mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Adding noun_chunks to the DUTCH language model (nl) (#8529)
* ✨ implement noun_chunks for dutch language * copy/paste FR and SV syntax iterators to accomodate UD tags * added tests with dutch text * signed contributor agreement * 🐛 fix noun chunks generator * built from scratch * define noun chunk as a single Noun-Phrase * includes some corner cases debugging (incorrect POS tagging) * test with provided annotated sample (POS, DEP) * ✅ fix failing test * CI pipeline did not like the added sample file * add the sample as a pytest fixture * Update spacy/lang/nl/syntax_iterators.py * Update spacy/lang/nl/syntax_iterators.py Code readability Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/tests/lang/nl/test_noun_chunks.py correct comment Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * finalize code * change "if next_word" into "if next_word is not None" Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
This commit is contained in:
parent
2a8eeed5da
commit
e117573822
|
@ -864,6 +864,9 @@ class Errors:
|
|||
E1018 = ("Knowledge base for component '{name}' is not set. "
|
||||
"Make sure either `nel.initialize` or `nel.set_kb` "
|
||||
"is called with a `kb_loader` function.")
|
||||
E1019 = ("`noun_chunks` requires the pos tagging, which requires a "
|
||||
"statistical model to be installed and loaded. For more info, see "
|
||||
"the documentation:\nhttps://spacy.io/usage/models")
|
||||
|
||||
|
||||
# Deprecated model shortcuts, only used in errors and warnings
|
||||
|
|
|
@ -1,12 +1,14 @@
|
|||
from typing import Optional
|
||||
|
||||
from thinc.api import Model
|
||||
|
||||
from .stop_words import STOP_WORDS
|
||||
from .lemmatizer import DutchLemmatizer
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_INFIXES
|
||||
from .punctuation import TOKENIZER_SUFFIXES
|
||||
from .lemmatizer import DutchLemmatizer
|
||||
from .stop_words import STOP_WORDS
|
||||
from .syntax_iterators import SYNTAX_ITERATORS
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
from ...language import Language
|
||||
|
||||
|
||||
|
@ -16,6 +18,7 @@ class DutchDefaults(Language.Defaults):
|
|||
infixes = TOKENIZER_INFIXES
|
||||
suffixes = TOKENIZER_SUFFIXES
|
||||
lex_attr_getters = LEX_ATTRS
|
||||
syntax_iterators = SYNTAX_ITERATORS
|
||||
stop_words = STOP_WORDS
|
||||
|
||||
|
||||
|
|
72
spacy/lang/nl/syntax_iterators.py
Normal file
72
spacy/lang/nl/syntax_iterators.py
Normal file
|
@ -0,0 +1,72 @@
|
|||
from typing import Union, Iterator
|
||||
|
||||
from ...symbols import NOUN, PRON
|
||||
from ...errors import Errors
|
||||
from ...tokens import Doc, Span
|
||||
|
||||
|
||||
def noun_chunks(doclike: Union[Doc, Span]) -> Iterator[Span]:
|
||||
"""
|
||||
Detect base noun phrases from a dependency parse. Works on Doc and Span.
|
||||
The definition is inspired by https://www.nltk.org/book/ch07.html
|
||||
Consider : [Noun + determinant / adjective] and also [Pronoun]
|
||||
"""
|
||||
# fmt: off
|
||||
# labels = ["nsubj", "nsubj:pass", "obj", "iobj", "ROOT", "appos", "nmod", "nmod:poss"]
|
||||
# fmt: on
|
||||
doc = doclike.doc # Ensure works on both Doc and Span.
|
||||
|
||||
# Check for dependencies: POS, DEP
|
||||
if not doc.has_annotation("POS"):
|
||||
raise ValueError(Errors.E1019)
|
||||
if not doc.has_annotation("DEP"):
|
||||
raise ValueError(Errors.E029)
|
||||
|
||||
# See UD tags: https://universaldependencies.org/u/dep/index.html
|
||||
# amod = adjectival modifier
|
||||
# nmod:poss = possessive nominal modifier
|
||||
# nummod = numeric modifier
|
||||
# det = determiner
|
||||
# det:poss = possessive determiner
|
||||
noun_deps = [
|
||||
doc.vocab.strings[label] for label in ["amod", "nmod:poss", "det", "det:poss"]
|
||||
]
|
||||
|
||||
# nsubj = nominal subject
|
||||
# nsubj:pass = passive nominal subject
|
||||
pronoun_deps = [doc.vocab.strings[label] for label in ["nsubj", "nsubj:pass"]]
|
||||
|
||||
# Label NP for the Span to identify it as Noun-Phrase
|
||||
span_label = doc.vocab.strings.add("NP")
|
||||
|
||||
# Only NOUNS and PRONOUNS matter
|
||||
for i, word in enumerate(filter(lambda x: x.pos in [PRON, NOUN], doclike)):
|
||||
# For NOUNS
|
||||
# Pick children from syntactic parse (only those with certain dependencies)
|
||||
if word.pos == NOUN:
|
||||
# Some debugging. It happens that VERBS are POS-TAGGED as NOUNS
|
||||
# We check if the word has a "nsubj", if it's the case, we eliminate it
|
||||
nsubjs = filter(
|
||||
lambda x: x.dep == doc.vocab.strings["nsubj"], word.children
|
||||
)
|
||||
next_word = next(nsubjs, None)
|
||||
if next_word is not None:
|
||||
# We found some nsubj, so we skip this word. Otherwise, consider it a normal NOUN
|
||||
continue
|
||||
|
||||
children = filter(lambda x: x.dep in noun_deps, word.children)
|
||||
children_i = [c.i for c in children] + [word.i]
|
||||
|
||||
start_span = min(children_i)
|
||||
end_span = max(children_i) + 1
|
||||
yield start_span, end_span, span_label
|
||||
|
||||
# PRONOUNS only if it is the subject of a verb
|
||||
elif word.pos == PRON:
|
||||
if word.dep in pronoun_deps:
|
||||
start_span = word.i
|
||||
end_span = word.i + 1
|
||||
yield start_span, end_span, span_label
|
||||
|
||||
|
||||
SYNTAX_ITERATORS = {"noun_chunks": noun_chunks}
|
|
@ -202,6 +202,11 @@ def ne_tokenizer():
|
|||
return get_lang_class("ne")().tokenizer
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def nl_vocab():
|
||||
return get_lang_class("nl")().vocab
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def nl_tokenizer():
|
||||
return get_lang_class("nl")().tokenizer
|
||||
|
|
209
spacy/tests/lang/nl/test_noun_chunks.py
Normal file
209
spacy/tests/lang/nl/test_noun_chunks.py
Normal file
|
@ -0,0 +1,209 @@
|
|||
from spacy.tokens import Doc
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def nl_sample(nl_vocab):
|
||||
# TEXT :
|
||||
# Haar vriend lacht luid. We kregen alweer ruzie toen we de supermarkt ingingen.
|
||||
# Aan het begin van de supermarkt is al het fruit en de groentes. Uiteindelijk hebben we dan ook
|
||||
# geen avondeten gekocht.
|
||||
words = [
|
||||
"Haar",
|
||||
"vriend",
|
||||
"lacht",
|
||||
"luid",
|
||||
".",
|
||||
"We",
|
||||
"kregen",
|
||||
"alweer",
|
||||
"ruzie",
|
||||
"toen",
|
||||
"we",
|
||||
"de",
|
||||
"supermarkt",
|
||||
"ingingen",
|
||||
".",
|
||||
"Aan",
|
||||
"het",
|
||||
"begin",
|
||||
"van",
|
||||
"de",
|
||||
"supermarkt",
|
||||
"is",
|
||||
"al",
|
||||
"het",
|
||||
"fruit",
|
||||
"en",
|
||||
"de",
|
||||
"groentes",
|
||||
".",
|
||||
"Uiteindelijk",
|
||||
"hebben",
|
||||
"we",
|
||||
"dan",
|
||||
"ook",
|
||||
"geen",
|
||||
"avondeten",
|
||||
"gekocht",
|
||||
".",
|
||||
]
|
||||
heads = [
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
6,
|
||||
6,
|
||||
6,
|
||||
6,
|
||||
13,
|
||||
13,
|
||||
12,
|
||||
13,
|
||||
6,
|
||||
6,
|
||||
17,
|
||||
17,
|
||||
24,
|
||||
20,
|
||||
20,
|
||||
17,
|
||||
24,
|
||||
24,
|
||||
24,
|
||||
24,
|
||||
27,
|
||||
27,
|
||||
24,
|
||||
24,
|
||||
36,
|
||||
36,
|
||||
36,
|
||||
36,
|
||||
36,
|
||||
35,
|
||||
36,
|
||||
36,
|
||||
36,
|
||||
]
|
||||
deps = [
|
||||
"nmod:poss",
|
||||
"nsubj",
|
||||
"ROOT",
|
||||
"advmod",
|
||||
"punct",
|
||||
"nsubj",
|
||||
"ROOT",
|
||||
"advmod",
|
||||
"obj",
|
||||
"mark",
|
||||
"nsubj",
|
||||
"det",
|
||||
"obj",
|
||||
"advcl",
|
||||
"punct",
|
||||
"case",
|
||||
"det",
|
||||
"obl",
|
||||
"case",
|
||||
"det",
|
||||
"nmod",
|
||||
"cop",
|
||||
"advmod",
|
||||
"det",
|
||||
"ROOT",
|
||||
"cc",
|
||||
"det",
|
||||
"conj",
|
||||
"punct",
|
||||
"advmod",
|
||||
"aux",
|
||||
"nsubj",
|
||||
"advmod",
|
||||
"advmod",
|
||||
"det",
|
||||
"obj",
|
||||
"ROOT",
|
||||
"punct",
|
||||
]
|
||||
pos = [
|
||||
"PRON",
|
||||
"NOUN",
|
||||
"VERB",
|
||||
"ADJ",
|
||||
"PUNCT",
|
||||
"PRON",
|
||||
"VERB",
|
||||
"ADV",
|
||||
"NOUN",
|
||||
"SCONJ",
|
||||
"PRON",
|
||||
"DET",
|
||||
"NOUN",
|
||||
"NOUN",
|
||||
"PUNCT",
|
||||
"ADP",
|
||||
"DET",
|
||||
"NOUN",
|
||||
"ADP",
|
||||
"DET",
|
||||
"NOUN",
|
||||
"AUX",
|
||||
"ADV",
|
||||
"DET",
|
||||
"NOUN",
|
||||
"CCONJ",
|
||||
"DET",
|
||||
"NOUN",
|
||||
"PUNCT",
|
||||
"ADJ",
|
||||
"AUX",
|
||||
"PRON",
|
||||
"ADV",
|
||||
"ADV",
|
||||
"DET",
|
||||
"NOUN",
|
||||
"VERB",
|
||||
"PUNCT",
|
||||
]
|
||||
return Doc(nl_vocab, words=words, heads=heads, deps=deps, pos=pos)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def nl_reference_chunking():
|
||||
# Using frog https://github.com/LanguageMachines/frog/ we obtain the following NOUN-PHRASES:
|
||||
return [
|
||||
"haar vriend",
|
||||
"we",
|
||||
"ruzie",
|
||||
"we",
|
||||
"de supermarkt",
|
||||
"het begin",
|
||||
"de supermarkt",
|
||||
"het fruit",
|
||||
"de groentes",
|
||||
"we",
|
||||
"geen avondeten",
|
||||
]
|
||||
|
||||
|
||||
def test_need_dep(nl_tokenizer):
|
||||
"""
|
||||
Test that noun_chunks raises Value Error for 'nl' language if Doc is not parsed.
|
||||
"""
|
||||
txt = "Haar vriend lacht luid."
|
||||
doc = nl_tokenizer(txt)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
list(doc.noun_chunks)
|
||||
|
||||
|
||||
def test_chunking(nl_sample, nl_reference_chunking):
|
||||
"""
|
||||
Test the noun chunks of a sample text. Uses a sample.
|
||||
The sample text simulates a Doc object as would be produced by nl_core_news_md.
|
||||
"""
|
||||
chunks = [s.text.lower() for s in nl_sample.noun_chunks]
|
||||
assert chunks == nl_reference_chunking
|
Loading…
Reference in New Issue
Block a user