Merge branch 'develop' of https://github.com/explosion/spaCy into develop

This commit is contained in:
Matthew Honnibal 2017-08-22 19:00:43 +02:00
commit df2745eb08
4 changed files with 60 additions and 19 deletions

View File

@ -239,7 +239,7 @@ def Tok2Vec(width, embed_size, preprocess=None):
>> uniqued(embed, column=5)
>> drop_layer(
Residual(
(ExtractWindow(nW=1) >> BN(Maxout(width, width*3)))
(ExtractWindow(nW=1) >> ReLu(width, width*3))
)
) ** 4, pad=4
)

View File

@ -232,7 +232,10 @@ for verb_data in [
{ORTH: "are", LEMMA: "be", NORM: "are", TAG: "VBP", "number": 2},
{ORTH: "is", LEMMA: "be", NORM: "is", TAG: "VBZ"},
{ORTH: "was", LEMMA: "be", NORM: "was"},
{ORTH: "were", LEMMA: "be", NORM: "were"}]:
{ORTH: "were", LEMMA: "be", NORM: "were"},
{ORTH: "have", NORM: "have"},
{ORTH: "has", LEMMA: "have", NORM: "has"},
{ORTH: "dare", NORM: "dare"}]:
verb_data_tc = dict(verb_data)
verb_data_tc[ORTH] = verb_data_tc[ORTH].title()
for data in [verb_data, verb_data_tc]:

View File

@ -14,4 +14,8 @@ cdef class Parser:
cdef readonly TransitionSystem moves
cdef readonly object cfg
cdef void _parse_step(self, StateC* state,
const float* feat_weights,
int nr_class, int nr_feat, int nr_piece) nogil
#cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil

View File

@ -257,10 +257,15 @@ cdef class Parser:
nI=token_vector_width)
with Model.use_device('cpu'):
upper = chain(
clone(Maxout(hidden_width), (depth-1)),
zero_init(Affine(nr_class, drop_factor=0.0))
)
if depth == 0:
upper = chain()
upper.is_noop = True
else:
upper = chain(
clone(Maxout(hidden_width), (depth-1)),
zero_init(Affine(nr_class, drop_factor=0.0))
)
upper.is_noop = False
# TODO: This is an unfortunate hack atm!
# Used to set input dimensions in network.
lower.begin_training(lower.ops.allocate((500, token_vector_width)))
@ -412,20 +417,27 @@ cdef class Parser:
cdef np.ndarray scores
c_token_ids = <int*>token_ids.data
c_is_valid = <int*>is_valid.data
cdef int has_hidden = not getattr(vec2scores, 'is_noop', False)
while not next_step.empty():
for i in range(next_step.size()):
st = next_step[i]
st.set_context_tokens(&c_token_ids[i*nr_feat], nr_feat)
self.moves.set_valid(&c_is_valid[i*nr_class], st)
vectors = state2vec(token_ids[:next_step.size()])
scores = vec2scores(vectors)
c_scores = <float*>scores.data
for i in range(next_step.size()):
st = next_step[i]
guess = arg_max_if_valid(
&c_scores[i*nr_class], &c_is_valid[i*nr_class], nr_class)
action = self.moves.c[guess]
action.do(st, action.label)
if not has_hidden:
for i in cython.parallel.prange(
next_step.size(), num_threads=6, nogil=True):
self._parse_step(next_step[i],
feat_weights, nr_class, nr_feat, nr_piece)
else:
for i in range(next_step.size()):
st = next_step[i]
st.set_context_tokens(&c_token_ids[i*nr_feat], nr_feat)
self.moves.set_valid(&c_is_valid[i*nr_class], st)
vectors = state2vec(token_ids[:next_step.size()])
scores = vec2scores(vectors)
c_scores = <float*>scores.data
for i in range(next_step.size()):
st = next_step[i]
guess = arg_max_if_valid(
&c_scores[i*nr_class], &c_is_valid[i*nr_class], nr_class)
action = self.moves.c[guess]
action.do(st, action.label)
this_step, next_step = next_step, this_step
next_step.clear()
for st in this_step:
@ -482,6 +494,28 @@ cdef class Parser:
beams.append(beam)
return beams
cdef void _parse_step(self, StateC* state,
const float* feat_weights,
int nr_class, int nr_feat, int nr_piece) nogil:
'''This only works with no hidden layers -- fast but inaccurate'''
#for i in cython.parallel.prange(next_step.size(), num_threads=4, nogil=True):
# self._parse_step(next_step[i], feat_weights, nr_class, nr_feat)
token_ids = <int*>calloc(nr_feat, sizeof(int))
scores = <float*>calloc(nr_class * nr_piece, sizeof(float))
is_valid = <int*>calloc(nr_class, sizeof(int))
state.set_context_tokens(token_ids, nr_feat)
sum_state_features(scores,
feat_weights, token_ids, 1, nr_feat, nr_class * nr_piece)
self.moves.set_valid(is_valid, state)
guess = arg_maxout_if_valid(scores, is_valid, nr_class, nr_piece)
action = self.moves.c[guess]
action.do(state, action.label)
free(is_valid)
free(scores)
free(token_ids)
def update(self, docs_tokvecs, golds, drop=0., sgd=None, losses=None):
if not any(self.moves.has_gold(gold) for gold in golds):
return None