mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
		
						commit
						e257e66ab9
					
				|  | @ -67,10 +67,7 @@ def evaluate( | |||
|     corpus = Corpus(data_path, data_path) | ||||
|     nlp = util.load_model(model) | ||||
|     dev_dataset = list(corpus.dev_dataset(nlp, gold_preproc=gold_preproc)) | ||||
|     begin = timer() | ||||
|     scores = nlp.evaluate(dev_dataset, verbose=False) | ||||
|     end = timer() | ||||
|     nwords = sum(len(ex.predicted) for ex in dev_dataset) | ||||
|     metrics = { | ||||
|         "TOK": "token_acc", | ||||
|         "TAG": "tag_acc", | ||||
|  | @ -82,17 +79,21 @@ def evaluate( | |||
|         "NER P": "ents_p", | ||||
|         "NER R": "ents_r", | ||||
|         "NER F": "ents_f", | ||||
|         "Textcat": "cats_score", | ||||
|         "Sent P": "sents_p", | ||||
|         "Sent R": "sents_r", | ||||
|         "Sent F": "sents_f", | ||||
|         "TEXTCAT": "cats_score", | ||||
|         "SENT P": "sents_p", | ||||
|         "SENT R": "sents_r", | ||||
|         "SENT F": "sents_f", | ||||
|         "SPEED": "speed", | ||||
|     } | ||||
|     results = {} | ||||
|     for metric, key in metrics.items(): | ||||
|         if key in scores: | ||||
|             if key == "cats_score": | ||||
|                 metric = metric + " (" + scores.get("cats_score_desc", "unk") + ")" | ||||
|             results[metric] = f"{scores[key]*100:.2f}" | ||||
|             if key == "speed": | ||||
|                 results[metric] = f"{scores[key]:.0f}" | ||||
|             else: | ||||
|                 results[metric] = f"{scores[key]*100:.2f}" | ||||
|     data = {re.sub(r"[\s/]", "_", k.lower()): v for k, v in results.items()} | ||||
| 
 | ||||
|     msg.table(results, title="Results") | ||||
|  |  | |||
|  | @ -1,5 +1,4 @@ | |||
| from typing import Optional, Dict, Any, Tuple, Union, Callable, List | ||||
| from timeit import default_timer as timer | ||||
| import srsly | ||||
| import tqdm | ||||
| from pathlib import Path | ||||
|  | @ -248,14 +247,11 @@ def create_evaluation_callback( | |||
|         dev_examples = list(dev_examples) | ||||
|         n_words = sum(len(ex.predicted) for ex in dev_examples) | ||||
|         batch_size = cfg["eval_batch_size"] | ||||
|         start_time = timer() | ||||
|         if optimizer.averages: | ||||
|             with nlp.use_params(optimizer.averages): | ||||
|                 scores = nlp.evaluate(dev_examples, batch_size=batch_size) | ||||
|         else: | ||||
|             scores = nlp.evaluate(dev_examples, batch_size=batch_size) | ||||
|         end_time = timer() | ||||
|         wps = n_words / (end_time - start_time) | ||||
|         # Calculate a weighted sum based on score_weights for the main score | ||||
|         weights = cfg["score_weights"] | ||||
|         try: | ||||
|  | @ -264,7 +260,6 @@ def create_evaluation_callback( | |||
|             keys = list(scores.keys()) | ||||
|             err = Errors.E983.format(dict="score_weights", key=str(e), keys=keys) | ||||
|             raise KeyError(err) | ||||
|         scores["speed"] = wps | ||||
|         return weighted_score, scores | ||||
| 
 | ||||
|     return evaluate | ||||
|  | @ -446,7 +441,7 @@ def update_meta( | |||
|     training: Union[Dict[str, Any], Config], nlp: Language, info: Dict[str, Any] | ||||
| ) -> None: | ||||
|     nlp.meta["performance"] = {} | ||||
|     for metric in training["scores_weights"]: | ||||
|     for metric in training["score_weights"]: | ||||
|         nlp.meta["performance"][metric] = info["other_scores"][metric] | ||||
|     for pipe_name in nlp.pipe_names: | ||||
|         nlp.meta["performance"][f"{pipe_name}_loss"] = info["losses"][pipe_name] | ||||
|  |  | |||
|  | @ -432,12 +432,12 @@ class Errors: | |||
|             "Current DocBin: {current}\nOther DocBin: {other}") | ||||
|     E169 = ("Can't find module: {module}") | ||||
|     E170 = ("Cannot apply transition {name}: invalid for the current state.") | ||||
|     E171 = ("Matcher.add received invalid on_match callback argument: expected " | ||||
|     E171 = ("Matcher.add received invalid 'on_match' callback argument: expected " | ||||
|             "callable or None, but got: {arg_type}") | ||||
|     E175 = ("Can't remove rule for unknown match pattern ID: {key}") | ||||
|     E176 = ("Alias '{alias}' is not defined in the Knowledge Base.") | ||||
|     E177 = ("Ill-formed IOB input detected: {tag}") | ||||
|     E178 = ("Invalid pattern. Expected list of dicts but got: {pat}. Maybe you " | ||||
|     E178 = ("Each pattern should be a list of dicts, but got: {pat}. Maybe you " | ||||
|             "accidentally passed a single pattern to Matcher.add instead of a " | ||||
|             "list of patterns? If you only want to add one pattern, make sure " | ||||
|             "to wrap it in a list. For example: matcher.add('{key}', [pattern])") | ||||
|  | @ -483,6 +483,10 @@ class Errors: | |||
|     E199 = ("Unable to merge 0-length span at doc[{start}:{end}].") | ||||
| 
 | ||||
|     # TODO: fix numbering after merging develop into master | ||||
|     E947 = ("Matcher.add received invalid 'greedy' argument: expected " | ||||
|             "a string value from {expected} but got: '{arg}'") | ||||
|     E948 = ("Matcher.add received invalid 'patterns' argument: expected " | ||||
|             "a List, but got: {arg_type}") | ||||
|     E952 = ("The section '{name}' is not a valid section in the provided config.") | ||||
|     E953 = ("Mismatched IDs received by the Tok2Vec listener: {id1} vs. {id2}") | ||||
|     E954 = ("The Tok2Vec listener did not receive a valid input.") | ||||
|  |  | |||
|  | @ -14,6 +14,7 @@ from thinc.api import get_current_ops, Config, require_gpu, Optimizer | |||
| import srsly | ||||
| import multiprocessing as mp | ||||
| from itertools import chain, cycle | ||||
| from timeit import default_timer as timer | ||||
| 
 | ||||
| from .tokens.underscore import Underscore | ||||
| from .vocab import Vocab, create_vocab | ||||
|  | @ -1130,7 +1131,14 @@ class Language: | |||
|             kwargs.setdefault("verbose", verbose) | ||||
|             kwargs.setdefault("nlp", self) | ||||
|             scorer = Scorer(**kwargs) | ||||
|         docs = list(eg.predicted for eg in examples) | ||||
|         texts = [eg.reference.text for eg in examples] | ||||
|         docs = [eg.predicted for eg in examples] | ||||
|         start_time = timer() | ||||
|         # tokenize the texts only for timing purposes | ||||
|         if not hasattr(self.tokenizer, "pipe"): | ||||
|             _ = [self.tokenizer(text) for text in texts] | ||||
|         else: | ||||
|             _ = list(self.tokenizer.pipe(texts)) | ||||
|         for name, pipe in self.pipeline: | ||||
|             kwargs = component_cfg.get(name, {}) | ||||
|             kwargs.setdefault("batch_size", batch_size) | ||||
|  | @ -1138,11 +1146,18 @@ class Language: | |||
|                 docs = _pipe(docs, pipe, kwargs) | ||||
|             else: | ||||
|                 docs = pipe.pipe(docs, **kwargs) | ||||
|         # iterate over the final generator | ||||
|         if len(self.pipeline): | ||||
|             docs = list(docs) | ||||
|         end_time = timer() | ||||
|         for i, (doc, eg) in enumerate(zip(docs, examples)): | ||||
|             if verbose: | ||||
|                 print(doc) | ||||
|             eg.predicted = doc | ||||
|         return scorer.score(examples) | ||||
|         results = scorer.score(examples) | ||||
|         n_words = sum(len(eg.predicted) for eg in examples) | ||||
|         results["speed"] = n_words / (end_time - start_time) | ||||
|         return results | ||||
| 
 | ||||
|     @contextmanager | ||||
|     def use_params(self, params: dict): | ||||
|  |  | |||
|  | @ -66,6 +66,7 @@ cdef class Matcher: | |||
|     cdef public object validate | ||||
|     cdef public object _patterns | ||||
|     cdef public object _callbacks | ||||
|     cdef public object _filter | ||||
|     cdef public object _extensions | ||||
|     cdef public object _extra_predicates | ||||
|     cdef public object _seen_attrs | ||||
|  |  | |||
|  | @ -1,6 +1,9 @@ | |||
| # cython: infer_types=True, cython: profile=True | ||||
| from typing import List | ||||
| 
 | ||||
| from libcpp.vector cimport vector | ||||
| from libc.stdint cimport int32_t | ||||
| from libc.string cimport memset, memcmp | ||||
| from cymem.cymem cimport Pool | ||||
| from murmurhash.mrmr cimport hash64 | ||||
| 
 | ||||
|  | @ -41,6 +44,7 @@ cdef class Matcher: | |||
|         self._extra_predicates = [] | ||||
|         self._patterns = {} | ||||
|         self._callbacks = {} | ||||
|         self._filter = {} | ||||
|         self._extensions = {} | ||||
|         self._seen_attrs = set() | ||||
|         self.vocab = vocab | ||||
|  | @ -68,7 +72,7 @@ cdef class Matcher: | |||
|         """ | ||||
|         return self._normalize_key(key) in self._patterns | ||||
| 
 | ||||
|     def add(self, key, patterns, *_patterns, on_match=None): | ||||
|     def add(self, key, patterns, *, on_match=None, greedy: str=None): | ||||
|         """Add a match-rule to the matcher. A match-rule consists of: an ID | ||||
|         key, an on_match callback, and one or more patterns. | ||||
| 
 | ||||
|  | @ -86,11 +90,10 @@ cdef class Matcher: | |||
|         '+': Require the pattern to match 1 or more times. | ||||
|         '*': Allow the pattern to zero or more times. | ||||
| 
 | ||||
|         The + and * operators are usually interpretted "greedily", i.e. longer | ||||
|         matches are returned where possible. However, if you specify two '+' | ||||
|         and '*' patterns in a row and their matches overlap, the first | ||||
|         operator will behave non-greedily. This quirk in the semantics makes | ||||
|         the matcher more efficient, by avoiding the need for back-tracking. | ||||
|         The + and * operators return all possible matches (not just the greedy | ||||
|         ones). However, the "greedy" argument can filter the final matches | ||||
|         by returning a non-overlapping set per key, either taking preference to | ||||
|         the first greedy match ("FIRST"), or the longest ("LONGEST"). | ||||
| 
 | ||||
|         As of spaCy v2.2.2, Matcher.add supports the future API, which makes | ||||
|         the patterns the second argument and a list (instead of a variable | ||||
|  | @ -100,16 +103,15 @@ cdef class Matcher: | |||
|         key (str): The match ID. | ||||
|         patterns (list): The patterns to add for the given key. | ||||
|         on_match (callable): Optional callback executed on match. | ||||
|         *_patterns (list): For backwards compatibility: list of patterns to add | ||||
|             as variable arguments. Will be ignored if a list of patterns is | ||||
|             provided as the second argument. | ||||
|         greedy (str): Optional filter: "FIRST" or "LONGEST". | ||||
|         """ | ||||
|         errors = {} | ||||
|         if on_match is not None and not hasattr(on_match, "__call__"): | ||||
|             raise ValueError(Errors.E171.format(arg_type=type(on_match))) | ||||
|         if patterns is None or hasattr(patterns, "__call__"):  # old API | ||||
|             on_match = patterns | ||||
|             patterns = _patterns | ||||
|         if patterns is None or not isinstance(patterns, List):  # old API | ||||
|             raise ValueError(Errors.E948.format(arg_type=type(patterns))) | ||||
|         if greedy is not None and greedy not in ["FIRST", "LONGEST"]: | ||||
|             raise ValueError(Errors.E947.format(expected=["FIRST", "LONGEST"], arg=greedy)) | ||||
|         for i, pattern in enumerate(patterns): | ||||
|             if len(pattern) == 0: | ||||
|                 raise ValueError(Errors.E012.format(key=key)) | ||||
|  | @ -132,6 +134,7 @@ cdef class Matcher: | |||
|                 raise ValueError(Errors.E154.format()) | ||||
|         self._patterns.setdefault(key, []) | ||||
|         self._callbacks[key] = on_match | ||||
|         self._filter[key] = greedy | ||||
|         self._patterns[key].extend(patterns) | ||||
| 
 | ||||
|     def remove(self, key): | ||||
|  | @ -217,6 +220,7 @@ cdef class Matcher: | |||
|             length = doclike.end - doclike.start | ||||
|         else: | ||||
|             raise ValueError(Errors.E195.format(good="Doc or Span", got=type(doclike).__name__)) | ||||
|         cdef Pool tmp_pool = Pool() | ||||
|         if len(set([LEMMA, POS, TAG]) & self._seen_attrs) > 0 \ | ||||
|           and not doc.is_tagged: | ||||
|             raise ValueError(Errors.E155.format()) | ||||
|  | @ -224,11 +228,42 @@ cdef class Matcher: | |||
|             raise ValueError(Errors.E156.format()) | ||||
|         matches = find_matches(&self.patterns[0], self.patterns.size(), doclike, length, | ||||
|                                 extensions=self._extensions, predicates=self._extra_predicates) | ||||
|         for i, (key, start, end) in enumerate(matches): | ||||
|         final_matches = [] | ||||
|         pairs_by_id = {} | ||||
|         # For each key, either add all matches, or only the filtered, non-overlapping ones | ||||
|         for (key, start, end) in matches: | ||||
|             span_filter = self._filter.get(key) | ||||
|             if span_filter is not None: | ||||
|                 pairs = pairs_by_id.get(key, []) | ||||
|                 pairs.append((start,end)) | ||||
|                 pairs_by_id[key] = pairs | ||||
|             else: | ||||
|                 final_matches.append((key, start, end)) | ||||
|         matched = <char*>tmp_pool.alloc(length, sizeof(char)) | ||||
|         empty = <char*>tmp_pool.alloc(length, sizeof(char)) | ||||
|         for key, pairs in pairs_by_id.items(): | ||||
|             memset(matched, 0, length * sizeof(matched[0])) | ||||
|             span_filter = self._filter.get(key) | ||||
|             if span_filter == "FIRST": | ||||
|                 sorted_pairs = sorted(pairs, key=lambda x: (x[0], -x[1]), reverse=False) # sort by start | ||||
|             elif span_filter == "LONGEST": | ||||
|                 sorted_pairs = sorted(pairs, key=lambda x: (x[1]-x[0], -x[0]), reverse=True) # reverse sort by length | ||||
|             else: | ||||
|                 raise ValueError(Errors.E947.format(expected=["FIRST", "LONGEST"], arg=span_filter)) | ||||
|             for (start, end) in sorted_pairs: | ||||
|                 assert 0 <= start < end  # Defend against segfaults | ||||
|                 span_len = end-start | ||||
|                 # If no tokens in the span have matched | ||||
|                 if memcmp(&matched[start], &empty[start], span_len * sizeof(matched[0])) == 0: | ||||
|                     final_matches.append((key, start, end)) | ||||
|                     # Mark tokens that have matched | ||||
|                     memset(&matched[start], 1, span_len * sizeof(matched[0])) | ||||
|         # perform the callbacks on the filtered set of results | ||||
|         for i, (key, start, end) in enumerate(final_matches): | ||||
|             on_match = self._callbacks.get(key, None) | ||||
|             if on_match is not None: | ||||
|                 on_match(self, doc, i, matches) | ||||
|         return matches | ||||
|                 on_match(self, doc, i, final_matches) | ||||
|         return final_matches | ||||
| 
 | ||||
|     def _normalize_key(self, key): | ||||
|         if isinstance(key, basestring): | ||||
|  | @ -239,9 +274,9 @@ cdef class Matcher: | |||
| 
 | ||||
| def unpickle_matcher(vocab, patterns, callbacks): | ||||
|     matcher = Matcher(vocab) | ||||
|     for key, specs in patterns.items(): | ||||
|     for key, pattern in patterns.items(): | ||||
|         callback = callbacks.get(key, None) | ||||
|         matcher.add(key, callback, *specs) | ||||
|         matcher.add(key, pattern, on_match=callback) | ||||
|     return matcher | ||||
| 
 | ||||
| 
 | ||||
|  |  | |||
|  | @ -58,7 +58,7 @@ def merge_subtokens(doc: Doc, label: str = "subtok") -> Doc: | |||
|     """ | ||||
|     # TODO: make stateful component with "label" config | ||||
|     merger = Matcher(doc.vocab) | ||||
|     merger.add("SUBTOK", None, [{"DEP": label, "op": "+"}]) | ||||
|     merger.add("SUBTOK", [[{"DEP": label, "op": "+"}]]) | ||||
|     matches = merger(doc) | ||||
|     spans = filter_spans([doc[start : end + 1] for _, start, end in matches]) | ||||
|     with doc.retokenize() as retokenizer: | ||||
|  |  | |||
|  | @ -63,18 +63,11 @@ def test_matcher_len_contains(matcher): | |||
|     assert "TEST2" not in matcher | ||||
| 
 | ||||
| 
 | ||||
| def test_matcher_add_new_old_api(en_vocab): | ||||
| def test_matcher_add_new_api(en_vocab): | ||||
|     doc = Doc(en_vocab, words=["a", "b"]) | ||||
|     patterns = [[{"TEXT": "a"}], [{"TEXT": "a"}, {"TEXT": "b"}]] | ||||
|     matcher = Matcher(en_vocab) | ||||
|     matcher.add("OLD_API", None, *patterns) | ||||
|     assert len(matcher(doc)) == 2 | ||||
|     matcher = Matcher(en_vocab) | ||||
|     on_match = Mock() | ||||
|     matcher.add("OLD_API_CALLBACK", on_match, *patterns) | ||||
|     assert len(matcher(doc)) == 2 | ||||
|     assert on_match.call_count == 2 | ||||
|     # New API: add(key: str, patterns: List[List[dict]], on_match: Callable) | ||||
|     matcher = Matcher(en_vocab) | ||||
|     matcher.add("NEW_API", patterns) | ||||
|     assert len(matcher(doc)) == 2 | ||||
|  | @ -176,7 +169,7 @@ def test_matcher_match_zero_plus(matcher): | |||
| 
 | ||||
| def test_matcher_match_one_plus(matcher): | ||||
|     control = Matcher(matcher.vocab) | ||||
|     control.add("BasicPhilippe", None, [{"ORTH": "Philippe"}]) | ||||
|     control.add("BasicPhilippe", [[{"ORTH": "Philippe"}]]) | ||||
|     doc = Doc(control.vocab, words=["Philippe", "Philippe"]) | ||||
|     m = control(doc) | ||||
|     assert len(m) == 2 | ||||
|  |  | |||
|  | @ -7,18 +7,10 @@ from spacy.tokens import Doc, Span | |||
| 
 | ||||
| 
 | ||||
| pattern1 = [{"ORTH": "A"}, {"ORTH": "A", "OP": "*"}] | ||||
| pattern2 = [{"ORTH": "A"}, {"ORTH": "A"}] | ||||
| pattern2 = [{"ORTH": "A", "OP": "*"}, {"ORTH": "A"}] | ||||
| pattern3 = [{"ORTH": "A"}, {"ORTH": "A"}] | ||||
| pattern4 = [ | ||||
|     {"ORTH": "B"}, | ||||
|     {"ORTH": "A", "OP": "*"}, | ||||
|     {"ORTH": "B"}, | ||||
| ] | ||||
| pattern5 = [ | ||||
|     {"ORTH": "B", "OP": "*"}, | ||||
|     {"ORTH": "A", "OP": "*"}, | ||||
|     {"ORTH": "B"}, | ||||
| ] | ||||
| pattern4 = [{"ORTH": "B"}, {"ORTH": "A", "OP": "*"}, {"ORTH": "B"}] | ||||
| pattern5 = [{"ORTH": "B", "OP": "*"}, {"ORTH": "A", "OP": "*"}, {"ORTH": "B"}] | ||||
| 
 | ||||
| re_pattern1 = "AA*" | ||||
| re_pattern2 = "A*A" | ||||
|  | @ -26,10 +18,16 @@ re_pattern3 = "AA" | |||
| re_pattern4 = "BA*B" | ||||
| re_pattern5 = "B*A*B" | ||||
| 
 | ||||
| longest1 = "A A A A A" | ||||
| longest2 = "A A A A A" | ||||
| longest3 = "A A" | ||||
| longest4 = "B A A A A A B"      # "FIRST" would be "B B" | ||||
| longest5 = "B B A A A A A B" | ||||
| 
 | ||||
| 
 | ||||
| @pytest.fixture | ||||
| def text(): | ||||
|     return "(ABBAAAAAB)." | ||||
|     return "(BBAAAAAB)." | ||||
| 
 | ||||
| 
 | ||||
| @pytest.fixture | ||||
|  | @ -41,25 +39,63 @@ def doc(en_tokenizer, text): | |||
| @pytest.mark.parametrize( | ||||
|     "pattern,re_pattern", | ||||
|     [ | ||||
|         pytest.param(pattern1, re_pattern1, marks=pytest.mark.xfail()), | ||||
|         pytest.param(pattern2, re_pattern2, marks=pytest.mark.xfail()), | ||||
|         pytest.param(pattern3, re_pattern3, marks=pytest.mark.xfail()), | ||||
|         (pattern1, re_pattern1), | ||||
|         (pattern2, re_pattern2), | ||||
|         (pattern3, re_pattern3), | ||||
|         (pattern4, re_pattern4), | ||||
|         pytest.param(pattern5, re_pattern5, marks=pytest.mark.xfail()), | ||||
|         (pattern5, re_pattern5), | ||||
|     ], | ||||
| ) | ||||
| def test_greedy_matching(doc, text, pattern, re_pattern): | ||||
|     """Test that the greedy matching behavior of the * op is consistant with | ||||
| def test_greedy_matching_first(doc, text, pattern, re_pattern): | ||||
|     """Test that the greedy matching behavior "FIRST" is consistent with | ||||
|     other re implementations.""" | ||||
|     matcher = Matcher(doc.vocab) | ||||
|     matcher.add(re_pattern, [pattern]) | ||||
|     matcher.add(re_pattern, [pattern], greedy="FIRST") | ||||
|     matches = matcher(doc) | ||||
|     re_matches = [m.span() for m in re.finditer(re_pattern, text)] | ||||
|     for match, re_match in zip(matches, re_matches): | ||||
|         assert match[1:] == re_match | ||||
|     for (key, m_s, m_e), (re_s, re_e) in zip(matches, re_matches): | ||||
|         # matching the string, not the exact position | ||||
|         assert doc[m_s:m_e].text == doc[re_s:re_e].text | ||||
| 
 | ||||
| 
 | ||||
| @pytest.mark.parametrize( | ||||
|     "pattern,longest", | ||||
|     [ | ||||
|         (pattern1, longest1), | ||||
|         (pattern2, longest2), | ||||
|         (pattern3, longest3), | ||||
|         (pattern4, longest4), | ||||
|         (pattern5, longest5), | ||||
|     ], | ||||
| ) | ||||
| def test_greedy_matching_longest(doc, text, pattern, longest): | ||||
|     """Test the "LONGEST" greedy matching behavior""" | ||||
|     matcher = Matcher(doc.vocab) | ||||
|     matcher.add("RULE", [pattern], greedy="LONGEST") | ||||
|     matches = matcher(doc) | ||||
|     for (key, s, e) in matches: | ||||
|         assert doc[s:e].text == longest | ||||
| 
 | ||||
| 
 | ||||
| def test_greedy_matching_longest_first(en_tokenizer): | ||||
|     """Test that "LONGEST" matching prefers the first of two equally long matches""" | ||||
|     doc = en_tokenizer(" ".join("CCC")) | ||||
|     matcher = Matcher(doc.vocab) | ||||
|     pattern = [{"ORTH": "C"}, {"ORTH": "C"}] | ||||
|     matcher.add("RULE", [pattern], greedy="LONGEST") | ||||
|     matches = matcher(doc) | ||||
|     # out of 0-2 and 1-3, the first should be picked | ||||
|     assert len(matches) == 1 | ||||
|     assert matches[0][1] == 0 | ||||
|     assert matches[0][2] == 2 | ||||
| 
 | ||||
| 
 | ||||
| def test_invalid_greediness(doc, text): | ||||
|     matcher = Matcher(doc.vocab) | ||||
|     with pytest.raises(ValueError): | ||||
|         matcher.add("RULE", [pattern1], greedy="GREEDY") | ||||
| 
 | ||||
| 
 | ||||
| @pytest.mark.xfail | ||||
| @pytest.mark.parametrize( | ||||
|     "pattern,re_pattern", | ||||
|     [ | ||||
|  | @ -74,7 +110,7 @@ def test_match_consuming(doc, text, pattern, re_pattern): | |||
|     """Test that matcher.__call__ consumes tokens on a match similar to | ||||
|     re.findall.""" | ||||
|     matcher = Matcher(doc.vocab) | ||||
|     matcher.add(re_pattern, [pattern]) | ||||
|     matcher.add(re_pattern, [pattern], greedy="FIRST") | ||||
|     matches = matcher(doc) | ||||
|     re_matches = [m.span() for m in re.finditer(re_pattern, text)] | ||||
|     assert len(matches) == len(re_matches) | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue
	
	Block a user