mirror of
https://github.com/explosion/spaCy.git
synced 2025-02-03 13:14:11 +03:00
Move history size under feature flags
This commit is contained in:
parent
dcdfa071aa
commit
e25ffcb11f
|
@ -68,14 +68,10 @@ from ..gold cimport GoldParse
|
|||
from ..attrs cimport ID, TAG, DEP, ORTH, NORM, PREFIX, SUFFIX, TAG
|
||||
from . import _beam_utils
|
||||
|
||||
USE_HISTORY = True
|
||||
HIST_SIZE = 8 # Max 8
|
||||
HIST_DIMS = 8
|
||||
|
||||
def get_templates(*args, **kwargs):
|
||||
return []
|
||||
|
||||
USE_FTRL = True
|
||||
DEBUG = False
|
||||
def set_debug(val):
|
||||
global DEBUG
|
||||
|
@ -248,6 +244,8 @@ cdef class Parser:
|
|||
hidden_width = util.env_opt('hidden_width', hidden_width)
|
||||
parser_maxout_pieces = util.env_opt('parser_maxout_pieces', 2)
|
||||
embed_size = util.env_opt('embed_size', 7000)
|
||||
hist_size = util.env_opt('history_feats', cfg.get('history_feats', 0))
|
||||
hist_width = util.env_opt('history_width', cfg.get('history_width', 0))
|
||||
tok2vec = Tok2Vec(token_vector_width, embed_size,
|
||||
pretrained_dims=cfg.get('pretrained_dims', 0))
|
||||
tok2vec = chain(tok2vec, flatten)
|
||||
|
@ -263,20 +261,21 @@ cdef class Parser:
|
|||
|
||||
with Model.use_device('cpu'):
|
||||
if depth == 0:
|
||||
if USE_HISTORY:
|
||||
if hist_size:
|
||||
upper = chain(
|
||||
HistoryFeatures(nr_class=nr_class, hist_size=HIST_SIZE,
|
||||
nr_dim=HIST_DIMS),
|
||||
zero_init(Affine(nr_class, nr_class+HIST_SIZE*HIST_DIMS,
|
||||
HistoryFeatures(nr_class=nr_class, hist_size=hist_size,
|
||||
nr_dim=hist_width),
|
||||
zero_init(Affine(nr_class, nr_class+hist_size*hist_size,
|
||||
drop_factor=0.0)))
|
||||
upper.is_noop = False
|
||||
else:
|
||||
upper = chain()
|
||||
upper.is_noop = True
|
||||
elif USE_HISTORY:
|
||||
elif hist_size:
|
||||
upper = chain(
|
||||
HistoryFeatures(nr_class=nr_class, hist_size=HIST_SIZE, nr_dim=HIST_DIMS),
|
||||
Maxout(hidden_width, hidden_width+HIST_SIZE*HIST_DIMS),
|
||||
HistoryFeatures(nr_class=nr_class, hist_size=hist_size,
|
||||
nr_dim=hist_width),
|
||||
Maxout(hidden_width, hidden_width+hist_size*hist_width),
|
||||
clone(Maxout(hidden_width, hidden_width), depth-2),
|
||||
zero_init(Affine(nr_class, hidden_width, drop_factor=0.0))
|
||||
)
|
||||
|
@ -296,7 +295,9 @@ cdef class Parser:
|
|||
'depth': depth,
|
||||
'token_vector_width': token_vector_width,
|
||||
'hidden_width': hidden_width,
|
||||
'maxout_pieces': parser_maxout_pieces
|
||||
'maxout_pieces': parser_maxout_pieces,
|
||||
'hist_size': hist_size,
|
||||
'hist_width': hist_width
|
||||
}
|
||||
return (tok2vec, lower, upper), cfg
|
||||
|
||||
|
@ -369,7 +370,7 @@ cdef class Parser:
|
|||
_cleanup(beam)
|
||||
return output
|
||||
|
||||
def pipe(self, docs, int batch_size=1000, int n_threads=2,
|
||||
def pipe(self, docs, int batch_size=256, int n_threads=2,
|
||||
beam_width=None, beam_density=None):
|
||||
"""
|
||||
Process a stream of documents.
|
||||
|
@ -454,7 +455,7 @@ cdef class Parser:
|
|||
hists.append([st.get_hist(j+1) for j in range(8)])
|
||||
hists = numpy.asarray(hists)
|
||||
vectors = state2vec(token_ids[:next_step.size()])
|
||||
if USE_HISTORY:
|
||||
if self.cfg.get('hist_size'):
|
||||
scores = vec2scores((vectors, hists))
|
||||
else:
|
||||
scores = vec2scores(vectors)
|
||||
|
@ -577,7 +578,7 @@ cdef class Parser:
|
|||
mask = vec2scores.ops.get_dropout_mask(vector.shape, drop)
|
||||
vector *= mask
|
||||
hists = numpy.asarray([st.history for st in states], dtype='i')
|
||||
if USE_HISTORY:
|
||||
if self.cfg.get('hist_size', 0):
|
||||
scores, bp_scores = vec2scores.begin_update((vector, hists), drop=drop)
|
||||
else:
|
||||
scores, bp_scores = vec2scores.begin_update(vector, drop=drop)
|
||||
|
|
Loading…
Reference in New Issue
Block a user