mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Merge pull request #6532 from adrianeboyd/feature/nlp-batch-size-setting
This commit is contained in:
commit
dfe148935e
|
@ -19,6 +19,7 @@ lang = "{{ lang }}"
|
|||
{%- set full_pipeline = ["transformer" if use_transformer else "tok2vec"] + components %}
|
||||
pipeline = {{ full_pipeline|pprint()|replace("'", '"')|safe }}
|
||||
tokenizer = {"@tokenizers": "spacy.Tokenizer.v1"}
|
||||
batch_size = {{ 128 if hardware == "gpu" else 1000 }}
|
||||
|
||||
[components]
|
||||
|
||||
|
|
|
@ -20,6 +20,8 @@ disabled = []
|
|||
before_creation = null
|
||||
after_creation = null
|
||||
after_pipeline_creation = null
|
||||
# Default batch size to use with nlp.pipe and nlp.evaluate
|
||||
batch_size = 1000
|
||||
|
||||
[nlp.tokenizer]
|
||||
@tokenizers = "spacy.Tokenizer.v1"
|
||||
|
|
|
@ -121,6 +121,7 @@ class Language:
|
|||
max_length: int = 10 ** 6,
|
||||
meta: Dict[str, Any] = {},
|
||||
create_tokenizer: Optional[Callable[["Language"], Callable[[str], Doc]]] = None,
|
||||
batch_size: int = 1000,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
"""Initialise a Language object.
|
||||
|
@ -138,6 +139,7 @@ class Language:
|
|||
100,000 characters in one text.
|
||||
create_tokenizer (Callable): Function that takes the nlp object and
|
||||
returns a tokenizer.
|
||||
batch_size (int): Default batch size for pipe and evaluate.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/language#init
|
||||
"""
|
||||
|
@ -173,6 +175,7 @@ class Language:
|
|||
tokenizer_cfg = {"tokenizer": self._config["nlp"]["tokenizer"]}
|
||||
create_tokenizer = registry.resolve(tokenizer_cfg)["tokenizer"]
|
||||
self.tokenizer = create_tokenizer(self)
|
||||
self.batch_size = batch_size
|
||||
|
||||
def __init_subclass__(cls, **kwargs):
|
||||
super().__init_subclass__(**kwargs)
|
||||
|
@ -1268,7 +1271,7 @@ class Language:
|
|||
self,
|
||||
examples: Iterable[Example],
|
||||
*,
|
||||
batch_size: int = 256,
|
||||
batch_size: Optional[int] = None,
|
||||
scorer: Optional[Scorer] = None,
|
||||
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
|
||||
scorer_cfg: Optional[Dict[str, Any]] = None,
|
||||
|
@ -1276,7 +1279,7 @@ class Language:
|
|||
"""Evaluate a model's pipeline components.
|
||||
|
||||
examples (Iterable[Example]): `Example` objects.
|
||||
batch_size (int): Batch size to use.
|
||||
batch_size (Optional[int]): Batch size to use.
|
||||
scorer (Optional[Scorer]): Scorer to use. If not passed in, a new one
|
||||
will be created.
|
||||
component_cfg (dict): An optional dictionary with extra keyword
|
||||
|
@ -1288,6 +1291,8 @@ class Language:
|
|||
DOCS: https://nightly.spacy.io/api/language#evaluate
|
||||
"""
|
||||
validate_examples(examples, "Language.evaluate")
|
||||
if batch_size is None:
|
||||
batch_size = self.batch_size
|
||||
if component_cfg is None:
|
||||
component_cfg = {}
|
||||
if scorer_cfg is None:
|
||||
|
@ -1366,7 +1371,7 @@ class Language:
|
|||
texts: Iterable[str],
|
||||
*,
|
||||
as_tuples: bool = False,
|
||||
batch_size: int = 1000,
|
||||
batch_size: Optional[int] = None,
|
||||
disable: Iterable[str] = SimpleFrozenList(),
|
||||
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
|
||||
n_process: int = 1,
|
||||
|
@ -1377,7 +1382,7 @@ class Language:
|
|||
as_tuples (bool): If set to True, inputs should be a sequence of
|
||||
(text, context) tuples. Output will then be a sequence of
|
||||
(doc, context) tuples. Defaults to False.
|
||||
batch_size (int): The number of texts to buffer.
|
||||
batch_size (Optional[int]): The number of texts to buffer.
|
||||
disable (List[str]): Names of the pipeline components to disable.
|
||||
component_cfg (Dict[str, Dict]): An optional dictionary with extra keyword
|
||||
arguments for specific components.
|
||||
|
@ -1404,6 +1409,8 @@ class Language:
|
|||
return
|
||||
if component_cfg is None:
|
||||
component_cfg = {}
|
||||
if batch_size is None:
|
||||
batch_size = self.batch_size
|
||||
|
||||
pipes = (
|
||||
[]
|
||||
|
@ -1618,6 +1625,7 @@ class Language:
|
|||
nlp.add_pipe(source_name, source=source_nlps[model], name=pipe_name)
|
||||
disabled_pipes = [*config["nlp"]["disabled"], *disable]
|
||||
nlp._disabled = set(p for p in disabled_pipes if p not in exclude)
|
||||
nlp.batch_size = config["nlp"]["batch_size"]
|
||||
nlp.config = filled if auto_fill else config
|
||||
if after_pipeline_creation is not None:
|
||||
nlp = after_pipeline_creation(nlp)
|
||||
|
|
|
@ -329,6 +329,7 @@ class ConfigSchemaNlp(BaseModel):
|
|||
before_creation: Optional[Callable[[Type["Language"]], Type["Language"]]] = Field(..., title="Optional callback to modify Language class before initialization")
|
||||
after_creation: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after creation and before the pipeline is constructed")
|
||||
after_pipeline_creation: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after the pipeline is constructed")
|
||||
batch_size: Optional[int] = Field(..., title="Default batch size")
|
||||
# fmt: on
|
||||
|
||||
class Config:
|
||||
|
|
|
@ -63,6 +63,7 @@ your config and check that it's valid, you can run the
|
|||
> before_creation = null
|
||||
> after_creation = null
|
||||
> after_pipeline_creation = null
|
||||
> batch_size = 1000
|
||||
>
|
||||
> [nlp.tokenizer]
|
||||
> @tokenizers = "spacy.Tokenizer.v1"
|
||||
|
@ -80,6 +81,7 @@ Defines the `nlp` object, its tokenizer and
|
|||
| `after_creation` | Optional [callback](/usage/training#custom-code-nlp-callbacks) to modify `nlp` object right after it's initialized. Defaults to `null`. ~~Optional[Callable[[Language], Language]]~~ |
|
||||
| `after_pipeline_creation` | Optional [callback](/usage/training#custom-code-nlp-callbacks) to modify `nlp` object after the pipeline components have been added. Defaults to `null`. ~~Optional[Callable[[Language], Language]]~~ |
|
||||
| `tokenizer` | The tokenizer to use. Defaults to [`Tokenizer`](/api/tokenizer). ~~Callable[[str], Doc]~~ |
|
||||
| `batch_size` | Default batch size for [`Language.pipe`](/api/language#pipe) and [`Language.evaluate`](/api/language#evaluate). ~~int~~ |
|
||||
|
||||
### components {#config-components tag="section"}
|
||||
|
||||
|
|
|
@ -42,6 +42,7 @@ information in [`Language.meta`](/api/language#meta) and not to configure the
|
|||
| `max_length` | Maximum number of characters allowed in a single text. Defaults to `10 ** 6`. ~~int~~ |
|
||||
| `meta` | [Meta data](/api/data-formats#meta) overrides. ~~Dict[str, Any]~~ |
|
||||
| `create_tokenizer` | Optional function that receives the `nlp` object and returns a tokenizer. ~~Callable[[Language], Callable[[str], Doc]]~~ |
|
||||
| `batch_size` | Default batch size for [`pipe`](#pipe) and [`evaluate`](#evaluate). Defaults to `1000`. ~~int~~ |
|
||||
|
||||
## Language.from_config {#from_config tag="classmethod" new="3"}
|
||||
|
||||
|
@ -195,7 +196,7 @@ more efficient than processing texts one-by-one.
|
|||
| `texts` | A sequence of strings. ~~Iterable[str]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `as_tuples` | If set to `True`, inputs should be a sequence of `(text, context)` tuples. Output will then be a sequence of `(doc, context)` tuples. Defaults to `False`. ~~bool~~ |
|
||||
| `batch_size` | The number of texts to buffer. ~~int~~ |
|
||||
| `batch_size` | The number of texts to buffer. ~~Optional[int]~~ |
|
||||
| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). ~~List[str]~~ |
|
||||
| `cleanup` | If `True`, unneeded strings are freed to control memory use. Experimental. ~~bool~~ |
|
||||
| `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ |
|
||||
|
@ -357,7 +358,7 @@ objects instead of tuples of `Doc` and `GoldParse` objects.
|
|||
| --------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `batch_size` | The batch size to use. ~~int~~ |
|
||||
| `batch_size` | The batch size to use. ~~Optional[int]~~ |
|
||||
| `scorer` | Optional [`Scorer`](/api/scorer) to use. If not passed in, a new one will be created. ~~Optional[Scorer]~~ |
|
||||
| `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ |
|
||||
| `scorer_cfg` | Optional dictionary of keyword arguments for the `Scorer`. Defaults to `None`. ~~Optional[Dict[str, Any]]~~ |
|
||||
|
|
Loading…
Reference in New Issue
Block a user