Add support for character features to Tok2Vec

This commit is contained in:
Matthew Honnibal 2019-03-09 11:50:08 +00:00
parent eae384ebb2
commit e1a83d15ed

View File

@ -15,7 +15,7 @@ from thinc.api import uniqued, wrap, noop
from thinc.api import with_square_sequences from thinc.api import with_square_sequences
from thinc.linear.linear import LinearModel from thinc.linear.linear import LinearModel
from thinc.neural.ops import NumpyOps, CupyOps from thinc.neural.ops import NumpyOps, CupyOps
from thinc.neural.util import get_array_module from thinc.neural.util import get_array_module, copy_array
from thinc.neural.optimizers import Adam from thinc.neural.optimizers import Adam
from thinc import describe from thinc import describe
@ -273,6 +273,9 @@ def Tok2Vec(width, embed_size, **kwargs):
pretrained_vectors = kwargs.get("pretrained_vectors", None) pretrained_vectors = kwargs.get("pretrained_vectors", None)
cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3) cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
subword_features = kwargs.get("subword_features", True) subword_features = kwargs.get("subword_features", True)
char_embed = kwargs.get("char_embed", False)
if char_embed:
subword_features = False
conv_depth = kwargs.get("conv_depth", 4) conv_depth = kwargs.get("conv_depth", 4)
bilstm_depth = kwargs.get("bilstm_depth", 0) bilstm_depth = kwargs.get("bilstm_depth", 0)
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH] cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
@ -310,8 +313,14 @@ def Tok2Vec(width, embed_size, **kwargs):
embed = uniqued( embed = uniqued(
(norm | prefix | suffix | shape) (norm | prefix | suffix | shape)
>> LN(Maxout(width, width * 4, pieces=3)), >> LN(Maxout(width, width * 4, pieces=3)),
column=cols.index(ORTH), column=cols.index(ORTH)
) )
elif char_embed:
embed = concatenate_lists(
CharacterEmbed(nM=64, nC=8),
FeatureExtracter(cols) >> with_flatten(norm)
)
reduce_dimensions = LN(Maxout(width, 64*8+width, pieces=cnn_maxout_pieces))
else: else:
embed = norm embed = norm
@ -319,9 +328,23 @@ def Tok2Vec(width, embed_size, **kwargs):
ExtractWindow(nW=1) ExtractWindow(nW=1)
>> LN(Maxout(width, width * 3, pieces=cnn_maxout_pieces)) >> LN(Maxout(width, width * 3, pieces=cnn_maxout_pieces))
) )
tok2vec = FeatureExtracter(cols) >> with_flatten( if char_embed:
embed >> convolution ** conv_depth, pad=conv_depth tok2vec = (
embed
>> with_flatten(
reduce_dimensions
>> convolution ** conv_depth, pad=conv_depth
) )
)
else:
tok2vec = (
FeatureExtracter(cols)
>> with_flatten(
embed
>> convolution ** conv_depth, pad=conv_depth
)
)
if bilstm_depth >= 1: if bilstm_depth >= 1:
tok2vec = tok2vec >> PyTorchBiLSTM(width, width, bilstm_depth) tok2vec = tok2vec >> PyTorchBiLSTM(width, width, bilstm_depth)
# Work around thinc API limitations :(. TODO: Revise in Thinc 7 # Work around thinc API limitations :(. TODO: Revise in Thinc 7
@ -537,7 +560,7 @@ def build_morphologizer_model(class_nums, **cfg):
else: else:
token_vector_width = util.env_opt("token_vector_width", 128) token_vector_width = util.env_opt("token_vector_width", 128)
pretrained_vectors = cfg.get("pretrained_vectors") pretrained_vectors = cfg.get("pretrained_vectors")
subword_features = cfg.get("subword_features", True) char_embed = cfg.get("char_embed", True)
with Model.define_operators({">>": chain, "+": add}): with Model.define_operators({">>": chain, "+": add}):
if "tok2vec" in cfg: if "tok2vec" in cfg:
tok2vec = cfg["tok2vec"] tok2vec = cfg["tok2vec"]
@ -545,7 +568,7 @@ def build_morphologizer_model(class_nums, **cfg):
tok2vec = Tok2Vec( tok2vec = Tok2Vec(
token_vector_width, token_vector_width,
embed_size, embed_size,
subword_features=subword_features, char_embed=char_embed,
pretrained_vectors=pretrained_vectors, pretrained_vectors=pretrained_vectors,
) )
softmax = with_flatten(MultiSoftmax(class_nums, token_vector_width)) softmax = with_flatten(MultiSoftmax(class_nums, token_vector_width))
@ -688,6 +711,7 @@ def concatenate_lists(*layers, **kwargs): # pragma: no cover
concat = concatenate(*layers) concat = concatenate(*layers)
def concatenate_lists_fwd(Xs, drop=0.0): def concatenate_lists_fwd(Xs, drop=0.0):
if drop is not None:
drop *= drop_factor drop *= drop_factor
lengths = ops.asarray([len(X) for X in Xs], dtype="i") lengths = ops.asarray([len(X) for X in Xs], dtype="i")
flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop) flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop)
@ -776,3 +800,64 @@ def _replace_word(word, random_words, mask="[MASK]"):
return random_words.next() return random_words.next()
else: else:
return word return word
def _uniform_init(lo, hi):
def wrapped(W, ops):
copy_array(W, ops.xp.random.uniform(lo, hi, W.shape))
return wrapped
@describe.attributes(
nM=Dimension("Vector dimensions"),
nC=Dimension("Number of characters per word"),
vectors=Synapses("Embed matrix",
lambda obj: (obj.nC, obj.nV, obj.nM),
_uniform_init(-0.1, 0.1)),
d_vectors=Gradient("vectors")
)
class CharacterEmbed(Model):
def __init__(self, nM=None, nC=None, **kwargs):
Model.__init__(self, **kwargs)
self.nM = nM
self.nC = nC
@property
def nO(self):
return self.nM * self.nC
@property
def nV(self):
return 256
def begin_update(self, docs, drop=0.):
if not docs:
return []
ids = []
output = []
weights = self.vectors
# This assists in indexing; it's like looping over this dimension.
# Still consider this weird witch craft...But thanks to Mark Neumann
# for the tip.
nCv = self.ops.xp.arange(self.nC)
for doc in docs:
doc_ids = doc.to_utf8_array(nr_char=self.nC)
doc_vectors = self.ops.allocate((len(doc), self.nC, self.nM))
# Let's say I have a 2d array of indices, and a 3d table of data. What numpy
# incantation do I chant to get
# output[i, j, k] == data[j, ids[i, j], k]?
doc_vectors[:, nCv] = weights[nCv, doc_ids[:, nCv]]
output.append(doc_vectors.reshape((len(doc), self.nO)))
ids.append(doc_ids)
def backprop_character_embed(d_vectors, sgd=None):
gradient = self.d_vectors
for doc_ids, d_doc_vectors in zip(ids, d_vectors):
d_doc_vectors = d_doc_vectors.reshape((len(doc_ids), self.nC, self.nM))
gradient[nCv, doc_ids[:, nCv]] += d_doc_vectors[:, nCv]
if sgd is not None:
sgd(self._mem.weights, self._mem.gradient, key=self.id)
return None
return output, backprop_character_embed