mirror of
https://github.com/explosion/spaCy.git
synced 2025-03-03 10:55:52 +03:00
Add learned missing values for parser
This commit is contained in:
parent
64e4ff7c4b
commit
df4803cc6d
26
spacy/_ml.py
26
spacy/_ml.py
|
@ -88,7 +88,11 @@ def _preprocess_doc(docs, drop=0.):
|
|||
lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI)),
|
||||
b=Biases("Bias vector",
|
||||
lambda obj: (obj.nO, obj.nP)),
|
||||
pad=Synapses("Pad",
|
||||
lambda obj: (1, obj.nF, obj.nO, obj.nP),
|
||||
lambda M, ops: ops.normal_init(M, 1.)),
|
||||
d_W=Gradient("W"),
|
||||
d_pad=Gradient("pad"),
|
||||
d_b=Gradient("b"))
|
||||
class PrecomputableAffine(Model):
|
||||
def __init__(self, nO=None, nI=None, nF=None, nP=None, **kwargs):
|
||||
|
@ -99,13 +103,14 @@ class PrecomputableAffine(Model):
|
|||
self.nF = nF
|
||||
|
||||
def begin_update(self, X, drop=0.):
|
||||
Yf = self.ops.dot(X,
|
||||
self.W.reshape((self.nF*self.nO*self.nP, self.nI)).T)
|
||||
|
||||
Yf = Yf.reshape((X.shape[0], self.nF, self.nO, self.nP))
|
||||
Yf = self.ops.xp.dot(X,
|
||||
self.W.reshape((self.nF*self.nO*self.nP, self.nI)).T)
|
||||
Yf = Yf.reshape((Yf.shape[0], self.nF, self.nO, self.nP))
|
||||
Yf = self._add_padding(Yf)
|
||||
|
||||
def backward(dY_ids, sgd=None):
|
||||
dY, ids = dY_ids
|
||||
dY, ids = self._backprop_padding(dY, ids)
|
||||
Xf = X[ids]
|
||||
Xf = Xf.reshape((Xf.shape[0], self.nF * self.nI))
|
||||
|
||||
|
@ -116,7 +121,7 @@ class PrecomputableAffine(Model):
|
|||
Wopfi = self.ops.xp.ascontiguousarray(Wopfi)
|
||||
Wopfi = Wopfi.reshape((self.nO*self.nP, self.nF * self.nI))
|
||||
dXf = self.ops.dot(dY.reshape((dY.shape[0], self.nO*self.nP)), Wopfi)
|
||||
|
||||
|
||||
# Reuse the buffer
|
||||
dWopfi = Wopfi; dWopfi.fill(0.)
|
||||
self.ops.xp.dot(dY.T, Xf, out=dWopfi)
|
||||
|
@ -128,6 +133,17 @@ class PrecomputableAffine(Model):
|
|||
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
||||
return dXf.reshape((dXf.shape[0], self.nF, self.nI))
|
||||
return Yf, backward
|
||||
|
||||
def _add_padding(self, Yf):
|
||||
Yf_padded = self.ops.xp.vstack((self.pad, Yf))
|
||||
return Yf_padded[1:]
|
||||
|
||||
def _backprop_padding(self, dY, ids):
|
||||
for i in range(ids.shape[0]):
|
||||
for j in range(ids.shape[1]):
|
||||
if ids[i, j] < 0:
|
||||
self.d_pad[0, j] += dY[i, j]
|
||||
return dY, ids
|
||||
|
||||
@staticmethod
|
||||
def init_weights(model):
|
||||
|
|
Loading…
Reference in New Issue
Block a user