mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-27 17:54:39 +03:00
Fix handling of preset entities. closes #2779
This commit is contained in:
parent
faa8656582
commit
e24f94ce39
|
@ -241,8 +241,12 @@ cdef class Parser:
|
||||||
def greedy_parse(self, docs, drop=0.):
|
def greedy_parse(self, docs, drop=0.):
|
||||||
cdef vector[StateC*] states
|
cdef vector[StateC*] states
|
||||||
cdef StateClass state
|
cdef StateClass state
|
||||||
model = self.model(docs)
|
|
||||||
batch = self.moves.init_batch(docs)
|
batch = self.moves.init_batch(docs)
|
||||||
|
# This is pretty dirty, but the NER can resize itself in init_batch,
|
||||||
|
# if labels are missing. We therefore have to check whether we need to
|
||||||
|
# expand our model output.
|
||||||
|
self.model.resize_output(self.moves.n_moves)
|
||||||
|
model = self.model(docs)
|
||||||
weights = get_c_weights(model)
|
weights = get_c_weights(model)
|
||||||
for state in batch:
|
for state in batch:
|
||||||
if not state.is_final():
|
if not state.is_final():
|
||||||
|
@ -257,8 +261,12 @@ cdef class Parser:
|
||||||
cdef Beam beam
|
cdef Beam beam
|
||||||
cdef Doc doc
|
cdef Doc doc
|
||||||
cdef np.ndarray token_ids
|
cdef np.ndarray token_ids
|
||||||
model = self.model(docs)
|
|
||||||
beams = self.moves.init_beams(docs, beam_width, beam_density=beam_density)
|
beams = self.moves.init_beams(docs, beam_width, beam_density=beam_density)
|
||||||
|
# This is pretty dirty, but the NER can resize itself in init_batch,
|
||||||
|
# if labels are missing. We therefore have to check whether we need to
|
||||||
|
# expand our model output.
|
||||||
|
self.model.resize_output(self.moves.n_moves)
|
||||||
|
model = self.model(docs)
|
||||||
token_ids = numpy.zeros((len(docs) * beam_width, self.nr_feature),
|
token_ids = numpy.zeros((len(docs) * beam_width, self.nr_feature),
|
||||||
dtype='i', order='C')
|
dtype='i', order='C')
|
||||||
cdef int* c_ids
|
cdef int* c_ids
|
||||||
|
@ -420,10 +428,14 @@ cdef class Parser:
|
||||||
if self._rehearsal_model is None:
|
if self._rehearsal_model is None:
|
||||||
return None
|
return None
|
||||||
losses.setdefault(self.name, 0.)
|
losses.setdefault(self.name, 0.)
|
||||||
|
states = self.moves.init_batch(docs)
|
||||||
|
# This is pretty dirty, but the NER can resize itself in init_batch,
|
||||||
|
# if labels are missing. We therefore have to check whether we need to
|
||||||
|
# expand our model output.
|
||||||
|
self.model.resize_output(self.moves.n_moves)
|
||||||
# Prepare the stepwise model, and get the callback for finishing the batch
|
# Prepare the stepwise model, and get the callback for finishing the batch
|
||||||
tutor = self._rehearsal_model(docs)
|
tutor = self._rehearsal_model(docs)
|
||||||
model, finish_update = self.model.begin_update(docs, drop=0.0)
|
model, finish_update = self.model.begin_update(docs, drop=0.0)
|
||||||
states = self.moves.init_batch(docs)
|
|
||||||
n_scores = 0.
|
n_scores = 0.
|
||||||
loss = 0.
|
loss = 0.
|
||||||
non_zeroed_classes = self._rehearsal_model.upper.W.any(axis=1)
|
non_zeroed_classes = self._rehearsal_model.upper.W.any(axis=1)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user