mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	fixed bug in training ner documentation and example
This commit is contained in:
		
							parent
							
								
									f69ff15089
								
							
						
					
					
						commit
						dfaeee1f37
					
				| 
						 | 
					@ -52,6 +52,7 @@ def train_ner(nlp, train_data, output_dir):
 | 
				
			||||||
        random.shuffle(train_data)
 | 
					        random.shuffle(train_data)
 | 
				
			||||||
        loss = 0.
 | 
					        loss = 0.
 | 
				
			||||||
        for raw_text, entity_offsets in train_data:
 | 
					        for raw_text, entity_offsets in train_data:
 | 
				
			||||||
 | 
					            doc = nlp.make_doc(raw_text)
 | 
				
			||||||
            gold = GoldParse(doc, entities=entity_offsets)
 | 
					            gold = GoldParse(doc, entities=entity_offsets)
 | 
				
			||||||
            # By default, the GoldParse class assumes that the entities
 | 
					            # By default, the GoldParse class assumes that the entities
 | 
				
			||||||
            # described by offset are complete, and all other words should
 | 
					            # described by offset are complete, and all other words should
 | 
				
			||||||
| 
						 | 
					@ -63,7 +64,6 @@ def train_ner(nlp, train_data, output_dir):
 | 
				
			||||||
            #for i in range(len(gold.ner)):
 | 
					            #for i in range(len(gold.ner)):
 | 
				
			||||||
                #if not gold.ner[i].endswith('ANIMAL'):
 | 
					                #if not gold.ner[i].endswith('ANIMAL'):
 | 
				
			||||||
                #    gold.ner[i] = '-'
 | 
					                #    gold.ner[i] = '-'
 | 
				
			||||||
            doc = nlp.make_doc(raw_text)
 | 
					 | 
				
			||||||
            nlp.tagger(doc)
 | 
					            nlp.tagger(doc)
 | 
				
			||||||
            # As of 1.9, spaCy's parser now lets you supply a dropout probability
 | 
					            # As of 1.9, spaCy's parser now lets you supply a dropout probability
 | 
				
			||||||
            # This might help the model generalize better from only a few
 | 
					            # This might help the model generalize better from only a few
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -150,8 +150,8 @@ p
 | 
				
			||||||
        for itn in range(20):
 | 
					        for itn in range(20):
 | 
				
			||||||
            random.shuffle(train_data)
 | 
					            random.shuffle(train_data)
 | 
				
			||||||
            for raw_text, entity_offsets in train_data:
 | 
					            for raw_text, entity_offsets in train_data:
 | 
				
			||||||
                gold = GoldParse(doc, entities=entity_offsets)
 | 
					 | 
				
			||||||
                doc = nlp.make_doc(raw_text)
 | 
					                doc = nlp.make_doc(raw_text)
 | 
				
			||||||
 | 
					                gold = GoldParse(doc, entities=entity_offsets)
 | 
				
			||||||
                nlp.tagger(doc)
 | 
					                nlp.tagger(doc)
 | 
				
			||||||
                loss = nlp.entity.update(doc, gold)
 | 
					                loss = nlp.entity.update(doc, gold)
 | 
				
			||||||
        nlp.end_training()
 | 
					        nlp.end_training()
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user