mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 18:56:36 +03:00
* Use JSON docs for training and evaluation. Currently a bug that is costing 0.6 acc
This commit is contained in:
parent
69840d8cc3
commit
e167355505
|
@ -19,13 +19,13 @@ from spacy.en.pos import POS_TEMPLATES, POS_TAGS, setup_model_dir
|
|||
from spacy.syntax.parser import GreedyParser
|
||||
from spacy.syntax.parser import OracleError
|
||||
from spacy.syntax.util import Config
|
||||
from spacy.syntax.conll import read_docparse_file
|
||||
from spacy.syntax.conll import read_docparse_file, read_json_file
|
||||
from spacy.syntax.conll import GoldParse
|
||||
|
||||
from spacy.scorer import Scorer
|
||||
|
||||
|
||||
def train(Language, train_loc, model_dir, n_iter=15, feat_set=u'basic', seed=0,
|
||||
def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic', seed=0,
|
||||
gold_preproc=False, n_sents=0):
|
||||
dep_model_dir = path.join(model_dir, 'deps')
|
||||
pos_model_dir = path.join(model_dir, 'pos')
|
||||
|
@ -42,8 +42,6 @@ def train(Language, train_loc, model_dir, n_iter=15, feat_set=u'basic', seed=0,
|
|||
|
||||
setup_model_dir(sorted(POS_TAGS.keys()), POS_TAGS, POS_TEMPLATES, pos_model_dir)
|
||||
|
||||
gold_tuples = read_docparse_file(train_loc)
|
||||
|
||||
Config.write(dep_model_dir, 'config', features=feat_set, seed=seed,
|
||||
labels=Language.ParserTransitionSystem.get_labels(gold_tuples))
|
||||
Config.write(ner_model_dir, 'config', features='ner', seed=seed,
|
||||
|
@ -56,9 +54,12 @@ def train(Language, train_loc, model_dir, n_iter=15, feat_set=u'basic', seed=0,
|
|||
print "Itn.\tUAS\tNER F.\tTag %"
|
||||
for itn in range(n_iter):
|
||||
scorer = Scorer()
|
||||
for raw_text, segmented_text, annot_tuples in gold_tuples:
|
||||
for raw_text, segmented_text, annot_tuples, ctnt in gold_tuples:
|
||||
# Eval before train
|
||||
tokens = nlp(raw_text, merge_mwes=False)
|
||||
#print segmented_text
|
||||
#for annot in zip(*annot_tuples):
|
||||
# print annot
|
||||
gold = GoldParse(tokens, annot_tuples)
|
||||
scorer.score(tokens, gold, verbose=False)
|
||||
|
||||
|
@ -75,19 +76,18 @@ def train(Language, train_loc, model_dir, n_iter=15, feat_set=u'basic', seed=0,
|
|||
nlp.tagger.train(tokens, gold.tags)
|
||||
|
||||
print '%d:\t%.3f\t%.3f\t%.3f' % (itn, scorer.uas, scorer.ents_f, scorer.tags_acc)
|
||||
random.shuffle(gold_tuples)
|
||||
#random.shuffle(gold_tuples)
|
||||
nlp.parser.model.end_training()
|
||||
nlp.entity.model.end_training()
|
||||
nlp.tagger.model.end_training()
|
||||
nlp.vocab.strings.dump(path.join(model_dir, 'vocab', 'strings.txt'))
|
||||
|
||||
|
||||
def evaluate(Language, dev_loc, model_dir, gold_preproc=False, verbose=True):
|
||||
def evaluate(Language, gold_tuples, model_dir, gold_preproc=False, verbose=True):
|
||||
assert not gold_preproc
|
||||
nlp = Language(data_dir=model_dir)
|
||||
gold_tuples = read_docparse_file(dev_loc)
|
||||
scorer = Scorer()
|
||||
for raw_text, segmented_text, annot_tuples in gold_tuples:
|
||||
for raw_text, segmented_text, annot_tuples, brackets in gold_tuples:
|
||||
tokens = nlp(raw_text, merge_mwes=False)
|
||||
gold = GoldParse(tokens, annot_tuples)
|
||||
scorer.score(tokens, gold, verbose=verbose)
|
||||
|
@ -108,22 +108,38 @@ def write_parses(Language, dev_loc, model_dir, out_loc):
|
|||
return scorer
|
||||
|
||||
|
||||
def get_sents(json_dir, section):
|
||||
if section == 'train':
|
||||
file_range = range(2, 22)
|
||||
elif section == 'dev':
|
||||
file_range = range(22, 23)
|
||||
|
||||
for i in file_range:
|
||||
sec = str(i)
|
||||
if len(sec) == 1:
|
||||
sec = '0' + sec
|
||||
loc = path.join(json_dir, sec + '.json')
|
||||
for sent in read_json_file(loc):
|
||||
yield sent
|
||||
|
||||
|
||||
@plac.annotations(
|
||||
train_loc=("Training file location",),
|
||||
dev_loc=("Dev. file location",),
|
||||
json_dir=("Annotated JSON files directory",),
|
||||
model_dir=("Location of output model directory",),
|
||||
out_loc=("Out location", "option", "o", str),
|
||||
n_sents=("Number of training sentences", "option", "n", int),
|
||||
verbose=("Verbose error reporting", "flag", "v", bool),
|
||||
debug=("Debug mode", "flag", "d", bool)
|
||||
)
|
||||
def main(train_loc, dev_loc, model_dir, n_sents=0, out_loc="", verbose=False,
|
||||
def main(json_dir, model_dir, n_sents=0, out_loc="", verbose=False,
|
||||
debug=False):
|
||||
train(English, train_loc, model_dir, feat_set='basic' if not debug else 'debug',
|
||||
train(English, list(get_sents(json_dir, 'train')), model_dir,
|
||||
feat_set='basic' if not debug else 'debug',
|
||||
gold_preproc=False, n_sents=n_sents)
|
||||
if out_loc:
|
||||
write_parses(English, dev_loc, model_dir, out_loc)
|
||||
scorer = evaluate(English, dev_loc, model_dir, gold_preproc=False, verbose=verbose)
|
||||
scorer = evaluate(English, list(get_sents(json_dir, 'dev')),
|
||||
model_dir, gold_preproc=False, verbose=verbose)
|
||||
print 'TOK', scorer.mistokened
|
||||
print 'POS', scorer.tags_acc
|
||||
print 'UAS', scorer.uas
|
||||
|
|
Loading…
Reference in New Issue
Block a user