mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	Adding noun_chunks to the DUTCH language model (nl) (#8529)
* ✨ implement noun_chunks for dutch language * copy/paste FR and SV syntax iterators to accomodate UD tags * added tests with dutch text * signed contributor agreement * 🐛 fix noun chunks generator * built from scratch * define noun chunk as a single Noun-Phrase * includes some corner cases debugging (incorrect POS tagging) * test with provided annotated sample (POS, DEP) * ✅ fix failing test * CI pipeline did not like the added sample file * add the sample as a pytest fixture * Update spacy/lang/nl/syntax_iterators.py * Update spacy/lang/nl/syntax_iterators.py Code readability Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/tests/lang/nl/test_noun_chunks.py correct comment Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * finalize code * change "if next_word" into "if next_word is not None" Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
This commit is contained in:
		
							parent
							
								
									2a8eeed5da
								
							
						
					
					
						commit
						e117573822
					
				|  | @ -864,6 +864,9 @@ class Errors: | |||
|     E1018 = ("Knowledge base for component '{name}' is not set. " | ||||
|              "Make sure either `nel.initialize` or `nel.set_kb` " | ||||
|              "is called with a `kb_loader` function.") | ||||
|     E1019 = ("`noun_chunks` requires the pos tagging, which requires a " | ||||
|              "statistical model to be installed and loaded. For more info, see " | ||||
|              "the documentation:\nhttps://spacy.io/usage/models") | ||||
| 
 | ||||
| 
 | ||||
| # Deprecated model shortcuts, only used in errors and warnings | ||||
|  |  | |||
|  | @ -1,12 +1,14 @@ | |||
| from typing import Optional | ||||
| 
 | ||||
| from thinc.api import Model | ||||
| 
 | ||||
| from .stop_words import STOP_WORDS | ||||
| from .lemmatizer import DutchLemmatizer | ||||
| from .lex_attrs import LEX_ATTRS | ||||
| from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS | ||||
| from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_INFIXES | ||||
| from .punctuation import TOKENIZER_SUFFIXES | ||||
| from .lemmatizer import DutchLemmatizer | ||||
| from .stop_words import STOP_WORDS | ||||
| from .syntax_iterators import SYNTAX_ITERATORS | ||||
| from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS | ||||
| from ...language import Language | ||||
| 
 | ||||
| 
 | ||||
|  | @ -16,6 +18,7 @@ class DutchDefaults(Language.Defaults): | |||
|     infixes = TOKENIZER_INFIXES | ||||
|     suffixes = TOKENIZER_SUFFIXES | ||||
|     lex_attr_getters = LEX_ATTRS | ||||
|     syntax_iterators = SYNTAX_ITERATORS | ||||
|     stop_words = STOP_WORDS | ||||
| 
 | ||||
| 
 | ||||
|  |  | |||
							
								
								
									
										72
									
								
								spacy/lang/nl/syntax_iterators.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										72
									
								
								spacy/lang/nl/syntax_iterators.py
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,72 @@ | |||
| from typing import Union, Iterator | ||||
| 
 | ||||
| from ...symbols import NOUN, PRON | ||||
| from ...errors import Errors | ||||
| from ...tokens import Doc, Span | ||||
| 
 | ||||
| 
 | ||||
| def noun_chunks(doclike: Union[Doc, Span]) -> Iterator[Span]: | ||||
|     """ | ||||
|     Detect base noun phrases from a dependency parse. Works on Doc and Span. | ||||
|     The definition is inspired by https://www.nltk.org/book/ch07.html | ||||
|     Consider : [Noun + determinant / adjective] and also [Pronoun] | ||||
|     """ | ||||
|     # fmt: off | ||||
|     # labels = ["nsubj", "nsubj:pass", "obj", "iobj", "ROOT", "appos", "nmod", "nmod:poss"] | ||||
|     # fmt: on | ||||
|     doc = doclike.doc  # Ensure works on both Doc and Span. | ||||
| 
 | ||||
|     # Check for dependencies: POS, DEP | ||||
|     if not doc.has_annotation("POS"): | ||||
|         raise ValueError(Errors.E1019) | ||||
|     if not doc.has_annotation("DEP"): | ||||
|         raise ValueError(Errors.E029) | ||||
| 
 | ||||
|     # See UD tags: https://universaldependencies.org/u/dep/index.html | ||||
|     # amod = adjectival modifier | ||||
|     # nmod:poss = possessive nominal modifier | ||||
|     # nummod = numeric modifier | ||||
|     # det = determiner | ||||
|     # det:poss = possessive determiner | ||||
|     noun_deps = [ | ||||
|         doc.vocab.strings[label] for label in ["amod", "nmod:poss", "det", "det:poss"] | ||||
|     ] | ||||
| 
 | ||||
|     # nsubj = nominal subject | ||||
|     # nsubj:pass = passive nominal subject | ||||
|     pronoun_deps = [doc.vocab.strings[label] for label in ["nsubj", "nsubj:pass"]] | ||||
| 
 | ||||
|     # Label NP for the Span to identify it as Noun-Phrase | ||||
|     span_label = doc.vocab.strings.add("NP") | ||||
| 
 | ||||
|     # Only NOUNS and PRONOUNS matter | ||||
|     for i, word in enumerate(filter(lambda x: x.pos in [PRON, NOUN], doclike)): | ||||
|         # For NOUNS | ||||
|         # Pick children from syntactic parse (only those with certain dependencies) | ||||
|         if word.pos == NOUN: | ||||
|             # Some debugging. It happens that VERBS are POS-TAGGED as NOUNS | ||||
|             # We check if the word has a "nsubj", if it's the case, we eliminate it | ||||
|             nsubjs = filter( | ||||
|                 lambda x: x.dep == doc.vocab.strings["nsubj"], word.children | ||||
|             ) | ||||
|             next_word = next(nsubjs, None) | ||||
|             if next_word is not None: | ||||
|                 # We found some nsubj, so we skip this word. Otherwise, consider it a normal NOUN | ||||
|                 continue | ||||
| 
 | ||||
|             children = filter(lambda x: x.dep in noun_deps, word.children) | ||||
|             children_i = [c.i for c in children] + [word.i] | ||||
| 
 | ||||
|             start_span = min(children_i) | ||||
|             end_span = max(children_i) + 1 | ||||
|             yield start_span, end_span, span_label | ||||
| 
 | ||||
|         # PRONOUNS only if it is the subject of a verb | ||||
|         elif word.pos == PRON: | ||||
|             if word.dep in pronoun_deps: | ||||
|                 start_span = word.i | ||||
|                 end_span = word.i + 1 | ||||
|                 yield start_span, end_span, span_label | ||||
| 
 | ||||
| 
 | ||||
| SYNTAX_ITERATORS = {"noun_chunks": noun_chunks} | ||||
|  | @ -202,6 +202,11 @@ def ne_tokenizer(): | |||
|     return get_lang_class("ne")().tokenizer | ||||
| 
 | ||||
| 
 | ||||
| @pytest.fixture(scope="session") | ||||
| def nl_vocab(): | ||||
|     return get_lang_class("nl")().vocab | ||||
| 
 | ||||
| 
 | ||||
| @pytest.fixture(scope="session") | ||||
| def nl_tokenizer(): | ||||
|     return get_lang_class("nl")().tokenizer | ||||
|  |  | |||
							
								
								
									
										209
									
								
								spacy/tests/lang/nl/test_noun_chunks.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										209
									
								
								spacy/tests/lang/nl/test_noun_chunks.py
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,209 @@ | |||
| from spacy.tokens import Doc | ||||
| import pytest | ||||
| 
 | ||||
| 
 | ||||
| @pytest.fixture | ||||
| def nl_sample(nl_vocab): | ||||
|     # TEXT : | ||||
|     # Haar vriend lacht luid. We kregen alweer ruzie toen we de supermarkt ingingen. | ||||
|     # Aan het begin van de supermarkt is al het fruit en de groentes. Uiteindelijk hebben we dan ook | ||||
|     # geen avondeten gekocht. | ||||
|     words = [ | ||||
|         "Haar", | ||||
|         "vriend", | ||||
|         "lacht", | ||||
|         "luid", | ||||
|         ".", | ||||
|         "We", | ||||
|         "kregen", | ||||
|         "alweer", | ||||
|         "ruzie", | ||||
|         "toen", | ||||
|         "we", | ||||
|         "de", | ||||
|         "supermarkt", | ||||
|         "ingingen", | ||||
|         ".", | ||||
|         "Aan", | ||||
|         "het", | ||||
|         "begin", | ||||
|         "van", | ||||
|         "de", | ||||
|         "supermarkt", | ||||
|         "is", | ||||
|         "al", | ||||
|         "het", | ||||
|         "fruit", | ||||
|         "en", | ||||
|         "de", | ||||
|         "groentes", | ||||
|         ".", | ||||
|         "Uiteindelijk", | ||||
|         "hebben", | ||||
|         "we", | ||||
|         "dan", | ||||
|         "ook", | ||||
|         "geen", | ||||
|         "avondeten", | ||||
|         "gekocht", | ||||
|         ".", | ||||
|     ] | ||||
|     heads = [ | ||||
|         1, | ||||
|         2, | ||||
|         2, | ||||
|         2, | ||||
|         2, | ||||
|         6, | ||||
|         6, | ||||
|         6, | ||||
|         6, | ||||
|         13, | ||||
|         13, | ||||
|         12, | ||||
|         13, | ||||
|         6, | ||||
|         6, | ||||
|         17, | ||||
|         17, | ||||
|         24, | ||||
|         20, | ||||
|         20, | ||||
|         17, | ||||
|         24, | ||||
|         24, | ||||
|         24, | ||||
|         24, | ||||
|         27, | ||||
|         27, | ||||
|         24, | ||||
|         24, | ||||
|         36, | ||||
|         36, | ||||
|         36, | ||||
|         36, | ||||
|         36, | ||||
|         35, | ||||
|         36, | ||||
|         36, | ||||
|         36, | ||||
|     ] | ||||
|     deps = [ | ||||
|         "nmod:poss", | ||||
|         "nsubj", | ||||
|         "ROOT", | ||||
|         "advmod", | ||||
|         "punct", | ||||
|         "nsubj", | ||||
|         "ROOT", | ||||
|         "advmod", | ||||
|         "obj", | ||||
|         "mark", | ||||
|         "nsubj", | ||||
|         "det", | ||||
|         "obj", | ||||
|         "advcl", | ||||
|         "punct", | ||||
|         "case", | ||||
|         "det", | ||||
|         "obl", | ||||
|         "case", | ||||
|         "det", | ||||
|         "nmod", | ||||
|         "cop", | ||||
|         "advmod", | ||||
|         "det", | ||||
|         "ROOT", | ||||
|         "cc", | ||||
|         "det", | ||||
|         "conj", | ||||
|         "punct", | ||||
|         "advmod", | ||||
|         "aux", | ||||
|         "nsubj", | ||||
|         "advmod", | ||||
|         "advmod", | ||||
|         "det", | ||||
|         "obj", | ||||
|         "ROOT", | ||||
|         "punct", | ||||
|     ] | ||||
|     pos = [ | ||||
|         "PRON", | ||||
|         "NOUN", | ||||
|         "VERB", | ||||
|         "ADJ", | ||||
|         "PUNCT", | ||||
|         "PRON", | ||||
|         "VERB", | ||||
|         "ADV", | ||||
|         "NOUN", | ||||
|         "SCONJ", | ||||
|         "PRON", | ||||
|         "DET", | ||||
|         "NOUN", | ||||
|         "NOUN", | ||||
|         "PUNCT", | ||||
|         "ADP", | ||||
|         "DET", | ||||
|         "NOUN", | ||||
|         "ADP", | ||||
|         "DET", | ||||
|         "NOUN", | ||||
|         "AUX", | ||||
|         "ADV", | ||||
|         "DET", | ||||
|         "NOUN", | ||||
|         "CCONJ", | ||||
|         "DET", | ||||
|         "NOUN", | ||||
|         "PUNCT", | ||||
|         "ADJ", | ||||
|         "AUX", | ||||
|         "PRON", | ||||
|         "ADV", | ||||
|         "ADV", | ||||
|         "DET", | ||||
|         "NOUN", | ||||
|         "VERB", | ||||
|         "PUNCT", | ||||
|     ] | ||||
|     return Doc(nl_vocab, words=words, heads=heads, deps=deps, pos=pos) | ||||
| 
 | ||||
| 
 | ||||
| @pytest.fixture | ||||
| def nl_reference_chunking(): | ||||
|     # Using frog https://github.com/LanguageMachines/frog/ we obtain the following NOUN-PHRASES: | ||||
|     return [ | ||||
|         "haar vriend", | ||||
|         "we", | ||||
|         "ruzie", | ||||
|         "we", | ||||
|         "de supermarkt", | ||||
|         "het begin", | ||||
|         "de supermarkt", | ||||
|         "het fruit", | ||||
|         "de groentes", | ||||
|         "we", | ||||
|         "geen avondeten", | ||||
|     ] | ||||
| 
 | ||||
| 
 | ||||
| def test_need_dep(nl_tokenizer): | ||||
|     """ | ||||
|     Test that noun_chunks raises Value Error for 'nl' language if Doc is not parsed. | ||||
|     """ | ||||
|     txt = "Haar vriend lacht luid." | ||||
|     doc = nl_tokenizer(txt) | ||||
| 
 | ||||
|     with pytest.raises(ValueError): | ||||
|         list(doc.noun_chunks) | ||||
| 
 | ||||
| 
 | ||||
| def test_chunking(nl_sample, nl_reference_chunking): | ||||
|     """ | ||||
|     Test the noun chunks of a sample text. Uses a sample. | ||||
|     The sample text simulates a Doc object as would be produced by nl_core_news_md. | ||||
|     """ | ||||
|     chunks = [s.text.lower() for s in nl_sample.noun_chunks] | ||||
|     assert chunks == nl_reference_chunking | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user