mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	Update docs to reflect flattened model meta.json
Don't use "setup" key and instead, keep "lang" on root level and add "pipeline".
This commit is contained in:
		
							parent
							
								
									a8e58e04ef
								
							
						
					
					
						commit
						e05bcd6aa8
					
				| 
						 | 
				
			
			@ -19,20 +19,18 @@ p
 | 
			
		|||
 | 
			
		||||
p
 | 
			
		||||
    |  When you load a model, spaCy first consults the model's
 | 
			
		||||
    |  #[+a("/docs/usage/saving-loading#models-generating") meta.json] for its
 | 
			
		||||
    |  #[code setup] details. This typically includes the ID of a language class,
 | 
			
		||||
    |  #[+a("/docs/usage/saving-loading#models-generating") meta.json]. The
 | 
			
		||||
    |  meta typically includes the model details, the ID of a language class,
 | 
			
		||||
    |  and an optional list of pipeline components. spaCy then does the
 | 
			
		||||
    |  following:
 | 
			
		||||
 | 
			
		||||
+aside-code("meta.json (excerpt)", "json").
 | 
			
		||||
    {
 | 
			
		||||
        "name": "example_model",
 | 
			
		||||
        "lang": "en"
 | 
			
		||||
        "description": "Example model for spaCy",
 | 
			
		||||
        "setup": {
 | 
			
		||||
            "lang": "en",
 | 
			
		||||
        "pipeline": ["token_vectors", "tagger"]
 | 
			
		||||
    }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
+list("numbers")
 | 
			
		||||
    +item
 | 
			
		||||
| 
						 | 
				
			
			@ -287,18 +285,16 @@ p
 | 
			
		|||
 | 
			
		||||
p
 | 
			
		||||
    |  In the model package's meta.json, specify the language class and pipeline
 | 
			
		||||
    |  IDs in #[code setup]:
 | 
			
		||||
    |  IDs:
 | 
			
		||||
 | 
			
		||||
+code("meta.json (excerpt)", "json").
 | 
			
		||||
    {
 | 
			
		||||
        "name": "my_sentiment_model",
 | 
			
		||||
        "name": "sentiment_model",
 | 
			
		||||
        "lang": "en",
 | 
			
		||||
        "version": "1.0.0",
 | 
			
		||||
        "spacy_version": ">=2.0.0,<3.0.0",
 | 
			
		||||
        "setup": {
 | 
			
		||||
            "lang": "en",
 | 
			
		||||
        "pipeline": ["vectorizer", "sentiment"]
 | 
			
		||||
    }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
p
 | 
			
		||||
    |  When you load your new model, spaCy will call the model's #[code load()]
 | 
			
		||||
| 
						 | 
				
			
			@ -307,7 +303,7 @@ p
 | 
			
		|||
    |  by your custom #[code "sentiment"] factory.
 | 
			
		||||
 | 
			
		||||
+code.
 | 
			
		||||
    nlp = spacy.load('my_sentiment_model')
 | 
			
		||||
    nlp = spacy.load('en_sentiment_model')
 | 
			
		||||
    doc = nlp(u'I love pizza')
 | 
			
		||||
    assert doc.sentiment
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -74,17 +74,15 @@ p
 | 
			
		|||
+aside-code("meta.json", "json").
 | 
			
		||||
    {
 | 
			
		||||
        "name": "example_model",
 | 
			
		||||
        "lang": "en",
 | 
			
		||||
        "version": "1.0.0",
 | 
			
		||||
        "spacy_version": ">=2.0.0,<3.0.0",
 | 
			
		||||
        "description": "Example model for spaCy",
 | 
			
		||||
        "author": "You",
 | 
			
		||||
        "email": "you@example.com",
 | 
			
		||||
        "license": "CC BY-SA 3.0",
 | 
			
		||||
        "setup": {
 | 
			
		||||
            "lang": "en",
 | 
			
		||||
        "pipeline": ["token_vectors", "tagger"]
 | 
			
		||||
    }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
+code(false, "bash").
 | 
			
		||||
    python -m spacy package /home/me/data/en_example_model /home/me/my_models
 | 
			
		||||
| 
						 | 
				
			
			@ -110,9 +108,9 @@ p
 | 
			
		|||
+h(3, "models-custom") Customising the model setup
 | 
			
		||||
 | 
			
		||||
p
 | 
			
		||||
    |  The meta.json includes a #[code setup] key that lets you customise how
 | 
			
		||||
    |  the model should be initialised and loaded. You can define the language
 | 
			
		||||
    |  data to be loaded and the
 | 
			
		||||
    |  The meta.json includes the model details, like name, requirements and
 | 
			
		||||
    |  license, and lets you customise how the model should be initialised and
 | 
			
		||||
    |  loaded. You can define the language data to be loaded and the
 | 
			
		||||
    |  #[+a("/docs/usage/language-processing-pipeline") processing pipeline] to
 | 
			
		||||
    |  execute.
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -183,9 +181,9 @@ p
 | 
			
		|||
p
 | 
			
		||||
    |  To load a model from a data directory, you can use
 | 
			
		||||
    |  #[+api("spacy#load") #[code spacy.load()]] with the local path. This will
 | 
			
		||||
    |  look for a meta.json in the directory and use the #[code setup] details
 | 
			
		||||
    |  to initialise a #[code Language] class with a processing pipeline and
 | 
			
		||||
    |  load in the model data.
 | 
			
		||||
    |  look for a meta.json in the directory and use the #[code lang] and
 | 
			
		||||
    |  #[code pipeline] settings to initialise a #[code Language] class with a
 | 
			
		||||
    |  processing pipeline and load in the model data.
 | 
			
		||||
 | 
			
		||||
+code.
 | 
			
		||||
    nlp = spacy.load('/path/to/model')
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue
	
	Block a user