mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 02:06:31 +03:00
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
commit
e2b9b523ce
|
@ -27,6 +27,7 @@ class PersianDefaults(Language.Defaults):
|
|||
stop_words = STOP_WORDS
|
||||
tag_map = TAG_MAP
|
||||
suffixes = TOKENIZER_SUFFIXES
|
||||
writing_system = {"direction": "rtl", "has_case": False, "has_letters": True}
|
||||
|
||||
|
||||
class Persian(Language):
|
||||
|
|
|
@ -14,7 +14,7 @@ class HebrewDefaults(Language.Defaults):
|
|||
lex_attr_getters[LANG] = lambda text: "he"
|
||||
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS)
|
||||
stop_words = STOP_WORDS
|
||||
|
||||
writing_system = {"direction": "rtl", "has_case": False, "has_letters": True}
|
||||
|
||||
class Hebrew(Language):
|
||||
lang = "he"
|
||||
|
|
|
@ -94,6 +94,7 @@ class JapaneseDefaults(Language.Defaults):
|
|||
lex_attr_getters[LANG] = lambda _text: "ja"
|
||||
stop_words = STOP_WORDS
|
||||
tag_map = TAG_MAP
|
||||
writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}
|
||||
|
||||
@classmethod
|
||||
def create_tokenizer(cls, nlp=None):
|
||||
|
|
|
@ -14,7 +14,7 @@ class ChineseDefaults(Language.Defaults):
|
|||
use_jieba = True
|
||||
tokenizer_exceptions = BASE_EXCEPTIONS
|
||||
stop_words = STOP_WORDS
|
||||
|
||||
writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}
|
||||
|
||||
class Chinese(Language):
|
||||
lang = "zh"
|
||||
|
|
|
@ -94,6 +94,7 @@ class BaseDefaults(object):
|
|||
morph_rules = {}
|
||||
lex_attr_getters = LEX_ATTRS
|
||||
syntax_iterators = {}
|
||||
writing_system = {"direction": "ltr", "has_case": True, "has_letters": True}
|
||||
|
||||
|
||||
class Language(object):
|
||||
|
|
|
@ -161,17 +161,17 @@ cdef class Lexeme:
|
|||
Lexeme.c_from_bytes(self.c, lex_data)
|
||||
self.orth = self.c.orth
|
||||
|
||||
property has_vector:
|
||||
@property
|
||||
def has_vector(self):
|
||||
"""RETURNS (bool): Whether a word vector is associated with the object.
|
||||
"""
|
||||
def __get__(self):
|
||||
return self.vocab.has_vector(self.c.orth)
|
||||
return self.vocab.has_vector(self.c.orth)
|
||||
|
||||
property vector_norm:
|
||||
@property
|
||||
def vector_norm(self):
|
||||
"""RETURNS (float): The L2 norm of the vector representation."""
|
||||
def __get__(self):
|
||||
vector = self.vector
|
||||
return numpy.sqrt((vector**2).sum())
|
||||
vector = self.vector
|
||||
return numpy.sqrt((vector**2).sum())
|
||||
|
||||
property vector:
|
||||
"""A real-valued meaning representation.
|
||||
|
@ -209,17 +209,17 @@ cdef class Lexeme:
|
|||
def __set__(self, float sentiment):
|
||||
self.c.sentiment = sentiment
|
||||
|
||||
property orth_:
|
||||
@property
|
||||
def orth_(self):
|
||||
"""RETURNS (unicode): The original verbatim text of the lexeme
|
||||
(identical to `Lexeme.text`). Exists mostly for consistency with
|
||||
the other attributes."""
|
||||
def __get__(self):
|
||||
return self.vocab.strings[self.c.orth]
|
||||
return self.vocab.strings[self.c.orth]
|
||||
|
||||
property text:
|
||||
@property
|
||||
def text(self):
|
||||
"""RETURNS (unicode): The original verbatim text of the lexeme."""
|
||||
def __get__(self):
|
||||
return self.orth_
|
||||
return self.orth_
|
||||
|
||||
property lower:
|
||||
"""RETURNS (unicode): Lowercase form of the lexeme."""
|
||||
|
|
|
@ -369,9 +369,9 @@ cdef class ArcEager(TransitionSystem):
|
|||
actions[LEFT].setdefault('dep', 0)
|
||||
return actions
|
||||
|
||||
property action_types:
|
||||
def __get__(self):
|
||||
return (SHIFT, REDUCE, LEFT, RIGHT, BREAK)
|
||||
@property
|
||||
def action_types(self):
|
||||
return (SHIFT, REDUCE, LEFT, RIGHT, BREAK)
|
||||
|
||||
def get_cost(self, StateClass state, GoldParse gold, action):
|
||||
cdef Transition t = self.lookup_transition(action)
|
||||
|
@ -384,7 +384,7 @@ cdef class ArcEager(TransitionSystem):
|
|||
cdef Transition t = self.lookup_transition(action)
|
||||
t.do(state.c, t.label)
|
||||
return state
|
||||
|
||||
|
||||
def is_gold_parse(self, StateClass state, GoldParse gold):
|
||||
predicted = set()
|
||||
truth = set()
|
||||
|
|
|
@ -80,9 +80,9 @@ cdef class BiluoPushDown(TransitionSystem):
|
|||
actions[action][label] += 1
|
||||
return actions
|
||||
|
||||
property action_types:
|
||||
def __get__(self):
|
||||
return (BEGIN, IN, LAST, UNIT, OUT)
|
||||
@property
|
||||
def action_types(self):
|
||||
return (BEGIN, IN, LAST, UNIT, OUT)
|
||||
|
||||
def move_name(self, int move, attr_t label):
|
||||
if move == OUT:
|
||||
|
|
68
spacy/tests/test_displacy.py
Normal file
68
spacy/tests/test_displacy.py
Normal file
|
@ -0,0 +1,68 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
from spacy import displacy
|
||||
from spacy.tokens import Span
|
||||
|
||||
from .util import get_doc
|
||||
|
||||
|
||||
def test_displacy_parse_ents(en_vocab):
|
||||
"""Test that named entities on a Doc are converted into displaCy's format."""
|
||||
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
|
||||
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
|
||||
ents = displacy.parse_ents(doc)
|
||||
assert isinstance(ents, dict)
|
||||
assert ents["text"] == "But Google is starting from behind "
|
||||
assert ents["ents"] == [{"start": 4, "end": 10, "label": "ORG"}]
|
||||
|
||||
|
||||
def test_displacy_parse_deps(en_vocab):
|
||||
"""Test that deps and tags on a Doc are converted into displaCy's format."""
|
||||
words = ["This", "is", "a", "sentence"]
|
||||
heads = [1, 0, 1, -2]
|
||||
pos = ["DET", "VERB", "DET", "NOUN"]
|
||||
tags = ["DT", "VBZ", "DT", "NN"]
|
||||
deps = ["nsubj", "ROOT", "det", "attr"]
|
||||
doc = get_doc(en_vocab, words=words, heads=heads, pos=pos, tags=tags, deps=deps)
|
||||
deps = displacy.parse_deps(doc)
|
||||
assert isinstance(deps, dict)
|
||||
assert deps["words"] == [
|
||||
{"text": "This", "tag": "DET"},
|
||||
{"text": "is", "tag": "VERB"},
|
||||
{"text": "a", "tag": "DET"},
|
||||
{"text": "sentence", "tag": "NOUN"},
|
||||
]
|
||||
assert deps["arcs"] == [
|
||||
{"start": 0, "end": 1, "label": "nsubj", "dir": "left"},
|
||||
{"start": 2, "end": 3, "label": "det", "dir": "left"},
|
||||
{"start": 1, "end": 3, "label": "attr", "dir": "right"},
|
||||
]
|
||||
|
||||
|
||||
def test_displacy_spans(en_vocab):
|
||||
"""Test that displaCy can render Spans."""
|
||||
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
|
||||
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
|
||||
html = displacy.render(doc[1:4], style="ent")
|
||||
assert html.startswith("<div")
|
||||
|
||||
|
||||
def test_displacy_render_wrapper(en_vocab):
|
||||
"""Test that displaCy accepts custom rendering wrapper."""
|
||||
|
||||
def wrapper(html):
|
||||
return "TEST" + html + "TEST"
|
||||
|
||||
displacy.set_render_wrapper(wrapper)
|
||||
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
|
||||
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
|
||||
html = displacy.render(doc, style="ent")
|
||||
assert html.startswith("TEST<div")
|
||||
assert html.endswith("/div>TEST")
|
||||
|
||||
|
||||
def test_displacy_raises_for_wrong_type(en_vocab):
|
||||
with pytest.raises(ValueError):
|
||||
displacy.render("hello world")
|
|
@ -4,13 +4,9 @@ from __future__ import unicode_literals
|
|||
import pytest
|
||||
from pathlib import Path
|
||||
from spacy import util
|
||||
from spacy import displacy
|
||||
from spacy import prefer_gpu, require_gpu
|
||||
from spacy.tokens import Span
|
||||
from spacy._ml import PrecomputableAffine
|
||||
|
||||
from .util import get_doc
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text", ["hello/world", "hello world"])
|
||||
def test_util_ensure_path_succeeds(text):
|
||||
|
@ -31,66 +27,6 @@ def test_util_get_package_path(package):
|
|||
assert isinstance(path, Path)
|
||||
|
||||
|
||||
def test_displacy_parse_ents(en_vocab):
|
||||
"""Test that named entities on a Doc are converted into displaCy's format."""
|
||||
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
|
||||
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
|
||||
ents = displacy.parse_ents(doc)
|
||||
assert isinstance(ents, dict)
|
||||
assert ents["text"] == "But Google is starting from behind "
|
||||
assert ents["ents"] == [{"start": 4, "end": 10, "label": "ORG"}]
|
||||
|
||||
|
||||
def test_displacy_parse_deps(en_vocab):
|
||||
"""Test that deps and tags on a Doc are converted into displaCy's format."""
|
||||
words = ["This", "is", "a", "sentence"]
|
||||
heads = [1, 0, 1, -2]
|
||||
pos = ["DET", "VERB", "DET", "NOUN"]
|
||||
tags = ["DT", "VBZ", "DT", "NN"]
|
||||
deps = ["nsubj", "ROOT", "det", "attr"]
|
||||
doc = get_doc(en_vocab, words=words, heads=heads, pos=pos, tags=tags, deps=deps)
|
||||
deps = displacy.parse_deps(doc)
|
||||
assert isinstance(deps, dict)
|
||||
assert deps["words"] == [
|
||||
{"text": "This", "tag": "DET"},
|
||||
{"text": "is", "tag": "VERB"},
|
||||
{"text": "a", "tag": "DET"},
|
||||
{"text": "sentence", "tag": "NOUN"},
|
||||
]
|
||||
assert deps["arcs"] == [
|
||||
{"start": 0, "end": 1, "label": "nsubj", "dir": "left"},
|
||||
{"start": 2, "end": 3, "label": "det", "dir": "left"},
|
||||
{"start": 1, "end": 3, "label": "attr", "dir": "right"},
|
||||
]
|
||||
|
||||
|
||||
def test_displacy_spans(en_vocab):
|
||||
"""Test that displaCy can render Spans."""
|
||||
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
|
||||
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
|
||||
html = displacy.render(doc[1:4], style="ent")
|
||||
assert html.startswith("<div")
|
||||
|
||||
|
||||
def test_displacy_render_wrapper(en_vocab):
|
||||
"""Test that displaCy accepts custom rendering wrapper."""
|
||||
|
||||
def wrapper(html):
|
||||
return "TEST" + html + "TEST"
|
||||
|
||||
displacy.set_render_wrapper(wrapper)
|
||||
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
|
||||
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
|
||||
html = displacy.render(doc, style="ent")
|
||||
assert html.startswith("TEST<div")
|
||||
assert html.endswith("/div>TEST")
|
||||
|
||||
|
||||
def test_displacy_raises_for_wrong_type(en_vocab):
|
||||
with pytest.raises(ValueError):
|
||||
displacy.render("hello world")
|
||||
|
||||
|
||||
def test_PrecomputableAffine(nO=4, nI=5, nF=3, nP=2):
|
||||
model = PrecomputableAffine(nO=nO, nI=nI, nF=nF, nP=nP)
|
||||
assert model.W.shape == (nF, nO, nP, nI)
|
||||
|
|
|
@ -45,3 +45,8 @@ def test_vocab_api_contains(en_vocab, text):
|
|||
_ = en_vocab[text] # noqa: F841
|
||||
assert text in en_vocab
|
||||
assert "LKsdjvlsakdvlaksdvlkasjdvljasdlkfvm" not in en_vocab
|
||||
|
||||
|
||||
def test_vocab_writing_system(en_vocab):
|
||||
assert en_vocab.writing_system["direction"] == "ltr"
|
||||
assert en_vocab.writing_system["has_case"] is True
|
||||
|
|
|
@ -384,7 +384,8 @@ cdef class Doc:
|
|||
xp = get_array_module(vector)
|
||||
return xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm)
|
||||
|
||||
property has_vector:
|
||||
@property
|
||||
def has_vector(self):
|
||||
"""A boolean value indicating whether a word vector is associated with
|
||||
the object.
|
||||
|
||||
|
@ -392,15 +393,14 @@ cdef class Doc:
|
|||
|
||||
DOCS: https://spacy.io/api/doc#has_vector
|
||||
"""
|
||||
def __get__(self):
|
||||
if "has_vector" in self.user_hooks:
|
||||
return self.user_hooks["has_vector"](self)
|
||||
elif self.vocab.vectors.data.size:
|
||||
return True
|
||||
elif self.tensor.size:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
if "has_vector" in self.user_hooks:
|
||||
return self.user_hooks["has_vector"](self)
|
||||
elif self.vocab.vectors.data.size:
|
||||
return True
|
||||
elif self.tensor.size:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
property vector:
|
||||
"""A real-valued meaning representation. Defaults to an average of the
|
||||
|
@ -453,22 +453,22 @@ cdef class Doc:
|
|||
def __set__(self, value):
|
||||
self._vector_norm = value
|
||||
|
||||
property text:
|
||||
@property
|
||||
def text(self):
|
||||
"""A unicode representation of the document text.
|
||||
|
||||
RETURNS (unicode): The original verbatim text of the document.
|
||||
"""
|
||||
def __get__(self):
|
||||
return "".join(t.text_with_ws for t in self)
|
||||
return "".join(t.text_with_ws for t in self)
|
||||
|
||||
property text_with_ws:
|
||||
@property
|
||||
def text_with_ws(self):
|
||||
"""An alias of `Doc.text`, provided for duck-type compatibility with
|
||||
`Span` and `Token`.
|
||||
|
||||
RETURNS (unicode): The original verbatim text of the document.
|
||||
"""
|
||||
def __get__(self):
|
||||
return self.text
|
||||
return self.text
|
||||
|
||||
property ents:
|
||||
"""The named entities in the document. Returns a tuple of named entity
|
||||
|
@ -545,7 +545,8 @@ cdef class Doc:
|
|||
# Set start as B
|
||||
self.c[start].ent_iob = 3
|
||||
|
||||
property noun_chunks:
|
||||
@property
|
||||
def noun_chunks(self):
|
||||
"""Iterate over the base noun phrases in the document. Yields base
|
||||
noun-phrase #[code Span] objects, if the document has been
|
||||
syntactically parsed. A base noun phrase, or "NP chunk", is a noun
|
||||
|
@ -557,22 +558,22 @@ cdef class Doc:
|
|||
|
||||
DOCS: https://spacy.io/api/doc#noun_chunks
|
||||
"""
|
||||
def __get__(self):
|
||||
if not self.is_parsed:
|
||||
raise ValueError(Errors.E029)
|
||||
# Accumulate the result before beginning to iterate over it. This
|
||||
# prevents the tokenisation from being changed out from under us
|
||||
# during the iteration. The tricky thing here is that Span accepts
|
||||
# its tokenisation changing, so it's okay once we have the Span
|
||||
# objects. See Issue #375.
|
||||
spans = []
|
||||
if self.noun_chunks_iterator is not None:
|
||||
for start, end, label in self.noun_chunks_iterator(self):
|
||||
spans.append(Span(self, start, end, label=label))
|
||||
for span in spans:
|
||||
yield span
|
||||
if not self.is_parsed:
|
||||
raise ValueError(Errors.E029)
|
||||
# Accumulate the result before beginning to iterate over it. This
|
||||
# prevents the tokenisation from being changed out from under us
|
||||
# during the iteration. The tricky thing here is that Span accepts
|
||||
# its tokenisation changing, so it's okay once we have the Span
|
||||
# objects. See Issue #375.
|
||||
spans = []
|
||||
if self.noun_chunks_iterator is not None:
|
||||
for start, end, label in self.noun_chunks_iterator(self):
|
||||
spans.append(Span(self, start, end, label=label))
|
||||
for span in spans:
|
||||
yield span
|
||||
|
||||
property sents:
|
||||
@property
|
||||
def sents(self):
|
||||
"""Iterate over the sentences in the document. Yields sentence `Span`
|
||||
objects. Sentence spans have no label. To improve accuracy on informal
|
||||
texts, spaCy calculates sentence boundaries from the syntactic
|
||||
|
@ -583,19 +584,18 @@ cdef class Doc:
|
|||
|
||||
DOCS: https://spacy.io/api/doc#sents
|
||||
"""
|
||||
def __get__(self):
|
||||
if not self.is_sentenced:
|
||||
raise ValueError(Errors.E030)
|
||||
if "sents" in self.user_hooks:
|
||||
yield from self.user_hooks["sents"](self)
|
||||
else:
|
||||
start = 0
|
||||
for i in range(1, self.length):
|
||||
if self.c[i].sent_start == 1:
|
||||
yield Span(self, start, i)
|
||||
start = i
|
||||
if start != self.length:
|
||||
yield Span(self, start, self.length)
|
||||
if not self.is_sentenced:
|
||||
raise ValueError(Errors.E030)
|
||||
if "sents" in self.user_hooks:
|
||||
yield from self.user_hooks["sents"](self)
|
||||
else:
|
||||
start = 0
|
||||
for i in range(1, self.length):
|
||||
if self.c[i].sent_start == 1:
|
||||
yield Span(self, start, i)
|
||||
start = i
|
||||
if start != self.length:
|
||||
yield Span(self, start, self.length)
|
||||
|
||||
@property
|
||||
def lang(self):
|
||||
|
|
|
@ -322,46 +322,47 @@ cdef class Span:
|
|||
self.start = start
|
||||
self.end = end + 1
|
||||
|
||||
property vocab:
|
||||
@property
|
||||
def vocab(self):
|
||||
"""RETURNS (Vocab): The Span's Doc's vocab."""
|
||||
def __get__(self):
|
||||
return self.doc.vocab
|
||||
return self.doc.vocab
|
||||
|
||||
property sent:
|
||||
@property
|
||||
def sent(self):
|
||||
"""RETURNS (Span): The sentence span that the span is a part of."""
|
||||
def __get__(self):
|
||||
if "sent" in self.doc.user_span_hooks:
|
||||
return self.doc.user_span_hooks["sent"](self)
|
||||
# This should raise if not parsed / no custom sentence boundaries
|
||||
self.doc.sents
|
||||
# If doc is parsed we can use the deps to find the sentence
|
||||
# otherwise we use the `sent_start` token attribute
|
||||
cdef int n = 0
|
||||
cdef int i
|
||||
if self.doc.is_parsed:
|
||||
root = &self.doc.c[self.start]
|
||||
while root.head != 0:
|
||||
root += root.head
|
||||
n += 1
|
||||
if n >= self.doc.length:
|
||||
raise RuntimeError(Errors.E038)
|
||||
return self.doc[root.l_edge:root.r_edge + 1]
|
||||
elif self.doc.is_sentenced:
|
||||
# Find start of the sentence
|
||||
start = self.start
|
||||
while self.doc.c[start].sent_start != 1 and start > 0:
|
||||
start += -1
|
||||
# Find end of the sentence
|
||||
end = self.end
|
||||
n = 0
|
||||
while end < self.doc.length and self.doc.c[end].sent_start != 1:
|
||||
end += 1
|
||||
n += 1
|
||||
if n >= self.doc.length:
|
||||
break
|
||||
return self.doc[start:end]
|
||||
if "sent" in self.doc.user_span_hooks:
|
||||
return self.doc.user_span_hooks["sent"](self)
|
||||
# This should raise if not parsed / no custom sentence boundaries
|
||||
self.doc.sents
|
||||
# If doc is parsed we can use the deps to find the sentence
|
||||
# otherwise we use the `sent_start` token attribute
|
||||
cdef int n = 0
|
||||
cdef int i
|
||||
if self.doc.is_parsed:
|
||||
root = &self.doc.c[self.start]
|
||||
while root.head != 0:
|
||||
root += root.head
|
||||
n += 1
|
||||
if n >= self.doc.length:
|
||||
raise RuntimeError(Errors.E038)
|
||||
return self.doc[root.l_edge:root.r_edge + 1]
|
||||
elif self.doc.is_sentenced:
|
||||
# Find start of the sentence
|
||||
start = self.start
|
||||
while self.doc.c[start].sent_start != 1 and start > 0:
|
||||
start += -1
|
||||
# Find end of the sentence
|
||||
end = self.end
|
||||
n = 0
|
||||
while end < self.doc.length and self.doc.c[end].sent_start != 1:
|
||||
end += 1
|
||||
n += 1
|
||||
if n >= self.doc.length:
|
||||
break
|
||||
return self.doc[start:end]
|
||||
|
||||
property ents:
|
||||
@property
|
||||
def ents(self):
|
||||
"""The named entities in the span. Returns a tuple of named entity
|
||||
`Span` objects, if the entity recognizer has been applied.
|
||||
|
||||
|
@ -369,14 +370,14 @@ cdef class Span:
|
|||
|
||||
DOCS: https://spacy.io/api/span#ents
|
||||
"""
|
||||
def __get__(self):
|
||||
ents = []
|
||||
for ent in self.doc.ents:
|
||||
if ent.start >= self.start and ent.end <= self.end:
|
||||
ents.append(ent)
|
||||
return ents
|
||||
ents = []
|
||||
for ent in self.doc.ents:
|
||||
if ent.start >= self.start and ent.end <= self.end:
|
||||
ents.append(ent)
|
||||
return ents
|
||||
|
||||
property has_vector:
|
||||
@property
|
||||
def has_vector(self):
|
||||
"""A boolean value indicating whether a word vector is associated with
|
||||
the object.
|
||||
|
||||
|
@ -384,17 +385,17 @@ cdef class Span:
|
|||
|
||||
DOCS: https://spacy.io/api/span#has_vector
|
||||
"""
|
||||
def __get__(self):
|
||||
if "has_vector" in self.doc.user_span_hooks:
|
||||
return self.doc.user_span_hooks["has_vector"](self)
|
||||
elif self.vocab.vectors.data.size > 0:
|
||||
return any(token.has_vector for token in self)
|
||||
elif self.doc.tensor.size > 0:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
if "has_vector" in self.doc.user_span_hooks:
|
||||
return self.doc.user_span_hooks["has_vector"](self)
|
||||
elif self.vocab.vectors.data.size > 0:
|
||||
return any(token.has_vector for token in self)
|
||||
elif self.doc.tensor.size > 0:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
property vector:
|
||||
@property
|
||||
def vector(self):
|
||||
"""A real-valued meaning representation. Defaults to an average of the
|
||||
token vectors.
|
||||
|
||||
|
@ -403,61 +404,61 @@ cdef class Span:
|
|||
|
||||
DOCS: https://spacy.io/api/span#vector
|
||||
"""
|
||||
def __get__(self):
|
||||
if "vector" in self.doc.user_span_hooks:
|
||||
return self.doc.user_span_hooks["vector"](self)
|
||||
if self._vector is None:
|
||||
self._vector = sum(t.vector for t in self) / len(self)
|
||||
return self._vector
|
||||
if "vector" in self.doc.user_span_hooks:
|
||||
return self.doc.user_span_hooks["vector"](self)
|
||||
if self._vector is None:
|
||||
self._vector = sum(t.vector for t in self) / len(self)
|
||||
return self._vector
|
||||
|
||||
property vector_norm:
|
||||
@property
|
||||
def vector_norm(self):
|
||||
"""The L2 norm of the span's vector representation.
|
||||
|
||||
RETURNS (float): The L2 norm of the vector representation.
|
||||
|
||||
DOCS: https://spacy.io/api/span#vector_norm
|
||||
"""
|
||||
def __get__(self):
|
||||
if "vector_norm" in self.doc.user_span_hooks:
|
||||
return self.doc.user_span_hooks["vector"](self)
|
||||
cdef float value
|
||||
cdef double norm = 0
|
||||
if self._vector_norm is None:
|
||||
norm = 0
|
||||
for value in self.vector:
|
||||
norm += value * value
|
||||
self._vector_norm = sqrt(norm) if norm != 0 else 0
|
||||
return self._vector_norm
|
||||
if "vector_norm" in self.doc.user_span_hooks:
|
||||
return self.doc.user_span_hooks["vector"](self)
|
||||
cdef float value
|
||||
cdef double norm = 0
|
||||
if self._vector_norm is None:
|
||||
norm = 0
|
||||
for value in self.vector:
|
||||
norm += value * value
|
||||
self._vector_norm = sqrt(norm) if norm != 0 else 0
|
||||
return self._vector_norm
|
||||
|
||||
property sentiment:
|
||||
@property
|
||||
def sentiment(self):
|
||||
"""RETURNS (float): A scalar value indicating the positivity or
|
||||
negativity of the span.
|
||||
"""
|
||||
def __get__(self):
|
||||
if "sentiment" in self.doc.user_span_hooks:
|
||||
return self.doc.user_span_hooks["sentiment"](self)
|
||||
else:
|
||||
return sum([token.sentiment for token in self]) / len(self)
|
||||
if "sentiment" in self.doc.user_span_hooks:
|
||||
return self.doc.user_span_hooks["sentiment"](self)
|
||||
else:
|
||||
return sum([token.sentiment for token in self]) / len(self)
|
||||
|
||||
property text:
|
||||
@property
|
||||
def text(self):
|
||||
"""RETURNS (unicode): The original verbatim text of the span."""
|
||||
def __get__(self):
|
||||
text = self.text_with_ws
|
||||
if self[-1].whitespace_:
|
||||
text = text[:-1]
|
||||
return text
|
||||
text = self.text_with_ws
|
||||
if self[-1].whitespace_:
|
||||
text = text[:-1]
|
||||
return text
|
||||
|
||||
property text_with_ws:
|
||||
@property
|
||||
def text_with_ws(self):
|
||||
"""The text content of the span with a trailing whitespace character if
|
||||
the last token has one.
|
||||
|
||||
RETURNS (unicode): The text content of the span (with trailing
|
||||
whitespace).
|
||||
"""
|
||||
def __get__(self):
|
||||
return "".join([t.text_with_ws for t in self])
|
||||
return "".join([t.text_with_ws for t in self])
|
||||
|
||||
property noun_chunks:
|
||||
@property
|
||||
def noun_chunks(self):
|
||||
"""Yields base noun-phrase `Span` objects, if the document has been
|
||||
syntactically parsed. A base noun phrase, or "NP chunk", is a noun
|
||||
phrase that does not permit other NPs to be nested within it – so no
|
||||
|
@ -468,23 +469,23 @@ cdef class Span:
|
|||
|
||||
DOCS: https://spacy.io/api/span#noun_chunks
|
||||
"""
|
||||
def __get__(self):
|
||||
if not self.doc.is_parsed:
|
||||
raise ValueError(Errors.E029)
|
||||
# Accumulate the result before beginning to iterate over it. This
|
||||
# prevents the tokenisation from being changed out from under us
|
||||
# during the iteration. The tricky thing here is that Span accepts
|
||||
# its tokenisation changing, so it's okay once we have the Span
|
||||
# objects. See Issue #375
|
||||
spans = []
|
||||
cdef attr_t label
|
||||
if self.doc.noun_chunks_iterator is not None:
|
||||
for start, end, label in self.doc.noun_chunks_iterator(self):
|
||||
spans.append(Span(self.doc, start, end, label=label))
|
||||
for span in spans:
|
||||
yield span
|
||||
if not self.doc.is_parsed:
|
||||
raise ValueError(Errors.E029)
|
||||
# Accumulate the result before beginning to iterate over it. This
|
||||
# prevents the tokenisation from being changed out from under us
|
||||
# during the iteration. The tricky thing here is that Span accepts
|
||||
# its tokenisation changing, so it's okay once we have the Span
|
||||
# objects. See Issue #375
|
||||
spans = []
|
||||
cdef attr_t label
|
||||
if self.doc.noun_chunks_iterator is not None:
|
||||
for start, end, label in self.doc.noun_chunks_iterator(self):
|
||||
spans.append(Span(self.doc, start, end, label=label))
|
||||
for span in spans:
|
||||
yield span
|
||||
|
||||
property root:
|
||||
@property
|
||||
def root(self):
|
||||
"""The token with the shortest path to the root of the
|
||||
sentence (or the root itself). If multiple tokens are equally
|
||||
high in the tree, the first token is taken.
|
||||
|
@ -493,41 +494,41 @@ cdef class Span:
|
|||
|
||||
DOCS: https://spacy.io/api/span#root
|
||||
"""
|
||||
def __get__(self):
|
||||
self._recalculate_indices()
|
||||
if "root" in self.doc.user_span_hooks:
|
||||
return self.doc.user_span_hooks["root"](self)
|
||||
# This should probably be called 'head', and the other one called
|
||||
# 'gov'. But we went with 'head' elsehwhere, and now we're stuck =/
|
||||
cdef int i
|
||||
# First, we scan through the Span, and check whether there's a word
|
||||
# with head==0, i.e. a sentence root. If so, we can return it. The
|
||||
# longer the span, the more likely it contains a sentence root, and
|
||||
# in this case we return in linear time.
|
||||
for i in range(self.start, self.end):
|
||||
if self.doc.c[i].head == 0:
|
||||
return self.doc[i]
|
||||
# If we don't have a sentence root, we do something that's not so
|
||||
# algorithmically clever, but I think should be quite fast,
|
||||
# especially for short spans.
|
||||
# For each word, we count the path length, and arg min this measure.
|
||||
# We could use better tree logic to save steps here...But I
|
||||
# think this should be okay.
|
||||
cdef int current_best = self.doc.length
|
||||
cdef int root = -1
|
||||
for i in range(self.start, self.end):
|
||||
if self.start <= (i+self.doc.c[i].head) < self.end:
|
||||
continue
|
||||
words_to_root = _count_words_to_root(&self.doc.c[i], self.doc.length)
|
||||
if words_to_root < current_best:
|
||||
current_best = words_to_root
|
||||
root = i
|
||||
if root == -1:
|
||||
return self.doc[self.start]
|
||||
else:
|
||||
return self.doc[root]
|
||||
self._recalculate_indices()
|
||||
if "root" in self.doc.user_span_hooks:
|
||||
return self.doc.user_span_hooks["root"](self)
|
||||
# This should probably be called 'head', and the other one called
|
||||
# 'gov'. But we went with 'head' elsehwhere, and now we're stuck =/
|
||||
cdef int i
|
||||
# First, we scan through the Span, and check whether there's a word
|
||||
# with head==0, i.e. a sentence root. If so, we can return it. The
|
||||
# longer the span, the more likely it contains a sentence root, and
|
||||
# in this case we return in linear time.
|
||||
for i in range(self.start, self.end):
|
||||
if self.doc.c[i].head == 0:
|
||||
return self.doc[i]
|
||||
# If we don't have a sentence root, we do something that's not so
|
||||
# algorithmically clever, but I think should be quite fast,
|
||||
# especially for short spans.
|
||||
# For each word, we count the path length, and arg min this measure.
|
||||
# We could use better tree logic to save steps here...But I
|
||||
# think this should be okay.
|
||||
cdef int current_best = self.doc.length
|
||||
cdef int root = -1
|
||||
for i in range(self.start, self.end):
|
||||
if self.start <= (i+self.doc.c[i].head) < self.end:
|
||||
continue
|
||||
words_to_root = _count_words_to_root(&self.doc.c[i], self.doc.length)
|
||||
if words_to_root < current_best:
|
||||
current_best = words_to_root
|
||||
root = i
|
||||
if root == -1:
|
||||
return self.doc[self.start]
|
||||
else:
|
||||
return self.doc[root]
|
||||
|
||||
property lefts:
|
||||
@property
|
||||
def lefts(self):
|
||||
"""Tokens that are to the left of the span, whose head is within the
|
||||
`Span`.
|
||||
|
||||
|
@ -535,13 +536,13 @@ cdef class Span:
|
|||
|
||||
DOCS: https://spacy.io/api/span#lefts
|
||||
"""
|
||||
def __get__(self):
|
||||
for token in reversed(self): # Reverse, so we get tokens in order
|
||||
for left in token.lefts:
|
||||
if left.i < self.start:
|
||||
yield left
|
||||
for token in reversed(self): # Reverse, so we get tokens in order
|
||||
for left in token.lefts:
|
||||
if left.i < self.start:
|
||||
yield left
|
||||
|
||||
property rights:
|
||||
@property
|
||||
def rights(self):
|
||||
"""Tokens that are to the right of the Span, whose head is within the
|
||||
`Span`.
|
||||
|
||||
|
@ -549,13 +550,13 @@ cdef class Span:
|
|||
|
||||
DOCS: https://spacy.io/api/span#rights
|
||||
"""
|
||||
def __get__(self):
|
||||
for token in self:
|
||||
for right in token.rights:
|
||||
if right.i >= self.end:
|
||||
yield right
|
||||
for token in self:
|
||||
for right in token.rights:
|
||||
if right.i >= self.end:
|
||||
yield right
|
||||
|
||||
property n_lefts:
|
||||
@property
|
||||
def n_lefts(self):
|
||||
"""The number of tokens that are to the left of the span, whose
|
||||
heads are within the span.
|
||||
|
||||
|
@ -564,10 +565,10 @@ cdef class Span:
|
|||
|
||||
DOCS: https://spacy.io/api/span#n_lefts
|
||||
"""
|
||||
def __get__(self):
|
||||
return len(list(self.lefts))
|
||||
return len(list(self.lefts))
|
||||
|
||||
property n_rights:
|
||||
@property
|
||||
def n_rights(self):
|
||||
"""The number of tokens that are to the right of the span, whose
|
||||
heads are within the span.
|
||||
|
||||
|
@ -576,22 +577,21 @@ cdef class Span:
|
|||
|
||||
DOCS: https://spacy.io/api/span#n_rights
|
||||
"""
|
||||
def __get__(self):
|
||||
return len(list(self.rights))
|
||||
return len(list(self.rights))
|
||||
|
||||
property subtree:
|
||||
@property
|
||||
def subtree(self):
|
||||
"""Tokens within the span and tokens which descend from them.
|
||||
|
||||
YIELDS (Token): A token within the span, or a descendant from it.
|
||||
|
||||
DOCS: https://spacy.io/api/span#subtree
|
||||
"""
|
||||
def __get__(self):
|
||||
for word in self.lefts:
|
||||
yield from word.subtree
|
||||
yield from self
|
||||
for word in self.rights:
|
||||
yield from word.subtree
|
||||
for word in self.lefts:
|
||||
yield from word.subtree
|
||||
yield from self
|
||||
for word in self.rights:
|
||||
yield from word.subtree
|
||||
|
||||
property ent_id:
|
||||
"""RETURNS (uint64): The entity ID."""
|
||||
|
@ -609,33 +609,33 @@ cdef class Span:
|
|||
def __set__(self, hash_t key):
|
||||
raise NotImplementedError(TempErrors.T007.format(attr="ent_id_"))
|
||||
|
||||
property orth_:
|
||||
@property
|
||||
def orth_(self):
|
||||
"""Verbatim text content (identical to `Span.text`). Exists mostly for
|
||||
consistency with other attributes.
|
||||
|
||||
RETURNS (unicode): The span's text."""
|
||||
def __get__(self):
|
||||
return self.text
|
||||
return self.text
|
||||
|
||||
property lemma_:
|
||||
@property
|
||||
def lemma_(self):
|
||||
"""RETURNS (unicode): The span's lemma."""
|
||||
def __get__(self):
|
||||
return " ".join([t.lemma_ for t in self]).strip()
|
||||
return " ".join([t.lemma_ for t in self]).strip()
|
||||
|
||||
property upper_:
|
||||
@property
|
||||
def upper_(self):
|
||||
"""Deprecated. Use `Span.text.upper()` instead."""
|
||||
def __get__(self):
|
||||
return "".join([t.text_with_ws.upper() for t in self]).strip()
|
||||
return "".join([t.text_with_ws.upper() for t in self]).strip()
|
||||
|
||||
property lower_:
|
||||
@property
|
||||
def lower_(self):
|
||||
"""Deprecated. Use `Span.text.lower()` instead."""
|
||||
def __get__(self):
|
||||
return "".join([t.text_with_ws.lower() for t in self]).strip()
|
||||
return "".join([t.text_with_ws.lower() for t in self]).strip()
|
||||
|
||||
property string:
|
||||
@property
|
||||
def string(self):
|
||||
"""Deprecated: Use `Span.text_with_ws` instead."""
|
||||
def __get__(self):
|
||||
return "".join([t.text_with_ws for t in self])
|
||||
return "".join([t.text_with_ws for t in self])
|
||||
|
||||
property label_:
|
||||
"""RETURNS (unicode): The span's label."""
|
||||
|
|
|
@ -218,111 +218,111 @@ cdef class Token:
|
|||
xp = get_array_module(vector)
|
||||
return (xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm))
|
||||
|
||||
property lex_id:
|
||||
@property
|
||||
def lex_id(self):
|
||||
"""RETURNS (int): Sequential ID of the token's lexical type."""
|
||||
def __get__(self):
|
||||
return self.c.lex.id
|
||||
return self.c.lex.id
|
||||
|
||||
property rank:
|
||||
@property
|
||||
def rank(self):
|
||||
"""RETURNS (int): Sequential ID of the token's lexical type, used to
|
||||
index into tables, e.g. for word vectors."""
|
||||
def __get__(self):
|
||||
return self.c.lex.id
|
||||
return self.c.lex.id
|
||||
|
||||
property string:
|
||||
@property
|
||||
def string(self):
|
||||
"""Deprecated: Use Token.text_with_ws instead."""
|
||||
def __get__(self):
|
||||
return self.text_with_ws
|
||||
return self.text_with_ws
|
||||
|
||||
property text:
|
||||
@property
|
||||
def text(self):
|
||||
"""RETURNS (unicode): The original verbatim text of the token."""
|
||||
def __get__(self):
|
||||
return self.orth_
|
||||
return self.orth_
|
||||
|
||||
property text_with_ws:
|
||||
@property
|
||||
def text_with_ws(self):
|
||||
"""RETURNS (unicode): The text content of the span (with trailing
|
||||
whitespace).
|
||||
"""
|
||||
def __get__(self):
|
||||
cdef unicode orth = self.vocab.strings[self.c.lex.orth]
|
||||
if self.c.spacy:
|
||||
return orth + " "
|
||||
else:
|
||||
return orth
|
||||
cdef unicode orth = self.vocab.strings[self.c.lex.orth]
|
||||
if self.c.spacy:
|
||||
return orth + " "
|
||||
else:
|
||||
return orth
|
||||
|
||||
property prob:
|
||||
@property
|
||||
def prob(self):
|
||||
"""RETURNS (float): Smoothed log probability estimate of token type."""
|
||||
def __get__(self):
|
||||
return self.c.lex.prob
|
||||
return self.c.lex.prob
|
||||
|
||||
property sentiment:
|
||||
@property
|
||||
def sentiment(self):
|
||||
"""RETURNS (float): A scalar value indicating the positivity or
|
||||
negativity of the token."""
|
||||
def __get__(self):
|
||||
if "sentiment" in self.doc.user_token_hooks:
|
||||
return self.doc.user_token_hooks["sentiment"](self)
|
||||
return self.c.lex.sentiment
|
||||
if "sentiment" in self.doc.user_token_hooks:
|
||||
return self.doc.user_token_hooks["sentiment"](self)
|
||||
return self.c.lex.sentiment
|
||||
|
||||
property lang:
|
||||
@property
|
||||
def lang(self):
|
||||
"""RETURNS (uint64): ID of the language of the parent document's
|
||||
vocabulary.
|
||||
"""
|
||||
def __get__(self):
|
||||
return self.c.lex.lang
|
||||
return self.c.lex.lang
|
||||
|
||||
property idx:
|
||||
@property
|
||||
def idx(self):
|
||||
"""RETURNS (int): The character offset of the token within the parent
|
||||
document.
|
||||
"""
|
||||
def __get__(self):
|
||||
return self.c.idx
|
||||
return self.c.idx
|
||||
|
||||
property cluster:
|
||||
@property
|
||||
def cluster(self):
|
||||
"""RETURNS (int): Brown cluster ID."""
|
||||
def __get__(self):
|
||||
return self.c.lex.cluster
|
||||
return self.c.lex.cluster
|
||||
|
||||
property orth:
|
||||
@property
|
||||
def orth(self):
|
||||
"""RETURNS (uint64): ID of the verbatim text content."""
|
||||
def __get__(self):
|
||||
return self.c.lex.orth
|
||||
return self.c.lex.orth
|
||||
|
||||
property lower:
|
||||
@property
|
||||
def lower(self):
|
||||
"""RETURNS (uint64): ID of the lowercase token text."""
|
||||
def __get__(self):
|
||||
return self.c.lex.lower
|
||||
return self.c.lex.lower
|
||||
|
||||
property norm:
|
||||
@property
|
||||
def norm(self):
|
||||
"""RETURNS (uint64): ID of the token's norm, i.e. a normalised form of
|
||||
the token text. Usually set in the language's tokenizer exceptions
|
||||
or norm exceptions.
|
||||
"""
|
||||
def __get__(self):
|
||||
if self.c.norm == 0:
|
||||
return self.c.lex.norm
|
||||
else:
|
||||
return self.c.norm
|
||||
if self.c.norm == 0:
|
||||
return self.c.lex.norm
|
||||
else:
|
||||
return self.c.norm
|
||||
|
||||
property shape:
|
||||
@property
|
||||
def shape(self):
|
||||
"""RETURNS (uint64): ID of the token's shape, a transform of the
|
||||
tokens's string, to show orthographic features (e.g. "Xxxx", "dd").
|
||||
"""
|
||||
def __get__(self):
|
||||
return self.c.lex.shape
|
||||
return self.c.lex.shape
|
||||
|
||||
property prefix:
|
||||
@property
|
||||
def prefix(self):
|
||||
"""RETURNS (uint64): ID of a length-N substring from the start of the
|
||||
token. Defaults to `N=1`.
|
||||
"""
|
||||
def __get__(self):
|
||||
return self.c.lex.prefix
|
||||
return self.c.lex.prefix
|
||||
|
||||
property suffix:
|
||||
@property
|
||||
def suffix(self):
|
||||
"""RETURNS (uint64): ID of a length-N substring from the end of the
|
||||
token. Defaults to `N=3`.
|
||||
"""
|
||||
def __get__(self):
|
||||
return self.c.lex.suffix
|
||||
return self.c.lex.suffix
|
||||
|
||||
property lemma:
|
||||
"""RETURNS (uint64): ID of the base form of the word, with no
|
||||
|
@ -362,7 +362,8 @@ cdef class Token:
|
|||
def __set__(self, attr_t label):
|
||||
self.c.dep = label
|
||||
|
||||
property has_vector:
|
||||
@property
|
||||
def has_vector(self):
|
||||
"""A boolean value indicating whether a word vector is associated with
|
||||
the object.
|
||||
|
||||
|
@ -370,14 +371,14 @@ cdef class Token:
|
|||
|
||||
DOCS: https://spacy.io/api/token#has_vector
|
||||
"""
|
||||
def __get__(self):
|
||||
if 'has_vector' in self.doc.user_token_hooks:
|
||||
return self.doc.user_token_hooks["has_vector"](self)
|
||||
if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
|
||||
return True
|
||||
return self.vocab.has_vector(self.c.lex.orth)
|
||||
if "has_vector" in self.doc.user_token_hooks:
|
||||
return self.doc.user_token_hooks["has_vector"](self)
|
||||
if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
|
||||
return True
|
||||
return self.vocab.has_vector(self.c.lex.orth)
|
||||
|
||||
property vector:
|
||||
@property
|
||||
def vector(self):
|
||||
"""A real-valued meaning representation.
|
||||
|
||||
RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
|
||||
|
@ -385,28 +386,28 @@ cdef class Token:
|
|||
|
||||
DOCS: https://spacy.io/api/token#vector
|
||||
"""
|
||||
def __get__(self):
|
||||
if 'vector' in self.doc.user_token_hooks:
|
||||
return self.doc.user_token_hooks["vector"](self)
|
||||
if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
|
||||
return self.doc.tensor[self.i]
|
||||
else:
|
||||
return self.vocab.get_vector(self.c.lex.orth)
|
||||
if "vector" in self.doc.user_token_hooks:
|
||||
return self.doc.user_token_hooks["vector"](self)
|
||||
if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
|
||||
return self.doc.tensor[self.i]
|
||||
else:
|
||||
return self.vocab.get_vector(self.c.lex.orth)
|
||||
|
||||
property vector_norm:
|
||||
@property
|
||||
def vector_norm(self):
|
||||
"""The L2 norm of the token's vector representation.
|
||||
|
||||
RETURNS (float): The L2 norm of the vector representation.
|
||||
|
||||
DOCS: https://spacy.io/api/token#vector_norm
|
||||
"""
|
||||
def __get__(self):
|
||||
if 'vector_norm' in self.doc.user_token_hooks:
|
||||
return self.doc.user_token_hooks["vector_norm"](self)
|
||||
vector = self.vector
|
||||
return numpy.sqrt((vector ** 2).sum())
|
||||
if "vector_norm" in self.doc.user_token_hooks:
|
||||
return self.doc.user_token_hooks["vector_norm"](self)
|
||||
vector = self.vector
|
||||
return numpy.sqrt((vector ** 2).sum())
|
||||
|
||||
property n_lefts:
|
||||
@property
|
||||
def n_lefts(self):
|
||||
"""The number of leftward immediate children of the word, in the
|
||||
syntactic dependency parse.
|
||||
|
||||
|
@ -415,10 +416,10 @@ cdef class Token:
|
|||
|
||||
DOCS: https://spacy.io/api/token#n_lefts
|
||||
"""
|
||||
def __get__(self):
|
||||
return self.c.l_kids
|
||||
return self.c.l_kids
|
||||
|
||||
property n_rights:
|
||||
@property
|
||||
def n_rights(self):
|
||||
"""The number of rightward immediate children of the word, in the
|
||||
syntactic dependency parse.
|
||||
|
||||
|
@ -427,15 +428,14 @@ cdef class Token:
|
|||
|
||||
DOCS: https://spacy.io/api/token#n_rights
|
||||
"""
|
||||
def __get__(self):
|
||||
return self.c.r_kids
|
||||
return self.c.r_kids
|
||||
|
||||
property sent:
|
||||
@property
|
||||
def sent(self):
|
||||
"""RETURNS (Span): The sentence span that the token is a part of."""
|
||||
def __get__(self):
|
||||
if 'sent' in self.doc.user_token_hooks:
|
||||
return self.doc.user_token_hooks["sent"](self)
|
||||
return self.doc[self.i : self.i+1].sent
|
||||
if 'sent' in self.doc.user_token_hooks:
|
||||
return self.doc.user_token_hooks["sent"](self)
|
||||
return self.doc[self.i : self.i+1].sent
|
||||
|
||||
property sent_start:
|
||||
def __get__(self):
|
||||
|
@ -479,7 +479,8 @@ cdef class Token:
|
|||
else:
|
||||
raise ValueError(Errors.E044.format(value=value))
|
||||
|
||||
property lefts:
|
||||
@property
|
||||
def lefts(self):
|
||||
"""The leftward immediate children of the word, in the syntactic
|
||||
dependency parse.
|
||||
|
||||
|
@ -487,19 +488,19 @@ cdef class Token:
|
|||
|
||||
DOCS: https://spacy.io/api/token#lefts
|
||||
"""
|
||||
def __get__(self):
|
||||
cdef int nr_iter = 0
|
||||
cdef const TokenC* ptr = self.c - (self.i - self.c.l_edge)
|
||||
while ptr < self.c:
|
||||
if ptr + ptr.head == self.c:
|
||||
yield self.doc[ptr - (self.c - self.i)]
|
||||
ptr += 1
|
||||
nr_iter += 1
|
||||
# This is ugly, but it's a way to guard out infinite loops
|
||||
if nr_iter >= 10000000:
|
||||
raise RuntimeError(Errors.E045.format(attr="token.lefts"))
|
||||
cdef int nr_iter = 0
|
||||
cdef const TokenC* ptr = self.c - (self.i - self.c.l_edge)
|
||||
while ptr < self.c:
|
||||
if ptr + ptr.head == self.c:
|
||||
yield self.doc[ptr - (self.c - self.i)]
|
||||
ptr += 1
|
||||
nr_iter += 1
|
||||
# This is ugly, but it's a way to guard out infinite loops
|
||||
if nr_iter >= 10000000:
|
||||
raise RuntimeError(Errors.E045.format(attr="token.lefts"))
|
||||
|
||||
property rights:
|
||||
@property
|
||||
def rights(self):
|
||||
"""The rightward immediate children of the word, in the syntactic
|
||||
dependency parse.
|
||||
|
||||
|
@ -507,33 +508,33 @@ cdef class Token:
|
|||
|
||||
DOCS: https://spacy.io/api/token#rights
|
||||
"""
|
||||
def __get__(self):
|
||||
cdef const TokenC* ptr = self.c + (self.c.r_edge - self.i)
|
||||
tokens = []
|
||||
cdef int nr_iter = 0
|
||||
while ptr > self.c:
|
||||
if ptr + ptr.head == self.c:
|
||||
tokens.append(self.doc[ptr - (self.c - self.i)])
|
||||
ptr -= 1
|
||||
nr_iter += 1
|
||||
if nr_iter >= 10000000:
|
||||
raise RuntimeError(Errors.E045.format(attr="token.rights"))
|
||||
tokens.reverse()
|
||||
for t in tokens:
|
||||
yield t
|
||||
cdef const TokenC* ptr = self.c + (self.c.r_edge - self.i)
|
||||
tokens = []
|
||||
cdef int nr_iter = 0
|
||||
while ptr > self.c:
|
||||
if ptr + ptr.head == self.c:
|
||||
tokens.append(self.doc[ptr - (self.c - self.i)])
|
||||
ptr -= 1
|
||||
nr_iter += 1
|
||||
if nr_iter >= 10000000:
|
||||
raise RuntimeError(Errors.E045.format(attr="token.rights"))
|
||||
tokens.reverse()
|
||||
for t in tokens:
|
||||
yield t
|
||||
|
||||
property children:
|
||||
@property
|
||||
def children(self):
|
||||
"""A sequence of the token's immediate syntactic children.
|
||||
|
||||
YIELDS (Token): A child token such that `child.head==self`.
|
||||
|
||||
DOCS: https://spacy.io/api/token#children
|
||||
"""
|
||||
def __get__(self):
|
||||
yield from self.lefts
|
||||
yield from self.rights
|
||||
yield from self.lefts
|
||||
yield from self.rights
|
||||
|
||||
property subtree:
|
||||
@property
|
||||
def subtree(self):
|
||||
"""A sequence containing the token and all the token's syntactic
|
||||
descendants.
|
||||
|
||||
|
@ -542,30 +543,30 @@ cdef class Token:
|
|||
|
||||
DOCS: https://spacy.io/api/token#subtree
|
||||
"""
|
||||
def __get__(self):
|
||||
for word in self.lefts:
|
||||
yield from word.subtree
|
||||
yield self
|
||||
for word in self.rights:
|
||||
yield from word.subtree
|
||||
for word in self.lefts:
|
||||
yield from word.subtree
|
||||
yield self
|
||||
for word in self.rights:
|
||||
yield from word.subtree
|
||||
|
||||
property left_edge:
|
||||
@property
|
||||
def left_edge(self):
|
||||
"""The leftmost token of this token's syntactic descendents.
|
||||
|
||||
RETURNS (Token): The first token such that `self.is_ancestor(token)`.
|
||||
"""
|
||||
def __get__(self):
|
||||
return self.doc[self.c.l_edge]
|
||||
return self.doc[self.c.l_edge]
|
||||
|
||||
property right_edge:
|
||||
@property
|
||||
def right_edge(self):
|
||||
"""The rightmost token of this token's syntactic descendents.
|
||||
|
||||
RETURNS (Token): The last token such that `self.is_ancestor(token)`.
|
||||
"""
|
||||
def __get__(self):
|
||||
return self.doc[self.c.r_edge]
|
||||
return self.doc[self.c.r_edge]
|
||||
|
||||
property ancestors:
|
||||
@property
|
||||
def ancestors(self):
|
||||
"""A sequence of this token's syntactic ancestors.
|
||||
|
||||
YIELDS (Token): A sequence of ancestor tokens such that
|
||||
|
@ -573,15 +574,14 @@ cdef class Token:
|
|||
|
||||
DOCS: https://spacy.io/api/token#ancestors
|
||||
"""
|
||||
def __get__(self):
|
||||
cdef const TokenC* head_ptr = self.c
|
||||
# Guard against infinite loop, no token can have
|
||||
# more ancestors than tokens in the tree.
|
||||
cdef int i = 0
|
||||
while head_ptr.head != 0 and i < self.doc.length:
|
||||
head_ptr += head_ptr.head
|
||||
yield self.doc[head_ptr - (self.c - self.i)]
|
||||
i += 1
|
||||
cdef const TokenC* head_ptr = self.c
|
||||
# Guard against infinite loop, no token can have
|
||||
# more ancestors than tokens in the tree.
|
||||
cdef int i = 0
|
||||
while head_ptr.head != 0 and i < self.doc.length:
|
||||
head_ptr += head_ptr.head
|
||||
yield self.doc[head_ptr - (self.c - self.i)]
|
||||
i += 1
|
||||
|
||||
def is_ancestor(self, descendant):
|
||||
"""Check whether this token is a parent, grandparent, etc. of another
|
||||
|
@ -685,23 +685,23 @@ cdef class Token:
|
|||
# Set new head
|
||||
self.c.head = rel_newhead_i
|
||||
|
||||
property conjuncts:
|
||||
@property
|
||||
def conjuncts(self):
|
||||
"""A sequence of coordinated tokens, including the token itself.
|
||||
|
||||
YIELDS (Token): A coordinated token.
|
||||
|
||||
DOCS: https://spacy.io/api/token#conjuncts
|
||||
"""
|
||||
def __get__(self):
|
||||
cdef Token word
|
||||
if "conjuncts" in self.doc.user_token_hooks:
|
||||
yield from self.doc.user_token_hooks["conjuncts"](self)
|
||||
else:
|
||||
if self.dep != conj:
|
||||
for word in self.rights:
|
||||
if word.dep == conj:
|
||||
yield word
|
||||
yield from word.conjuncts
|
||||
cdef Token word
|
||||
if "conjuncts" in self.doc.user_token_hooks:
|
||||
yield from self.doc.user_token_hooks["conjuncts"](self)
|
||||
else:
|
||||
if self.dep != conj:
|
||||
for word in self.rights:
|
||||
if word.dep == conj:
|
||||
yield word
|
||||
yield from word.conjuncts
|
||||
|
||||
property ent_type:
|
||||
"""RETURNS (uint64): Named entity type."""
|
||||
|
@ -711,15 +711,6 @@ cdef class Token:
|
|||
def __set__(self, ent_type):
|
||||
self.c.ent_type = ent_type
|
||||
|
||||
property ent_iob:
|
||||
"""IOB code of named entity tag. `1="I", 2="O", 3="B"`. 0 means no tag
|
||||
is assigned.
|
||||
|
||||
RETURNS (uint64): IOB code of named entity tag.
|
||||
"""
|
||||
def __get__(self):
|
||||
return self.c.ent_iob
|
||||
|
||||
property ent_type_:
|
||||
"""RETURNS (unicode): Named entity type."""
|
||||
def __get__(self):
|
||||
|
@ -728,16 +719,25 @@ cdef class Token:
|
|||
def __set__(self, ent_type):
|
||||
self.c.ent_type = self.vocab.strings.add(ent_type)
|
||||
|
||||
property ent_iob_:
|
||||
@property
|
||||
def ent_iob(self):
|
||||
"""IOB code of named entity tag. `1="I", 2="O", 3="B"`. 0 means no tag
|
||||
is assigned.
|
||||
|
||||
RETURNS (uint64): IOB code of named entity tag.
|
||||
"""
|
||||
return self.c.ent_iob
|
||||
|
||||
@property
|
||||
def ent_iob_(self):
|
||||
"""IOB code of named entity tag. "B" means the token begins an entity,
|
||||
"I" means it is inside an entity, "O" means it is outside an entity,
|
||||
and "" means no entity tag is set.
|
||||
|
||||
RETURNS (unicode): IOB code of named entity tag.
|
||||
"""
|
||||
def __get__(self):
|
||||
iob_strings = ("", "I", "O", "B")
|
||||
return iob_strings[self.c.ent_iob]
|
||||
iob_strings = ("", "I", "O", "B")
|
||||
return iob_strings[self.c.ent_iob]
|
||||
|
||||
property ent_id:
|
||||
"""RETURNS (uint64): ID of the entity the token is an instance of,
|
||||
|
@ -759,26 +759,25 @@ cdef class Token:
|
|||
def __set__(self, name):
|
||||
self.c.ent_id = self.vocab.strings.add(name)
|
||||
|
||||
property whitespace_:
|
||||
"""RETURNS (unicode): The trailing whitespace character, if present.
|
||||
"""
|
||||
def __get__(self):
|
||||
return " " if self.c.spacy else ""
|
||||
@property
|
||||
def whitespace_(self):
|
||||
"""RETURNS (unicode): The trailing whitespace character, if present."""
|
||||
return " " if self.c.spacy else ""
|
||||
|
||||
property orth_:
|
||||
@property
|
||||
def orth_(self):
|
||||
"""RETURNS (unicode): Verbatim text content (identical to
|
||||
`Token.text`). Exists mostly for consistency with the other
|
||||
attributes.
|
||||
"""
|
||||
def __get__(self):
|
||||
return self.vocab.strings[self.c.lex.orth]
|
||||
return self.vocab.strings[self.c.lex.orth]
|
||||
|
||||
property lower_:
|
||||
@property
|
||||
def lower_(self):
|
||||
"""RETURNS (unicode): The lowercase token text. Equivalent to
|
||||
`Token.text.lower()`.
|
||||
"""
|
||||
def __get__(self):
|
||||
return self.vocab.strings[self.c.lex.lower]
|
||||
return self.vocab.strings[self.c.lex.lower]
|
||||
|
||||
property norm_:
|
||||
"""RETURNS (unicode): The token's norm, i.e. a normalised form of the
|
||||
|
@ -791,33 +790,33 @@ cdef class Token:
|
|||
def __set__(self, unicode norm_):
|
||||
self.c.norm = self.vocab.strings.add(norm_)
|
||||
|
||||
property shape_:
|
||||
@property
|
||||
def shape_(self):
|
||||
"""RETURNS (unicode): Transform of the tokens's string, to show
|
||||
orthographic features. For example, "Xxxx" or "dd".
|
||||
"""
|
||||
def __get__(self):
|
||||
return self.vocab.strings[self.c.lex.shape]
|
||||
return self.vocab.strings[self.c.lex.shape]
|
||||
|
||||
property prefix_:
|
||||
@property
|
||||
def prefix_(self):
|
||||
"""RETURNS (unicode): A length-N substring from the start of the token.
|
||||
Defaults to `N=1`.
|
||||
"""
|
||||
def __get__(self):
|
||||
return self.vocab.strings[self.c.lex.prefix]
|
||||
return self.vocab.strings[self.c.lex.prefix]
|
||||
|
||||
property suffix_:
|
||||
@property
|
||||
def suffix_(self):
|
||||
"""RETURNS (unicode): A length-N substring from the end of the token.
|
||||
Defaults to `N=3`.
|
||||
"""
|
||||
def __get__(self):
|
||||
return self.vocab.strings[self.c.lex.suffix]
|
||||
return self.vocab.strings[self.c.lex.suffix]
|
||||
|
||||
property lang_:
|
||||
@property
|
||||
def lang_(self):
|
||||
"""RETURNS (unicode): Language of the parent document's vocabulary,
|
||||
e.g. 'en'.
|
||||
"""
|
||||
def __get__(self):
|
||||
return self.vocab.strings[self.c.lex.lang]
|
||||
return self.vocab.strings[self.c.lex.lang]
|
||||
|
||||
property lemma_:
|
||||
"""RETURNS (unicode): The token lemma, i.e. the base form of the word,
|
||||
|
@ -856,110 +855,110 @@ cdef class Token:
|
|||
def __set__(self, unicode label):
|
||||
self.c.dep = self.vocab.strings.add(label)
|
||||
|
||||
property is_oov:
|
||||
@property
|
||||
def is_oov(self):
|
||||
"""RETURNS (bool): Whether the token is out-of-vocabulary."""
|
||||
def __get__(self):
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_OOV)
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_OOV)
|
||||
|
||||
property is_stop:
|
||||
@property
|
||||
def is_stop(self):
|
||||
"""RETURNS (bool): Whether the token is a stop word, i.e. part of a
|
||||
"stop list" defined by the language data.
|
||||
"""
|
||||
def __get__(self):
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_STOP)
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_STOP)
|
||||
|
||||
property is_alpha:
|
||||
@property
|
||||
def is_alpha(self):
|
||||
"""RETURNS (bool): Whether the token consists of alpha characters.
|
||||
Equivalent to `token.text.isalpha()`.
|
||||
"""
|
||||
def __get__(self):
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_ALPHA)
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_ALPHA)
|
||||
|
||||
property is_ascii:
|
||||
@property
|
||||
def is_ascii(self):
|
||||
"""RETURNS (bool): Whether the token consists of ASCII characters.
|
||||
Equivalent to `[any(ord(c) >= 128 for c in token.text)]`.
|
||||
"""
|
||||
def __get__(self):
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_ASCII)
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_ASCII)
|
||||
|
||||
property is_digit:
|
||||
@property
|
||||
def is_digit(self):
|
||||
"""RETURNS (bool): Whether the token consists of digits. Equivalent to
|
||||
`token.text.isdigit()`.
|
||||
"""
|
||||
def __get__(self):
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_DIGIT)
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_DIGIT)
|
||||
|
||||
property is_lower:
|
||||
@property
|
||||
def is_lower(self):
|
||||
"""RETURNS (bool): Whether the token is in lowercase. Equivalent to
|
||||
`token.text.islower()`.
|
||||
"""
|
||||
def __get__(self):
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_LOWER)
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_LOWER)
|
||||
|
||||
property is_upper:
|
||||
@property
|
||||
def is_upper(self):
|
||||
"""RETURNS (bool): Whether the token is in uppercase. Equivalent to
|
||||
`token.text.isupper()`
|
||||
"""
|
||||
def __get__(self):
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_UPPER)
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_UPPER)
|
||||
|
||||
property is_title:
|
||||
@property
|
||||
def is_title(self):
|
||||
"""RETURNS (bool): Whether the token is in titlecase. Equivalent to
|
||||
`token.text.istitle()`.
|
||||
"""
|
||||
def __get__(self):
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_TITLE)
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_TITLE)
|
||||
|
||||
property is_punct:
|
||||
@property
|
||||
def is_punct(self):
|
||||
"""RETURNS (bool): Whether the token is punctuation."""
|
||||
def __get__(self):
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_PUNCT)
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_PUNCT)
|
||||
|
||||
property is_space:
|
||||
@property
|
||||
def is_space(self):
|
||||
"""RETURNS (bool): Whether the token consists of whitespace characters.
|
||||
Equivalent to `token.text.isspace()`.
|
||||
"""
|
||||
def __get__(self):
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_SPACE)
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_SPACE)
|
||||
|
||||
property is_bracket:
|
||||
@property
|
||||
def is_bracket(self):
|
||||
"""RETURNS (bool): Whether the token is a bracket."""
|
||||
def __get__(self):
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_BRACKET)
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_BRACKET)
|
||||
|
||||
property is_quote:
|
||||
@property
|
||||
def is_quote(self):
|
||||
"""RETURNS (bool): Whether the token is a quotation mark."""
|
||||
def __get__(self):
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_QUOTE)
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_QUOTE)
|
||||
|
||||
property is_left_punct:
|
||||
@property
|
||||
def is_left_punct(self):
|
||||
"""RETURNS (bool): Whether the token is a left punctuation mark."""
|
||||
def __get__(self):
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_LEFT_PUNCT)
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_LEFT_PUNCT)
|
||||
|
||||
property is_right_punct:
|
||||
@property
|
||||
def is_right_punct(self):
|
||||
"""RETURNS (bool): Whether the token is a right punctuation mark."""
|
||||
def __get__(self):
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_RIGHT_PUNCT)
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_RIGHT_PUNCT)
|
||||
|
||||
property is_currency:
|
||||
@property
|
||||
def is_currency(self):
|
||||
"""RETURNS (bool): Whether the token is a currency symbol."""
|
||||
def __get__(self):
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_CURRENCY)
|
||||
return Lexeme.c_check_flag(self.c.lex, IS_CURRENCY)
|
||||
|
||||
property like_url:
|
||||
@property
|
||||
def like_url(self):
|
||||
"""RETURNS (bool): Whether the token resembles a URL."""
|
||||
def __get__(self):
|
||||
return Lexeme.c_check_flag(self.c.lex, LIKE_URL)
|
||||
return Lexeme.c_check_flag(self.c.lex, LIKE_URL)
|
||||
|
||||
property like_num:
|
||||
@property
|
||||
def like_num(self):
|
||||
"""RETURNS (bool): Whether the token resembles a number, e.g. "10.9",
|
||||
"10", "ten", etc.
|
||||
"""
|
||||
def __get__(self):
|
||||
return Lexeme.c_check_flag(self.c.lex, LIKE_NUM)
|
||||
return Lexeme.c_check_flag(self.c.lex, LIKE_NUM)
|
||||
|
||||
property like_email:
|
||||
@property
|
||||
def like_email(self):
|
||||
"""RETURNS (bool): Whether the token resembles an email address."""
|
||||
def __get__(self):
|
||||
return Lexeme.c_check_flag(self.c.lex, LIKE_EMAIL)
|
||||
return Lexeme.c_check_flag(self.c.lex, LIKE_EMAIL)
|
||||
|
|
|
@ -38,6 +38,18 @@ def set_env_log(value):
|
|||
_PRINT_ENV = value
|
||||
|
||||
|
||||
def lang_class_is_loaded(lang):
|
||||
"""Check whether a Language class is already loaded. Language classes are
|
||||
loaded lazily, to avoid expensive setup code associated with the language
|
||||
data.
|
||||
|
||||
lang (unicode): Two-letter language code, e.g. 'en'.
|
||||
RETURNS (bool): Whether a Language class has been loaded.
|
||||
"""
|
||||
global LANGUAGES
|
||||
return lang in LANGUAGES
|
||||
|
||||
|
||||
def get_lang_class(lang):
|
||||
"""Import and load a Language class.
|
||||
|
||||
|
|
|
@ -60,12 +60,23 @@ cdef class Vocab:
|
|||
self.morphology = Morphology(self.strings, tag_map, lemmatizer)
|
||||
self.vectors = Vectors()
|
||||
|
||||
property lang:
|
||||
@property
|
||||
def lang(self):
|
||||
langfunc = None
|
||||
if self.lex_attr_getters:
|
||||
langfunc = self.lex_attr_getters.get(LANG, None)
|
||||
return langfunc("_") if langfunc else ""
|
||||
|
||||
property writing_system:
|
||||
"""A dict with information about the language's writing system. To get
|
||||
the data, we use the vocab.lang property to fetch the Language class.
|
||||
If the Language class is not loaded, an empty dict is returned.
|
||||
"""
|
||||
def __get__(self):
|
||||
langfunc = None
|
||||
if self.lex_attr_getters:
|
||||
langfunc = self.lex_attr_getters.get(LANG, None)
|
||||
return langfunc("_") if langfunc else ""
|
||||
if not util.lang_class_is_loaded(self.lang):
|
||||
return {}
|
||||
lang_class = util.get_lang_class(self.lang)
|
||||
return dict(lang_class.Defaults.writing_system)
|
||||
|
||||
def __len__(self):
|
||||
"""The current number of lexemes stored.
|
||||
|
|
|
@ -351,6 +351,24 @@ the two-letter language code.
|
|||
| `name` | unicode | Two-letter language code, e.g. `'en'`. |
|
||||
| `cls` | `Language` | The language class, e.g. `English`. |
|
||||
|
||||
### util.lang_class_is_loaded (#util.lang_class_is_loaded tag="function" new="2.1")
|
||||
|
||||
Check whether a `Language` class is already loaded. `Language` classes are
|
||||
loaded lazily, to avoid expensive setup code associated with the language data.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> lang_cls = util.get_lang_class("en")
|
||||
> assert util.lang_class_is_loaded("en") is True
|
||||
> assert util.lang_class_is_loaded("de") is False
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ------- | -------------------------------------- |
|
||||
| `name` | unicode | Two-letter language code, e.g. `'en'`. |
|
||||
| **RETURNS** | bool | Whether the class has been loaded. |
|
||||
|
||||
### util.load_model {#util.load_model tag="function" new="2"}
|
||||
|
||||
Load a model from a shortcut link, package or data path. If called with a
|
||||
|
|
|
@ -288,11 +288,12 @@ Load state from a binary string.
|
|||
> assert type(PERSON) == int
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------------------------------------ | ------------- | --------------------------------------------- |
|
||||
| `strings` | `StringStore` | A table managing the string-to-int mapping. |
|
||||
| `vectors` <Tag variant="new">2</Tag> | `Vectors` | A table associating word IDs to word vectors. |
|
||||
| `vectors_length` | int | Number of dimensions for each word vector. |
|
||||
| Name | Type | Description |
|
||||
| --------------------------------------------- | ------------- | ------------------------------------------------------------ |
|
||||
| `strings` | `StringStore` | A table managing the string-to-int mapping. |
|
||||
| `vectors` <Tag variant="new">2</Tag> | `Vectors` | A table associating word IDs to word vectors. |
|
||||
| `vectors_length` | int | Number of dimensions for each word vector. |
|
||||
| `writing_system` <Tag variant="new">2.1</Tag> | dict | A dict with information about the language's writing system. |
|
||||
|
||||
## Serialization fields {#serialization-fields}
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user