spacy.GPT-4.v2` | OpenAI | `["gpt-4", "gpt-4-0314", "gpt-4-32k", "gpt-4-32k-0314"]` | `"gpt-4"` | `{temperature=0.0}` |
|
||||
| `spacy.GPT-3-5.v1` | OpenAI | `["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-0613-16k"]` | `"gpt-3.5-turbo"` | `{}` |
|
||||
| `spacy.GPT-3-5.v2` | OpenAI | `["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-0613-16k"]` | `"gpt-3.5-turbo"` | `{temperature=0.0}` |
|
||||
| `spacy.GPT-3-5.v1` | OpenAI | `["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-0613-16k", "gpt-3.5-turbo-instruct"]` | `"gpt-3.5-turbo"` | `{}` |
|
||||
| `spacy.GPT-3-5.v2` | OpenAI | `["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-0613-16k", "gpt-3.5-turbo-instruct"]` | `"gpt-3.5-turbo"` | `{temperature=0.0}` |
|
||||
| `spacy.Davinci.v1` | OpenAI | `["davinci"]` | `"davinci"` | `{}` |
|
||||
| `spacy.Davinci.v2` | OpenAI | `["davinci"]` | `"davinci"` | `{temperature=0.0, max_tokens=500}` |
|
||||
| `spacy.Text-Davinci.v1` | OpenAI | `["text-davinci-003", "text-davinci-002"]` | `"text-davinci-003"` | `{}` |
|
||||
|
@ -976,6 +1014,7 @@ Currently, these models are provided as part of the core library:
|
|||
| `spacy.Ada.v2` | OpenAI | `["ada"]` | `"ada"` | `{temperature=0.0, max_tokens=500}` |
|
||||
| `spacy.Text-Ada.v1` | OpenAI | `["text-ada-001"]` | `"text-ada-001"` | `{}` |
|
||||
| `spacy.Text-Ada.v2` | OpenAI | `["text-ada-001"]` | `"text-ada-001"` | `{temperature=0.0, max_tokens=500}` |
|
||||
| `spacy.Azure.v1` | Microsoft, OpenAI | Arbitrary values | No default | `{temperature=0.0}` |
|
||||
| `spacy.Command.v1` | Cohere | `["command", "command-light", "command-light-nightly", "command-nightly"]` | `"command"` | `{}` |
|
||||
| `spacy.Claude-2.v1` | Anthropic | `["claude-2", "claude-2-100k"]` | `"claude-2"` | `{}` |
|
||||
| `spacy.Claude-1.v1` | Anthropic | `["claude-1", "claude-1-100k"]` | `"claude-1"` | `{}` |
|
||||
|
@ -984,10 +1023,29 @@ Currently, these models are provided as part of the core library:
|
|||
| `spacy.Claude-1-3.v1` | Anthropic | `["claude-1.3", "claude-1.3-100k"]` | `"claude-1.3"` | `{}` |
|
||||
| `spacy.Claude-instant-1.v1` | Anthropic | `["claude-instant-1", "claude-instant-1-100k"]` | `"claude-instant-1"` | `{}` |
|
||||
| `spacy.Claude-instant-1-1.v1` | Anthropic | `["claude-instant-1.1", "claude-instant-1.1-100k"]` | `"claude-instant-1.1"` | `{}` |
|
||||
| `spacy.PaLM.v1` | Google | `["chat-bison-001", "text-bison-001"]` | `"text-bison-001"` | `{temperature=0.0}` |
|
||||
|
||||
To use these models, make sure that you've [set the relevant API](#api-keys)
|
||||
keys as environment variables.
|
||||
|
||||
**⚠️ A note on `spacy.Azure.v1`.** Working with Azure OpenAI is slightly
|
||||
different than working with models from other providers:
|
||||
|
||||
- In Azure LLMs have to be made available by creating a _deployment_ of a given
|
||||
model (e. g. GPT-3.5). This deployment can have an arbitrary name. The `name`
|
||||
argument, which everywhere else denotes the model name (e. g. `claude-1.0`,
|
||||
`gpt-3.5`), here refers to the _deployment name_.
|
||||
- Deployed Azure OpenAI models are reachable via a resource-specific base URL,
|
||||
usually of the form `https://{resource}.openai.azure.com`. Hence the URL has
|
||||
to be specified via the `base_url` argument.
|
||||
- Azure further expects the _API version_ to be specified. The default value for
|
||||
this, via the `api_version` argument, is currently `2023-05-15` but may be
|
||||
updated in the future.
|
||||
- Finally, since we can't infer information about the model from the deployment
|
||||
name, `spacy-llm` requires the `model_type` to be set to either
|
||||
`"completions"` or `"chat"`, depending on whether the deployed model is a
|
||||
completion or chat model.
|
||||
|
||||
#### API Keys {id="api-keys"}
|
||||
|
||||
Note that when using hosted services, you have to ensure that the proper API
|
||||
|
@ -1014,6 +1072,12 @@ For Anthropic:
|
|||
export ANTHROPIC_API_KEY="..."
|
||||
```
|
||||
|
||||
For PaLM:
|
||||
|
||||
```shell
|
||||
export PALM_API_KEY="..."
|
||||
```
|
||||
|
||||
### Models via HuggingFace {id="models-hf"}
|
||||
|
||||
These models all take the same parameters:
|
||||
|
@ -1037,11 +1101,27 @@ Currently, these models are provided as part of the core library:
|
|||
| Model | Provider | Supported names | HF directory |
|
||||
| -------------------- | --------------- | ------------------------------------------------------------------------------------------------------------ | -------------------------------------- |
|
||||
| `spacy.Dolly.v1` | Databricks | `["dolly-v2-3b", "dolly-v2-7b", "dolly-v2-12b"]` | https://huggingface.co/databricks |
|
||||
| `spacy.Llama2.v1` | Meta AI | `["Llama-2-7b-hf", "Llama-2-13b-hf", "Llama-2-70b-hf"]` | https://huggingface.co/meta-llama |
|
||||
| `spacy.Falcon.v1` | TII | `["falcon-rw-1b", "falcon-7b", "falcon-7b-instruct", "falcon-40b-instruct"]` | https://huggingface.co/tiiuae |
|
||||
| `spacy.Llama2.v1` | Meta AI | `["Llama-2-7b-hf", "Llama-2-13b-hf", "Llama-2-70b-hf"]` | https://huggingface.co/meta-llama |
|
||||
| `spacy.Mistral.v1` | Mistral AI | `["Mistral-7B-v0.1", "Mistral-7B-Instruct-v0.1"]` | https://huggingface.co/mistralai |
|
||||
| `spacy.StableLM.v1` | Stability AI | `["stablelm-base-alpha-3b", "stablelm-base-alpha-7b", "stablelm-tuned-alpha-3b", "stablelm-tuned-alpha-7b"]` | https://huggingface.co/stabilityai |
|
||||
| `spacy.OpenLLaMA.v1` | OpenLM Research | `["open_llama_3b", "open_llama_7b", "open_llama_7b_v2", "open_llama_13b"]` | https://huggingface.co/openlm-research |
|
||||
|
||||
<Infobox variant="warning" title="Gated models on Hugging Face" id="hf_licensing">
|
||||
|
||||
Some models available on Hugging Face (HF), such as Llama 2, are _gated models_.
|
||||
That means that users have to fulfill certain requirements to be allowed access
|
||||
to these models. In the case of Llama 2 you'll need to request agree to Meta's
|
||||
Terms of Service while logged in with your HF account. After Meta grants you
|
||||
permission to use Llama 2, you'll be able to download and use the model.
|
||||
|
||||
This requires that you are logged in with your HF account on your local
|
||||
machine - check out the HF quick start documentation. In a nutshell, you'll need
|
||||
to create an access token on HF and log in to HF using your access token, e. g.
|
||||
with `huggingface-cli login`.
|
||||
|
||||
</Infobox>
|
||||
|
||||
Note that Hugging Face will download the model the first time you use it - you
|
||||
can
|
||||
[define the cached directory](https://huggingface.co/docs/huggingface_hub/main/en/guides/manage-cache)
|
||||
|
|
|
@ -297,10 +297,9 @@ The vector size, i.e. `rows * dims`.
|
|||
|
||||
## Vectors.is_full {id="is_full",tag="property"}
|
||||
|
||||
Whether the vectors table is full and has no slots are available for new keys.
|
||||
If a table is full, it can be resized using
|
||||
[`Vectors.resize`](/api/vectors#resize). In `floret` mode, the table is always
|
||||
full and cannot be resized.
|
||||
Whether the vectors table is full and no slots are available for new keys. If a
|
||||
table is full, it can be resized using [`Vectors.resize`](/api/vectors#resize).
|
||||
In `floret` mode, the table is always full and cannot be resized.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
|
@ -441,7 +440,7 @@ Load state from a binary string.
|
|||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> fron spacy.vectors import Vectors
|
||||
> from spacy.vectors import Vectors
|
||||
> vectors_bytes = vectors.to_bytes()
|
||||
> new_vectors = Vectors(StringStore())
|
||||
> new_vectors.from_bytes(vectors_bytes)
|
||||
|
|
|
@ -632,6 +632,165 @@ def MyCustomVectors(
|
|||
)
|
||||
```
|
||||
|
||||
#### Creating a custom vectors implementation {id="custom-vectors",version="3.7"}
|
||||
|
||||
You can specify a custom registered vectors class under `[nlp.vectors]` in order
|
||||
to use static vectors in formats other than the ones supported by
|
||||
[`Vectors`](/api/vectors). Extend the abstract [`BaseVectors`](/api/basevectors)
|
||||
class to implement your custom vectors.
|
||||
|
||||
As an example, the following `BPEmbVectors` class implements support for
|
||||
[BPEmb subword embeddings](https://bpemb.h-its.org/):
|
||||
|
||||
```python
|
||||
# requires: pip install bpemb
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from typing import Callable, Optional, cast
|
||||
|
||||
from bpemb import BPEmb
|
||||
from thinc.api import Ops, get_current_ops
|
||||
from thinc.backends import get_array_ops
|
||||
from thinc.types import Floats2d
|
||||
|
||||
from spacy.strings import StringStore
|
||||
from spacy.util import registry
|
||||
from spacy.vectors import BaseVectors
|
||||
from spacy.vocab import Vocab
|
||||
|
||||
|
||||
class BPEmbVectors(BaseVectors):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
strings: Optional[StringStore] = None,
|
||||
lang: Optional[str] = None,
|
||||
vs: Optional[int] = None,
|
||||
dim: Optional[int] = None,
|
||||
cache_dir: Optional[Path] = None,
|
||||
encode_extra_options: Optional[str] = None,
|
||||
model_file: Optional[Path] = None,
|
||||
emb_file: Optional[Path] = None,
|
||||
):
|
||||
kwargs = {}
|
||||
if lang is not None:
|
||||
kwargs["lang"] = lang
|
||||
if vs is not None:
|
||||
kwargs["vs"] = vs
|
||||
if dim is not None:
|
||||
kwargs["dim"] = dim
|
||||
if cache_dir is not None:
|
||||
kwargs["cache_dir"] = cache_dir
|
||||
if encode_extra_options is not None:
|
||||
kwargs["encode_extra_options"] = encode_extra_options
|
||||
if model_file is not None:
|
||||
kwargs["model_file"] = model_file
|
||||
if emb_file is not None:
|
||||
kwargs["emb_file"] = emb_file
|
||||
self.bpemb = BPEmb(**kwargs)
|
||||
self.strings = strings
|
||||
self.name = repr(self.bpemb)
|
||||
self.n_keys = -1
|
||||
self.mode = "BPEmb"
|
||||
self.to_ops(get_current_ops())
|
||||
|
||||
def __contains__(self, key):
|
||||
return True
|
||||
|
||||
def is_full(self):
|
||||
return True
|
||||
|
||||
def add(self, key, *, vector=None, row=None):
|
||||
warnings.warn(
|
||||
(
|
||||
"Skipping BPEmbVectors.add: the bpemb vector table cannot be "
|
||||
"modified. Vectors are calculated from bytepieces."
|
||||
)
|
||||
)
|
||||
return -1
|
||||
|
||||
def __getitem__(self, key):
|
||||
return self.get_batch([key])[0]
|
||||
|
||||
def get_batch(self, keys):
|
||||
keys = [self.strings.as_string(key) for key in keys]
|
||||
bp_ids = self.bpemb.encode_ids(keys)
|
||||
ops = get_array_ops(self.bpemb.emb.vectors)
|
||||
indices = ops.asarray(ops.xp.hstack(bp_ids), dtype="int32")
|
||||
lengths = ops.asarray([len(x) for x in bp_ids], dtype="int32")
|
||||
vecs = ops.reduce_mean(cast(Floats2d, self.bpemb.emb.vectors[indices]), lengths)
|
||||
return vecs
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
return self.bpemb.vectors.shape
|
||||
|
||||
def __len__(self):
|
||||
return self.shape[0]
|
||||
|
||||
@property
|
||||
def vectors_length(self):
|
||||
return self.shape[1]
|
||||
|
||||
@property
|
||||
def size(self):
|
||||
return self.bpemb.vectors.size
|
||||
|
||||
def to_ops(self, ops: Ops):
|
||||
self.bpemb.emb.vectors = ops.asarray(self.bpemb.emb.vectors)
|
||||
|
||||
|
||||
@registry.vectors("BPEmbVectors.v1")
|
||||
def create_bpemb_vectors(
|
||||
lang: Optional[str] = "multi",
|
||||
vs: Optional[int] = None,
|
||||
dim: Optional[int] = None,
|
||||
cache_dir: Optional[Path] = None,
|
||||
encode_extra_options: Optional[str] = None,
|
||||
model_file: Optional[Path] = None,
|
||||
emb_file: Optional[Path] = None,
|
||||
) -> Callable[[Vocab], BPEmbVectors]:
|
||||
def bpemb_vectors_factory(vocab: Vocab) -> BPEmbVectors:
|
||||
return BPEmbVectors(
|
||||
strings=vocab.strings,
|
||||
lang=lang,
|
||||
vs=vs,
|
||||
dim=dim,
|
||||
cache_dir=cache_dir,
|
||||
encode_extra_options=encode_extra_options,
|
||||
model_file=model_file,
|
||||
emb_file=emb_file,
|
||||
)
|
||||
|
||||
return bpemb_vectors_factory
|
||||
```
|
||||
|
||||
<Infobox variant="warning">
|
||||
|
||||
Note that the serialization methods are not implemented, so the embeddings are
|
||||
loaded from your local cache or downloaded by `BPEmb` each time the pipeline is
|
||||
loaded.
|
||||
|
||||
</Infobox>
|
||||
|
||||
To use this in your pipeline, specify this registered function under
|
||||
`[nlp.vectors]` in your config:
|
||||
|
||||
```ini
|
||||
[nlp.vectors]
|
||||
@vectors = "BPEmbVectors.v1"
|
||||
lang = "en"
|
||||
```
|
||||
|
||||
Or specify it when creating a blank pipeline:
|
||||
|
||||
```python
|
||||
nlp = spacy.blank("en", config={"nlp.vectors": {"@vectors": "BPEmbVectors.v1", "lang": "en"}})
|
||||
```
|
||||
|
||||
Remember to include this code with `--code` when using
|
||||
[`spacy train`](/api/cli#train) and [`spacy package`](/api/cli#package).
|
||||
|
||||
## Pretraining {id="pretraining"}
|
||||
|
||||
The [`spacy pretrain`](/api/cli#pretrain) command lets you initialize your
|
||||
|
|
|
@ -20,7 +20,7 @@ menu:
|
|||
|
||||
## Installation instructions {id="installation"}
|
||||
|
||||
spaCy is compatible with **64-bit CPython 3.6+** and runs on **Unix/Linux**,
|
||||
spaCy is compatible with **64-bit CPython 3.7+** and runs on **Unix/Linux**,
|
||||
**macOS/OS X** and **Windows**. The latest spaCy releases are available over
|
||||
[pip](https://pypi.python.org/pypi/spacy) and
|
||||
[conda](https://anaconda.org/conda-forge/spacy).
|
||||
|
|
|
@ -170,8 +170,8 @@ to be `"databricks/dolly-v2-12b"` for better performance.
|
|||
### Example 3: Create the component directly in Python {id="example-3"}
|
||||
|
||||
The `llm` component behaves as any other component does, and there are
|
||||
[task-specific components](/api/large-language-models#config) defined to
|
||||
help you hit the ground running with a reasonable built-in task implementation.
|
||||
[task-specific components](/api/large-language-models#config) defined to help
|
||||
you hit the ground running with a reasonable built-in task implementation.
|
||||
|
||||
```python
|
||||
import spacy
|
||||
|
@ -436,7 +436,7 @@ respectively. Alternatively you can use LangChain to access hosted or local
|
|||
models by specifying one of the models registered with the `langchain.` prefix.
|
||||
|
||||
<Infobox>
|
||||
_Why LangChain if there are also are a native REST and a HuggingFace interface? When should I use what?_
|
||||
_Why LangChain if there are also are native REST and HuggingFace interfaces? When should I use what?_
|
||||
|
||||
Third-party libraries like `langchain` focus on prompt management, integration
|
||||
of many different LLM APIs, and other related features such as conversational
|
||||
|
@ -476,6 +476,7 @@ provider's documentation.
|
|||
| [`spacy.Curie.v2`](/api/large-language-models#models-rest) | OpenAI’s `curie` model family. |
|
||||
| [`spacy.Babbage.v2`](/api/large-language-models#models-rest) | OpenAI’s `babbage` model family. |
|
||||
| [`spacy.Ada.v2`](/api/large-language-models#models-rest) | OpenAI’s `ada` model family. |
|
||||
| [`spacy.Azure.v1`](/api/large-language-models#models-rest) | Azure's OpenAI models. |
|
||||
| [`spacy.Command.v1`](/api/large-language-models#models-rest) | Cohere’s `command` model family. |
|
||||
| [`spacy.Claude-2.v1`](/api/large-language-models#models-rest) | Anthropic’s `claude-2` model family. |
|
||||
| [`spacy.Claude-1.v1`](/api/large-language-models#models-rest) | Anthropic’s `claude-1` model family. |
|
||||
|
@ -484,8 +485,10 @@ provider's documentation.
|
|||
| [`spacy.Claude-1-0.v1`](/api/large-language-models#models-rest) | Anthropic’s `claude-1.0` model family. |
|
||||
| [`spacy.Claude-1-2.v1`](/api/large-language-models#models-rest) | Anthropic’s `claude-1.2` model family. |
|
||||
| [`spacy.Claude-1-3.v1`](/api/large-language-models#models-rest) | Anthropic’s `claude-1.3` model family. |
|
||||
| [`spacy.PaLM.v1`](/api/large-language-models#models-rest) | Google’s `PaLM` model family. |
|
||||
| [`spacy.Dolly.v1`](/api/large-language-models#models-hf) | Dolly models through HuggingFace. |
|
||||
| [`spacy.Falcon.v1`](/api/large-language-models#models-hf) | Falcon models through HuggingFace. |
|
||||
| [`spacy.Mistral.v1`](/api/large-language-models#models-hf) | Mistral models through HuggingFace. |
|
||||
| [`spacy.Llama2.v1`](/api/large-language-models#models-hf) | Llama2 models through HuggingFace. |
|
||||
| [`spacy.StableLM.v1`](/api/large-language-models#models-hf) | StableLM models through HuggingFace. |
|
||||
| [`spacy.OpenLLaMA.v1`](/api/large-language-models#models-hf) | OpenLLaMA models through HuggingFace. |
|
||||
|
|
|
@ -656,9 +656,9 @@ locally.
|
|||
You can list one or more remotes in the `remotes` section of your
|
||||
[`project.yml`](#project-yml) by mapping a string name to the URL of the
|
||||
storage. Under the hood, spaCy uses
|
||||
[`Pathy`](https://github.com/justindujardin/pathy) to communicate with the
|
||||
remote storages, so you can use any protocol that `Pathy` supports, including
|
||||
[S3](https://aws.amazon.com/s3/),
|
||||
[`cloudpathlib`](https://cloudpathlib.drivendata.org) to communicate with the
|
||||
remote storages, so you can use any protocol that `cloudpathlib` supports,
|
||||
including [S3](https://aws.amazon.com/s3/),
|
||||
[Google Cloud Storage](https://cloud.google.com/storage), and the local
|
||||
filesystem, although you may need to install extra dependencies to use certain
|
||||
protocols.
|
||||
|
|
|
@ -850,14 +850,14 @@ negative pattern. To keep it simple, we'll either add or subtract `0.1` points
|
|||
this way, the score will also reflect combinations of emoji, even positive _and_
|
||||
negative ones.
|
||||
|
||||
With a library like [Emojipedia](https://github.com/bcongdon/python-emojipedia),
|
||||
we can also retrieve a short description for each emoji – for example, 😍's
|
||||
official title is "Smiling Face With Heart-Eyes". Assigning it to a
|
||||
With a library like [emoji](https://github.com/carpedm20/emoji), we can also
|
||||
retrieve a short description for each emoji – for example, 😍's official title
|
||||
is "Smiling Face With Heart-Eyes". Assigning it to a
|
||||
[custom attribute](/usage/processing-pipelines#custom-components-attributes) on
|
||||
the emoji span will make it available as `span._.emoji_desc`.
|
||||
|
||||
```python
|
||||
from emojipedia import Emojipedia # Installation: pip install emojipedia
|
||||
import emoji # Installation: pip install emoji
|
||||
from spacy.tokens import Span # Get the global Span object
|
||||
|
||||
Span.set_extension("emoji_desc", default=None) # Register the custom attribute
|
||||
|
@ -869,9 +869,9 @@ def label_sentiment(matcher, doc, i, matches):
|
|||
elif doc.vocab.strings[match_id] == "SAD":
|
||||
doc.sentiment -= 0.1 # Subtract 0.1 for negative sentiment
|
||||
span = doc[start:end]
|
||||
emoji = Emojipedia.search(span[0].text) # Get data for emoji
|
||||
span._.emoji_desc = emoji.title # Assign emoji description
|
||||
|
||||
# Verify if it is an emoji and set the extension attribute correctly.
|
||||
if emoji.is_emoji(span[0].text):
|
||||
span._.emoji_desc = emoji.demojize(span[0].text, delimiters=("", ""), language=doc.lang_).replace("_", " ")
|
||||
```
|
||||
|
||||
To label the hashtags, we can use a
|
||||
|
@ -1097,7 +1097,7 @@ come directly from
|
|||
[Semgrex](https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/SemgrexPattern.html):
|
||||
|
||||
| Symbol | Description |
|
||||
| --------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| --------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `A < B` | `A` is the immediate dependent of `B`. |
|
||||
| `A > B` | `A` is the immediate head of `B`. |
|
||||
| `A << B` | `A` is the dependent in a chain to `B` following dep → head paths. |
|
||||
|
|
140
website/docs/usage/v3-7.mdx
Normal file
140
website/docs/usage/v3-7.mdx
Normal file
|
@ -0,0 +1,140 @@
|
|||
---
|
||||
title: What's New in v3.7
|
||||
teaser: New features and how to upgrade
|
||||
menu:
|
||||
- ['New Features', 'features']
|
||||
- ['Upgrading Notes', 'upgrading']
|
||||
---
|
||||
|
||||
## New features {id="features",hidden="true"}
|
||||
|
||||
spaCy v3.7 adds support for Python 3.12, introduces the new standalone library
|
||||
[Weasel](https://github.com/explosion/weasel) for project workflows, and updates
|
||||
the transformer-based trained pipelines to use our new
|
||||
[Curated Transformers](https://github.com/explosion/curated-transformers)
|
||||
library.
|
||||
|
||||
This release drops support for Python 3.6.
|
||||
|
||||
### Weasel {id="weasel"}
|
||||
|
||||
The [spaCy projects](/usage/projects) functionality has been moved into a new
|
||||
standalone library [Weasel](https://github.com/explosion/weasel). This brings
|
||||
minor changes to spaCy-specific settings in spaCy projects (see
|
||||
[upgrading](#upgrading) below), but also makes it possible to use the same
|
||||
workflow functionality outside of spaCy.
|
||||
|
||||
All `spacy project` commands should run as before, just now they're using Weasel
|
||||
under the hood.
|
||||
|
||||
<Infobox title="Remote storage for Python 3.12" variant="warning">
|
||||
|
||||
Remote storage for spaCy projects is not yet supported for Python 3.12. Use
|
||||
Python 3.11 or earlier for remote storage.
|
||||
|
||||
</Infobox>
|
||||
|
||||
### Registered vectors {id="custom-vectors"}
|
||||
|
||||
You can specify a custom registered vectors class under `[nlp.vectors]` in order
|
||||
to use static vectors in formats other than the ones supported by
|
||||
[`Vectors`](/api/vectors). To implement your custom vectors, extend the abstract
|
||||
class [`BaseVectors`](/api/basevectors). See an example using
|
||||
[BPEmb subword embeddings](/usage/embeddings-transformers#custom-vectors).
|
||||
|
||||
### Additional features and improvements {id="additional-features-and-improvements"}
|
||||
|
||||
- Add support for Python 3.12.
|
||||
- Extend to Thinc v8.2.
|
||||
- Extend `transformers` extra to `spacy-transformers` v1.3.
|
||||
- Add `--spans-key` option for CLI evaluation with `spacy benchmark accuracy`.
|
||||
- Load the CLI module lazily for `spacy.info`.
|
||||
- Add type stubs for for `spacy.training.example`.
|
||||
- Warn for unsupported pattern keys in dependency matcher.
|
||||
- `Language.replace_listeners`: Pass the replaced listener and the `tok2vec`
|
||||
pipe to the callback in order to support `spacy-curated-transformers`.
|
||||
- Always use `tqdm` with `disable=None` in order to disable output in
|
||||
non-interactive environments.
|
||||
- Language updates:
|
||||
- Add left and right pointing angle brackets as punctuation to ancient Greek.
|
||||
- Update example sentences for Turkish.
|
||||
- Package setup updates:
|
||||
- Update NumPy build constraints for NumPy 1.25+. For Python 3.9+, it is no
|
||||
longer necessary to set build constraints while building binary wheels.
|
||||
- Refactor Cython profiling in order to disable profiling for Python 3.12 in
|
||||
the package setup, since Cython does not currently support profiling for
|
||||
Python 3.12.
|
||||
|
||||
## Trained pipelines {id="pipelines"}
|
||||
|
||||
### Pipeline updates {id="pipeline-updates"}
|
||||
|
||||
The transformer-based `trf` pipelines have been updated to use our new
|
||||
[Curated Transformers](https://github.com/explosion/curated-transformers)
|
||||
library using the Thinc model wrappers and pipeline component from
|
||||
[spaCy Curated Transformers](https://github.com/explosion/spacy-curated-transformers).
|
||||
|
||||
## Notes about upgrading from v3.6 {id="upgrading"}
|
||||
|
||||
This release drops support for Python 3.6, drops mypy checks for Python 3.7 and
|
||||
removes the `ray` extra. In addition there are several minor changes for spaCy
|
||||
projects described in the following section.
|
||||
|
||||
### Backwards incompatibilities for spaCy Projects {id="upgrading-projects"}
|
||||
|
||||
`spacy project` has a few backwards incompatibilities due to the transition to
|
||||
the standalone library [Weasel](https://github.com/explosion/weasel), which is
|
||||
not as tightly coupled to spaCy. Weasel produces warnings when it detects older
|
||||
spaCy-specific settings in your environment or project config.
|
||||
|
||||
- Support for the `spacy_version` configuration key has been dropped.
|
||||
- Support for the `check_requirements` configuration key has been dropped due to
|
||||
the deprecation of `pkg_resources`.
|
||||
- The `SPACY_CONFIG_OVERRIDES` environment variable is no longer checked. You
|
||||
can set configuration overrides using `WEASEL_CONFIG_OVERRIDES`.
|
||||
- Support for `SPACY_PROJECT_USE_GIT_VERSION` environment variable has been
|
||||
dropped.
|
||||
- Error codes are now Weasel-specific and do not follow spaCy error codes.
|
||||
|
||||
### Pipeline package version compatibility {id="version-compat"}
|
||||
|
||||
> #### Using legacy implementations
|
||||
>
|
||||
> In spaCy v3, you'll still be able to load and reference legacy implementations
|
||||
> via [`spacy-legacy`](https://github.com/explosion/spacy-legacy), even if the
|
||||
> components or architectures change and newer versions are available in the
|
||||
> core library.
|
||||
|
||||
When you're loading a pipeline package trained with an earlier version of spaCy
|
||||
v3, you will see a warning telling you that the pipeline may be incompatible.
|
||||
This doesn't necessarily have to be true, but we recommend running your
|
||||
pipelines against your test suite or evaluation data to make sure there are no
|
||||
unexpected results.
|
||||
|
||||
If you're using one of the [trained pipelines](/models) we provide, you should
|
||||
run [`spacy download`](/api/cli#download) to update to the latest version. To
|
||||
see an overview of all installed packages and their compatibility, you can run
|
||||
[`spacy validate`](/api/cli#validate).
|
||||
|
||||
If you've trained your own custom pipeline and you've confirmed that it's still
|
||||
working as expected, you can update the spaCy version requirements in the
|
||||
[`meta.json`](/api/data-formats#meta):
|
||||
|
||||
```diff
|
||||
- "spacy_version": ">=3.6.0,<3.7.0",
|
||||
+ "spacy_version": ">=3.6.0,<3.8.0",
|
||||
```
|
||||
|
||||
### Updating v3.6 configs
|
||||
|
||||
To update a config from spaCy v3.6 with the new v3.7 settings, run
|
||||
[`init fill-config`](/api/cli#init-fill-config):
|
||||
|
||||
```cli
|
||||
$ python -m spacy init fill-config config-v3.6.cfg config-v3.7.cfg
|
||||
```
|
||||
|
||||
In many cases ([`spacy train`](/api/cli#train),
|
||||
[`spacy.load`](/api/top-level#spacy.load)), the new defaults will be filled in
|
||||
automatically, but you'll need to fill in the new settings to run
|
||||
[`debug config`](/api/cli#debug) and [`debug data`](/api/cli#debug-data).
|
|
@ -15,7 +15,8 @@
|
|||
{ "text": "New in v3.3", "url": "/usage/v3-3" },
|
||||
{ "text": "New in v3.4", "url": "/usage/v3-4" },
|
||||
{ "text": "New in v3.5", "url": "/usage/v3-5" },
|
||||
{ "text": "New in v3.6", "url": "/usage/v3-6" }
|
||||
{ "text": "New in v3.6", "url": "/usage/v3-6" },
|
||||
{ "text": "New in v3.7", "url": "/usage/v3-7" }
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -100,6 +101,7 @@
|
|||
"items": [
|
||||
{ "text": "AttributeRuler", "url": "/api/attributeruler" },
|
||||
{ "text": "CoreferenceResolver", "url": "/api/coref" },
|
||||
{ "text": "CuratedTransformer", "url": "/api/curatedtransformer" },
|
||||
{ "text": "DependencyParser", "url": "/api/dependencyparser" },
|
||||
{ "text": "EditTreeLemmatizer", "url": "/api/edittreelemmatizer" },
|
||||
{ "text": "EntityLinker", "url": "/api/entitylinker" },
|
||||
|
@ -135,6 +137,7 @@
|
|||
"label": "Other",
|
||||
"items": [
|
||||
{ "text": "Attributes", "url": "/api/attributes" },
|
||||
{ "text": "BaseVectors", "url": "/api/basevectors" },
|
||||
{ "text": "Corpus", "url": "/api/corpus" },
|
||||
{ "text": "InMemoryLookupKB", "url": "/api/inmemorylookupkb" },
|
||||
{ "text": "KnowledgeBase", "url": "/api/kb" },
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user