mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Update docs to reflect flattened model meta.json
Don't use "setup" key and instead, keep "lang" on root level and add "pipeline".
This commit is contained in:
parent
a8e58e04ef
commit
e05bcd6aa8
|
@ -19,19 +19,17 @@ p
|
|||
|
||||
p
|
||||
| When you load a model, spaCy first consults the model's
|
||||
| #[+a("/docs/usage/saving-loading#models-generating") meta.json] for its
|
||||
| #[code setup] details. This typically includes the ID of a language class,
|
||||
| #[+a("/docs/usage/saving-loading#models-generating") meta.json]. The
|
||||
| meta typically includes the model details, the ID of a language class,
|
||||
| and an optional list of pipeline components. spaCy then does the
|
||||
| following:
|
||||
|
||||
+aside-code("meta.json (excerpt)", "json").
|
||||
{
|
||||
"name": "example_model",
|
||||
"lang": "en"
|
||||
"description": "Example model for spaCy",
|
||||
"setup": {
|
||||
"lang": "en",
|
||||
"pipeline": ["token_vectors", "tagger"]
|
||||
}
|
||||
"pipeline": ["token_vectors", "tagger"]
|
||||
}
|
||||
|
||||
+list("numbers")
|
||||
|
@ -287,17 +285,15 @@ p
|
|||
|
||||
p
|
||||
| In the model package's meta.json, specify the language class and pipeline
|
||||
| IDs in #[code setup]:
|
||||
| IDs:
|
||||
|
||||
+code("meta.json (excerpt)", "json").
|
||||
{
|
||||
"name": "my_sentiment_model",
|
||||
"name": "sentiment_model",
|
||||
"lang": "en",
|
||||
"version": "1.0.0",
|
||||
"spacy_version": ">=2.0.0,<3.0.0",
|
||||
"setup": {
|
||||
"lang": "en",
|
||||
"pipeline": ["vectorizer", "sentiment"]
|
||||
}
|
||||
"pipeline": ["vectorizer", "sentiment"]
|
||||
}
|
||||
|
||||
p
|
||||
|
@ -307,7 +303,7 @@ p
|
|||
| by your custom #[code "sentiment"] factory.
|
||||
|
||||
+code.
|
||||
nlp = spacy.load('my_sentiment_model')
|
||||
nlp = spacy.load('en_sentiment_model')
|
||||
doc = nlp(u'I love pizza')
|
||||
assert doc.sentiment
|
||||
|
||||
|
|
|
@ -74,16 +74,14 @@ p
|
|||
+aside-code("meta.json", "json").
|
||||
{
|
||||
"name": "example_model",
|
||||
"lang": "en",
|
||||
"version": "1.0.0",
|
||||
"spacy_version": ">=2.0.0,<3.0.0",
|
||||
"description": "Example model for spaCy",
|
||||
"author": "You",
|
||||
"email": "you@example.com",
|
||||
"license": "CC BY-SA 3.0",
|
||||
"setup": {
|
||||
"lang": "en",
|
||||
"pipeline": ["token_vectors", "tagger"]
|
||||
}
|
||||
"pipeline": ["token_vectors", "tagger"]
|
||||
}
|
||||
|
||||
+code(false, "bash").
|
||||
|
@ -110,9 +108,9 @@ p
|
|||
+h(3, "models-custom") Customising the model setup
|
||||
|
||||
p
|
||||
| The meta.json includes a #[code setup] key that lets you customise how
|
||||
| the model should be initialised and loaded. You can define the language
|
||||
| data to be loaded and the
|
||||
| The meta.json includes the model details, like name, requirements and
|
||||
| license, and lets you customise how the model should be initialised and
|
||||
| loaded. You can define the language data to be loaded and the
|
||||
| #[+a("/docs/usage/language-processing-pipeline") processing pipeline] to
|
||||
| execute.
|
||||
|
||||
|
@ -183,9 +181,9 @@ p
|
|||
p
|
||||
| To load a model from a data directory, you can use
|
||||
| #[+api("spacy#load") #[code spacy.load()]] with the local path. This will
|
||||
| look for a meta.json in the directory and use the #[code setup] details
|
||||
| to initialise a #[code Language] class with a processing pipeline and
|
||||
| load in the model data.
|
||||
| look for a meta.json in the directory and use the #[code lang] and
|
||||
| #[code pipeline] settings to initialise a #[code Language] class with a
|
||||
| processing pipeline and load in the model data.
|
||||
|
||||
+code.
|
||||
nlp = spacy.load('/path/to/model')
|
||||
|
|
Loading…
Reference in New Issue
Block a user