diff --git a/spacy/cli/train.py b/spacy/cli/train.py index 8a90b8b7d..ee0ee53a2 100644 --- a/spacy/cli/train.py +++ b/spacy/cli/train.py @@ -57,9 +57,9 @@ def train(_, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0, # starts high and decays sharply, to force the optimizer to explore. # Batch size starts at 1 and grows, so that we make updates quickly # at the beginning of training. - dropout_rates = util.decaying(util.env_opt('dropout_from', 0.0), - util.env_opt('dropout_to', 0.0), - util.env_opt('dropout_decay', 0.0)) + dropout_rates = util.decaying(util.env_opt('dropout_from', 0.5), + util.env_opt('dropout_to', 0.2), + util.env_opt('dropout_decay', 1e-4)) batch_sizes = util.compounding(util.env_opt('batch_from', 1), util.env_opt('batch_to', 64), util.env_opt('batch_compound', 1.001)) @@ -72,7 +72,7 @@ def train(_, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0, print("Itn.\tDep. Loss\tUAS\tNER P.\tNER R.\tNER F.\tTag %\tToken %") for i in range(n_iter): - with tqdm.tqdm(total=corpus.count_train()) as pbar: + with tqdm.tqdm(total=corpus.count_train(), leave=False) as pbar: train_docs = corpus.train_docs(nlp, projectivize=True, gold_preproc=False, shuffle=i) losses = {}