Merge branch 'develop' of https://github.com/explosion/spaCy into develop

This commit is contained in:
Matthew Honnibal 2019-03-11 15:59:28 +01:00
commit e2b9b523ce
18 changed files with 614 additions and 561 deletions

View File

@ -27,6 +27,7 @@ class PersianDefaults(Language.Defaults):
stop_words = STOP_WORDS stop_words = STOP_WORDS
tag_map = TAG_MAP tag_map = TAG_MAP
suffixes = TOKENIZER_SUFFIXES suffixes = TOKENIZER_SUFFIXES
writing_system = {"direction": "rtl", "has_case": False, "has_letters": True}
class Persian(Language): class Persian(Language):

View File

@ -14,7 +14,7 @@ class HebrewDefaults(Language.Defaults):
lex_attr_getters[LANG] = lambda text: "he" lex_attr_getters[LANG] = lambda text: "he"
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS) tokenizer_exceptions = update_exc(BASE_EXCEPTIONS)
stop_words = STOP_WORDS stop_words = STOP_WORDS
writing_system = {"direction": "rtl", "has_case": False, "has_letters": True}
class Hebrew(Language): class Hebrew(Language):
lang = "he" lang = "he"

View File

@ -94,6 +94,7 @@ class JapaneseDefaults(Language.Defaults):
lex_attr_getters[LANG] = lambda _text: "ja" lex_attr_getters[LANG] = lambda _text: "ja"
stop_words = STOP_WORDS stop_words = STOP_WORDS
tag_map = TAG_MAP tag_map = TAG_MAP
writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}
@classmethod @classmethod
def create_tokenizer(cls, nlp=None): def create_tokenizer(cls, nlp=None):

View File

@ -14,7 +14,7 @@ class ChineseDefaults(Language.Defaults):
use_jieba = True use_jieba = True
tokenizer_exceptions = BASE_EXCEPTIONS tokenizer_exceptions = BASE_EXCEPTIONS
stop_words = STOP_WORDS stop_words = STOP_WORDS
writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}
class Chinese(Language): class Chinese(Language):
lang = "zh" lang = "zh"

View File

@ -94,6 +94,7 @@ class BaseDefaults(object):
morph_rules = {} morph_rules = {}
lex_attr_getters = LEX_ATTRS lex_attr_getters = LEX_ATTRS
syntax_iterators = {} syntax_iterators = {}
writing_system = {"direction": "ltr", "has_case": True, "has_letters": True}
class Language(object): class Language(object):

View File

@ -161,15 +161,15 @@ cdef class Lexeme:
Lexeme.c_from_bytes(self.c, lex_data) Lexeme.c_from_bytes(self.c, lex_data)
self.orth = self.c.orth self.orth = self.c.orth
property has_vector: @property
def has_vector(self):
"""RETURNS (bool): Whether a word vector is associated with the object. """RETURNS (bool): Whether a word vector is associated with the object.
""" """
def __get__(self):
return self.vocab.has_vector(self.c.orth) return self.vocab.has_vector(self.c.orth)
property vector_norm: @property
def vector_norm(self):
"""RETURNS (float): The L2 norm of the vector representation.""" """RETURNS (float): The L2 norm of the vector representation."""
def __get__(self):
vector = self.vector vector = self.vector
return numpy.sqrt((vector**2).sum()) return numpy.sqrt((vector**2).sum())
@ -209,16 +209,16 @@ cdef class Lexeme:
def __set__(self, float sentiment): def __set__(self, float sentiment):
self.c.sentiment = sentiment self.c.sentiment = sentiment
property orth_: @property
def orth_(self):
"""RETURNS (unicode): The original verbatim text of the lexeme """RETURNS (unicode): The original verbatim text of the lexeme
(identical to `Lexeme.text`). Exists mostly for consistency with (identical to `Lexeme.text`). Exists mostly for consistency with
the other attributes.""" the other attributes."""
def __get__(self):
return self.vocab.strings[self.c.orth] return self.vocab.strings[self.c.orth]
property text: @property
def text(self):
"""RETURNS (unicode): The original verbatim text of the lexeme.""" """RETURNS (unicode): The original verbatim text of the lexeme."""
def __get__(self):
return self.orth_ return self.orth_
property lower: property lower:

View File

@ -369,8 +369,8 @@ cdef class ArcEager(TransitionSystem):
actions[LEFT].setdefault('dep', 0) actions[LEFT].setdefault('dep', 0)
return actions return actions
property action_types: @property
def __get__(self): def action_types(self):
return (SHIFT, REDUCE, LEFT, RIGHT, BREAK) return (SHIFT, REDUCE, LEFT, RIGHT, BREAK)
def get_cost(self, StateClass state, GoldParse gold, action): def get_cost(self, StateClass state, GoldParse gold, action):

View File

@ -80,8 +80,8 @@ cdef class BiluoPushDown(TransitionSystem):
actions[action][label] += 1 actions[action][label] += 1
return actions return actions
property action_types: @property
def __get__(self): def action_types(self):
return (BEGIN, IN, LAST, UNIT, OUT) return (BEGIN, IN, LAST, UNIT, OUT)
def move_name(self, int move, attr_t label): def move_name(self, int move, attr_t label):

View File

@ -0,0 +1,68 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
from spacy import displacy
from spacy.tokens import Span
from .util import get_doc
def test_displacy_parse_ents(en_vocab):
"""Test that named entities on a Doc are converted into displaCy's format."""
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
ents = displacy.parse_ents(doc)
assert isinstance(ents, dict)
assert ents["text"] == "But Google is starting from behind "
assert ents["ents"] == [{"start": 4, "end": 10, "label": "ORG"}]
def test_displacy_parse_deps(en_vocab):
"""Test that deps and tags on a Doc are converted into displaCy's format."""
words = ["This", "is", "a", "sentence"]
heads = [1, 0, 1, -2]
pos = ["DET", "VERB", "DET", "NOUN"]
tags = ["DT", "VBZ", "DT", "NN"]
deps = ["nsubj", "ROOT", "det", "attr"]
doc = get_doc(en_vocab, words=words, heads=heads, pos=pos, tags=tags, deps=deps)
deps = displacy.parse_deps(doc)
assert isinstance(deps, dict)
assert deps["words"] == [
{"text": "This", "tag": "DET"},
{"text": "is", "tag": "VERB"},
{"text": "a", "tag": "DET"},
{"text": "sentence", "tag": "NOUN"},
]
assert deps["arcs"] == [
{"start": 0, "end": 1, "label": "nsubj", "dir": "left"},
{"start": 2, "end": 3, "label": "det", "dir": "left"},
{"start": 1, "end": 3, "label": "attr", "dir": "right"},
]
def test_displacy_spans(en_vocab):
"""Test that displaCy can render Spans."""
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
html = displacy.render(doc[1:4], style="ent")
assert html.startswith("<div")
def test_displacy_render_wrapper(en_vocab):
"""Test that displaCy accepts custom rendering wrapper."""
def wrapper(html):
return "TEST" + html + "TEST"
displacy.set_render_wrapper(wrapper)
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
html = displacy.render(doc, style="ent")
assert html.startswith("TEST<div")
assert html.endswith("/div>TEST")
def test_displacy_raises_for_wrong_type(en_vocab):
with pytest.raises(ValueError):
displacy.render("hello world")

View File

@ -4,13 +4,9 @@ from __future__ import unicode_literals
import pytest import pytest
from pathlib import Path from pathlib import Path
from spacy import util from spacy import util
from spacy import displacy
from spacy import prefer_gpu, require_gpu from spacy import prefer_gpu, require_gpu
from spacy.tokens import Span
from spacy._ml import PrecomputableAffine from spacy._ml import PrecomputableAffine
from .util import get_doc
@pytest.mark.parametrize("text", ["hello/world", "hello world"]) @pytest.mark.parametrize("text", ["hello/world", "hello world"])
def test_util_ensure_path_succeeds(text): def test_util_ensure_path_succeeds(text):
@ -31,66 +27,6 @@ def test_util_get_package_path(package):
assert isinstance(path, Path) assert isinstance(path, Path)
def test_displacy_parse_ents(en_vocab):
"""Test that named entities on a Doc are converted into displaCy's format."""
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
ents = displacy.parse_ents(doc)
assert isinstance(ents, dict)
assert ents["text"] == "But Google is starting from behind "
assert ents["ents"] == [{"start": 4, "end": 10, "label": "ORG"}]
def test_displacy_parse_deps(en_vocab):
"""Test that deps and tags on a Doc are converted into displaCy's format."""
words = ["This", "is", "a", "sentence"]
heads = [1, 0, 1, -2]
pos = ["DET", "VERB", "DET", "NOUN"]
tags = ["DT", "VBZ", "DT", "NN"]
deps = ["nsubj", "ROOT", "det", "attr"]
doc = get_doc(en_vocab, words=words, heads=heads, pos=pos, tags=tags, deps=deps)
deps = displacy.parse_deps(doc)
assert isinstance(deps, dict)
assert deps["words"] == [
{"text": "This", "tag": "DET"},
{"text": "is", "tag": "VERB"},
{"text": "a", "tag": "DET"},
{"text": "sentence", "tag": "NOUN"},
]
assert deps["arcs"] == [
{"start": 0, "end": 1, "label": "nsubj", "dir": "left"},
{"start": 2, "end": 3, "label": "det", "dir": "left"},
{"start": 1, "end": 3, "label": "attr", "dir": "right"},
]
def test_displacy_spans(en_vocab):
"""Test that displaCy can render Spans."""
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
html = displacy.render(doc[1:4], style="ent")
assert html.startswith("<div")
def test_displacy_render_wrapper(en_vocab):
"""Test that displaCy accepts custom rendering wrapper."""
def wrapper(html):
return "TEST" + html + "TEST"
displacy.set_render_wrapper(wrapper)
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
html = displacy.render(doc, style="ent")
assert html.startswith("TEST<div")
assert html.endswith("/div>TEST")
def test_displacy_raises_for_wrong_type(en_vocab):
with pytest.raises(ValueError):
displacy.render("hello world")
def test_PrecomputableAffine(nO=4, nI=5, nF=3, nP=2): def test_PrecomputableAffine(nO=4, nI=5, nF=3, nP=2):
model = PrecomputableAffine(nO=nO, nI=nI, nF=nF, nP=nP) model = PrecomputableAffine(nO=nO, nI=nI, nF=nF, nP=nP)
assert model.W.shape == (nF, nO, nP, nI) assert model.W.shape == (nF, nO, nP, nI)

View File

@ -45,3 +45,8 @@ def test_vocab_api_contains(en_vocab, text):
_ = en_vocab[text] # noqa: F841 _ = en_vocab[text] # noqa: F841
assert text in en_vocab assert text in en_vocab
assert "LKsdjvlsakdvlaksdvlkasjdvljasdlkfvm" not in en_vocab assert "LKsdjvlsakdvlaksdvlkasjdvljasdlkfvm" not in en_vocab
def test_vocab_writing_system(en_vocab):
assert en_vocab.writing_system["direction"] == "ltr"
assert en_vocab.writing_system["has_case"] is True

View File

@ -384,7 +384,8 @@ cdef class Doc:
xp = get_array_module(vector) xp = get_array_module(vector)
return xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm) return xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm)
property has_vector: @property
def has_vector(self):
"""A boolean value indicating whether a word vector is associated with """A boolean value indicating whether a word vector is associated with
the object. the object.
@ -392,7 +393,6 @@ cdef class Doc:
DOCS: https://spacy.io/api/doc#has_vector DOCS: https://spacy.io/api/doc#has_vector
""" """
def __get__(self):
if "has_vector" in self.user_hooks: if "has_vector" in self.user_hooks:
return self.user_hooks["has_vector"](self) return self.user_hooks["has_vector"](self)
elif self.vocab.vectors.data.size: elif self.vocab.vectors.data.size:
@ -453,21 +453,21 @@ cdef class Doc:
def __set__(self, value): def __set__(self, value):
self._vector_norm = value self._vector_norm = value
property text: @property
def text(self):
"""A unicode representation of the document text. """A unicode representation of the document text.
RETURNS (unicode): The original verbatim text of the document. RETURNS (unicode): The original verbatim text of the document.
""" """
def __get__(self):
return "".join(t.text_with_ws for t in self) return "".join(t.text_with_ws for t in self)
property text_with_ws: @property
def text_with_ws(self):
"""An alias of `Doc.text`, provided for duck-type compatibility with """An alias of `Doc.text`, provided for duck-type compatibility with
`Span` and `Token`. `Span` and `Token`.
RETURNS (unicode): The original verbatim text of the document. RETURNS (unicode): The original verbatim text of the document.
""" """
def __get__(self):
return self.text return self.text
property ents: property ents:
@ -545,7 +545,8 @@ cdef class Doc:
# Set start as B # Set start as B
self.c[start].ent_iob = 3 self.c[start].ent_iob = 3
property noun_chunks: @property
def noun_chunks(self):
"""Iterate over the base noun phrases in the document. Yields base """Iterate over the base noun phrases in the document. Yields base
noun-phrase #[code Span] objects, if the document has been noun-phrase #[code Span] objects, if the document has been
syntactically parsed. A base noun phrase, or "NP chunk", is a noun syntactically parsed. A base noun phrase, or "NP chunk", is a noun
@ -557,7 +558,6 @@ cdef class Doc:
DOCS: https://spacy.io/api/doc#noun_chunks DOCS: https://spacy.io/api/doc#noun_chunks
""" """
def __get__(self):
if not self.is_parsed: if not self.is_parsed:
raise ValueError(Errors.E029) raise ValueError(Errors.E029)
# Accumulate the result before beginning to iterate over it. This # Accumulate the result before beginning to iterate over it. This
@ -572,7 +572,8 @@ cdef class Doc:
for span in spans: for span in spans:
yield span yield span
property sents: @property
def sents(self):
"""Iterate over the sentences in the document. Yields sentence `Span` """Iterate over the sentences in the document. Yields sentence `Span`
objects. Sentence spans have no label. To improve accuracy on informal objects. Sentence spans have no label. To improve accuracy on informal
texts, spaCy calculates sentence boundaries from the syntactic texts, spaCy calculates sentence boundaries from the syntactic
@ -583,7 +584,6 @@ cdef class Doc:
DOCS: https://spacy.io/api/doc#sents DOCS: https://spacy.io/api/doc#sents
""" """
def __get__(self):
if not self.is_sentenced: if not self.is_sentenced:
raise ValueError(Errors.E030) raise ValueError(Errors.E030)
if "sents" in self.user_hooks: if "sents" in self.user_hooks:

View File

@ -322,14 +322,14 @@ cdef class Span:
self.start = start self.start = start
self.end = end + 1 self.end = end + 1
property vocab: @property
def vocab(self):
"""RETURNS (Vocab): The Span's Doc's vocab.""" """RETURNS (Vocab): The Span's Doc's vocab."""
def __get__(self):
return self.doc.vocab return self.doc.vocab
property sent: @property
def sent(self):
"""RETURNS (Span): The sentence span that the span is a part of.""" """RETURNS (Span): The sentence span that the span is a part of."""
def __get__(self):
if "sent" in self.doc.user_span_hooks: if "sent" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["sent"](self) return self.doc.user_span_hooks["sent"](self)
# This should raise if not parsed / no custom sentence boundaries # This should raise if not parsed / no custom sentence boundaries
@ -361,7 +361,8 @@ cdef class Span:
break break
return self.doc[start:end] return self.doc[start:end]
property ents: @property
def ents(self):
"""The named entities in the span. Returns a tuple of named entity """The named entities in the span. Returns a tuple of named entity
`Span` objects, if the entity recognizer has been applied. `Span` objects, if the entity recognizer has been applied.
@ -369,14 +370,14 @@ cdef class Span:
DOCS: https://spacy.io/api/span#ents DOCS: https://spacy.io/api/span#ents
""" """
def __get__(self):
ents = [] ents = []
for ent in self.doc.ents: for ent in self.doc.ents:
if ent.start >= self.start and ent.end <= self.end: if ent.start >= self.start and ent.end <= self.end:
ents.append(ent) ents.append(ent)
return ents return ents
property has_vector: @property
def has_vector(self):
"""A boolean value indicating whether a word vector is associated with """A boolean value indicating whether a word vector is associated with
the object. the object.
@ -384,7 +385,6 @@ cdef class Span:
DOCS: https://spacy.io/api/span#has_vector DOCS: https://spacy.io/api/span#has_vector
""" """
def __get__(self):
if "has_vector" in self.doc.user_span_hooks: if "has_vector" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["has_vector"](self) return self.doc.user_span_hooks["has_vector"](self)
elif self.vocab.vectors.data.size > 0: elif self.vocab.vectors.data.size > 0:
@ -394,7 +394,8 @@ cdef class Span:
else: else:
return False return False
property vector: @property
def vector(self):
"""A real-valued meaning representation. Defaults to an average of the """A real-valued meaning representation. Defaults to an average of the
token vectors. token vectors.
@ -403,21 +404,20 @@ cdef class Span:
DOCS: https://spacy.io/api/span#vector DOCS: https://spacy.io/api/span#vector
""" """
def __get__(self):
if "vector" in self.doc.user_span_hooks: if "vector" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["vector"](self) return self.doc.user_span_hooks["vector"](self)
if self._vector is None: if self._vector is None:
self._vector = sum(t.vector for t in self) / len(self) self._vector = sum(t.vector for t in self) / len(self)
return self._vector return self._vector
property vector_norm: @property
def vector_norm(self):
"""The L2 norm of the span's vector representation. """The L2 norm of the span's vector representation.
RETURNS (float): The L2 norm of the vector representation. RETURNS (float): The L2 norm of the vector representation.
DOCS: https://spacy.io/api/span#vector_norm DOCS: https://spacy.io/api/span#vector_norm
""" """
def __get__(self):
if "vector_norm" in self.doc.user_span_hooks: if "vector_norm" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["vector"](self) return self.doc.user_span_hooks["vector"](self)
cdef float value cdef float value
@ -429,35 +429,36 @@ cdef class Span:
self._vector_norm = sqrt(norm) if norm != 0 else 0 self._vector_norm = sqrt(norm) if norm != 0 else 0
return self._vector_norm return self._vector_norm
property sentiment: @property
def sentiment(self):
"""RETURNS (float): A scalar value indicating the positivity or """RETURNS (float): A scalar value indicating the positivity or
negativity of the span. negativity of the span.
""" """
def __get__(self):
if "sentiment" in self.doc.user_span_hooks: if "sentiment" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["sentiment"](self) return self.doc.user_span_hooks["sentiment"](self)
else: else:
return sum([token.sentiment for token in self]) / len(self) return sum([token.sentiment for token in self]) / len(self)
property text: @property
def text(self):
"""RETURNS (unicode): The original verbatim text of the span.""" """RETURNS (unicode): The original verbatim text of the span."""
def __get__(self):
text = self.text_with_ws text = self.text_with_ws
if self[-1].whitespace_: if self[-1].whitespace_:
text = text[:-1] text = text[:-1]
return text return text
property text_with_ws: @property
def text_with_ws(self):
"""The text content of the span with a trailing whitespace character if """The text content of the span with a trailing whitespace character if
the last token has one. the last token has one.
RETURNS (unicode): The text content of the span (with trailing RETURNS (unicode): The text content of the span (with trailing
whitespace). whitespace).
""" """
def __get__(self):
return "".join([t.text_with_ws for t in self]) return "".join([t.text_with_ws for t in self])
property noun_chunks: @property
def noun_chunks(self):
"""Yields base noun-phrase `Span` objects, if the document has been """Yields base noun-phrase `Span` objects, if the document has been
syntactically parsed. A base noun phrase, or "NP chunk", is a noun syntactically parsed. A base noun phrase, or "NP chunk", is a noun
phrase that does not permit other NPs to be nested within it so no phrase that does not permit other NPs to be nested within it so no
@ -468,7 +469,6 @@ cdef class Span:
DOCS: https://spacy.io/api/span#noun_chunks DOCS: https://spacy.io/api/span#noun_chunks
""" """
def __get__(self):
if not self.doc.is_parsed: if not self.doc.is_parsed:
raise ValueError(Errors.E029) raise ValueError(Errors.E029)
# Accumulate the result before beginning to iterate over it. This # Accumulate the result before beginning to iterate over it. This
@ -484,7 +484,8 @@ cdef class Span:
for span in spans: for span in spans:
yield span yield span
property root: @property
def root(self):
"""The token with the shortest path to the root of the """The token with the shortest path to the root of the
sentence (or the root itself). If multiple tokens are equally sentence (or the root itself). If multiple tokens are equally
high in the tree, the first token is taken. high in the tree, the first token is taken.
@ -493,7 +494,6 @@ cdef class Span:
DOCS: https://spacy.io/api/span#root DOCS: https://spacy.io/api/span#root
""" """
def __get__(self):
self._recalculate_indices() self._recalculate_indices()
if "root" in self.doc.user_span_hooks: if "root" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["root"](self) return self.doc.user_span_hooks["root"](self)
@ -527,7 +527,8 @@ cdef class Span:
else: else:
return self.doc[root] return self.doc[root]
property lefts: @property
def lefts(self):
"""Tokens that are to the left of the span, whose head is within the """Tokens that are to the left of the span, whose head is within the
`Span`. `Span`.
@ -535,13 +536,13 @@ cdef class Span:
DOCS: https://spacy.io/api/span#lefts DOCS: https://spacy.io/api/span#lefts
""" """
def __get__(self):
for token in reversed(self): # Reverse, so we get tokens in order for token in reversed(self): # Reverse, so we get tokens in order
for left in token.lefts: for left in token.lefts:
if left.i < self.start: if left.i < self.start:
yield left yield left
property rights: @property
def rights(self):
"""Tokens that are to the right of the Span, whose head is within the """Tokens that are to the right of the Span, whose head is within the
`Span`. `Span`.
@ -549,13 +550,13 @@ cdef class Span:
DOCS: https://spacy.io/api/span#rights DOCS: https://spacy.io/api/span#rights
""" """
def __get__(self):
for token in self: for token in self:
for right in token.rights: for right in token.rights:
if right.i >= self.end: if right.i >= self.end:
yield right yield right
property n_lefts: @property
def n_lefts(self):
"""The number of tokens that are to the left of the span, whose """The number of tokens that are to the left of the span, whose
heads are within the span. heads are within the span.
@ -564,10 +565,10 @@ cdef class Span:
DOCS: https://spacy.io/api/span#n_lefts DOCS: https://spacy.io/api/span#n_lefts
""" """
def __get__(self):
return len(list(self.lefts)) return len(list(self.lefts))
property n_rights: @property
def n_rights(self):
"""The number of tokens that are to the right of the span, whose """The number of tokens that are to the right of the span, whose
heads are within the span. heads are within the span.
@ -576,17 +577,16 @@ cdef class Span:
DOCS: https://spacy.io/api/span#n_rights DOCS: https://spacy.io/api/span#n_rights
""" """
def __get__(self):
return len(list(self.rights)) return len(list(self.rights))
property subtree: @property
def subtree(self):
"""Tokens within the span and tokens which descend from them. """Tokens within the span and tokens which descend from them.
YIELDS (Token): A token within the span, or a descendant from it. YIELDS (Token): A token within the span, or a descendant from it.
DOCS: https://spacy.io/api/span#subtree DOCS: https://spacy.io/api/span#subtree
""" """
def __get__(self):
for word in self.lefts: for word in self.lefts:
yield from word.subtree yield from word.subtree
yield from self yield from self
@ -609,32 +609,32 @@ cdef class Span:
def __set__(self, hash_t key): def __set__(self, hash_t key):
raise NotImplementedError(TempErrors.T007.format(attr="ent_id_")) raise NotImplementedError(TempErrors.T007.format(attr="ent_id_"))
property orth_: @property
def orth_(self):
"""Verbatim text content (identical to `Span.text`). Exists mostly for """Verbatim text content (identical to `Span.text`). Exists mostly for
consistency with other attributes. consistency with other attributes.
RETURNS (unicode): The span's text.""" RETURNS (unicode): The span's text."""
def __get__(self):
return self.text return self.text
property lemma_: @property
def lemma_(self):
"""RETURNS (unicode): The span's lemma.""" """RETURNS (unicode): The span's lemma."""
def __get__(self):
return " ".join([t.lemma_ for t in self]).strip() return " ".join([t.lemma_ for t in self]).strip()
property upper_: @property
def upper_(self):
"""Deprecated. Use `Span.text.upper()` instead.""" """Deprecated. Use `Span.text.upper()` instead."""
def __get__(self):
return "".join([t.text_with_ws.upper() for t in self]).strip() return "".join([t.text_with_ws.upper() for t in self]).strip()
property lower_: @property
def lower_(self):
"""Deprecated. Use `Span.text.lower()` instead.""" """Deprecated. Use `Span.text.lower()` instead."""
def __get__(self):
return "".join([t.text_with_ws.lower() for t in self]).strip() return "".join([t.text_with_ws.lower() for t in self]).strip()
property string: @property
def string(self):
"""Deprecated: Use `Span.text_with_ws` instead.""" """Deprecated: Use `Span.text_with_ws` instead."""
def __get__(self):
return "".join([t.text_with_ws for t in self]) return "".join([t.text_with_ws for t in self])
property label_: property label_:

View File

@ -218,110 +218,110 @@ cdef class Token:
xp = get_array_module(vector) xp = get_array_module(vector)
return (xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm)) return (xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm))
property lex_id: @property
def lex_id(self):
"""RETURNS (int): Sequential ID of the token's lexical type.""" """RETURNS (int): Sequential ID of the token's lexical type."""
def __get__(self):
return self.c.lex.id return self.c.lex.id
property rank: @property
def rank(self):
"""RETURNS (int): Sequential ID of the token's lexical type, used to """RETURNS (int): Sequential ID of the token's lexical type, used to
index into tables, e.g. for word vectors.""" index into tables, e.g. for word vectors."""
def __get__(self):
return self.c.lex.id return self.c.lex.id
property string: @property
def string(self):
"""Deprecated: Use Token.text_with_ws instead.""" """Deprecated: Use Token.text_with_ws instead."""
def __get__(self):
return self.text_with_ws return self.text_with_ws
property text: @property
def text(self):
"""RETURNS (unicode): The original verbatim text of the token.""" """RETURNS (unicode): The original verbatim text of the token."""
def __get__(self):
return self.orth_ return self.orth_
property text_with_ws: @property
def text_with_ws(self):
"""RETURNS (unicode): The text content of the span (with trailing """RETURNS (unicode): The text content of the span (with trailing
whitespace). whitespace).
""" """
def __get__(self):
cdef unicode orth = self.vocab.strings[self.c.lex.orth] cdef unicode orth = self.vocab.strings[self.c.lex.orth]
if self.c.spacy: if self.c.spacy:
return orth + " " return orth + " "
else: else:
return orth return orth
property prob: @property
def prob(self):
"""RETURNS (float): Smoothed log probability estimate of token type.""" """RETURNS (float): Smoothed log probability estimate of token type."""
def __get__(self):
return self.c.lex.prob return self.c.lex.prob
property sentiment: @property
def sentiment(self):
"""RETURNS (float): A scalar value indicating the positivity or """RETURNS (float): A scalar value indicating the positivity or
negativity of the token.""" negativity of the token."""
def __get__(self):
if "sentiment" in self.doc.user_token_hooks: if "sentiment" in self.doc.user_token_hooks:
return self.doc.user_token_hooks["sentiment"](self) return self.doc.user_token_hooks["sentiment"](self)
return self.c.lex.sentiment return self.c.lex.sentiment
property lang: @property
def lang(self):
"""RETURNS (uint64): ID of the language of the parent document's """RETURNS (uint64): ID of the language of the parent document's
vocabulary. vocabulary.
""" """
def __get__(self):
return self.c.lex.lang return self.c.lex.lang
property idx: @property
def idx(self):
"""RETURNS (int): The character offset of the token within the parent """RETURNS (int): The character offset of the token within the parent
document. document.
""" """
def __get__(self):
return self.c.idx return self.c.idx
property cluster: @property
def cluster(self):
"""RETURNS (int): Brown cluster ID.""" """RETURNS (int): Brown cluster ID."""
def __get__(self):
return self.c.lex.cluster return self.c.lex.cluster
property orth: @property
def orth(self):
"""RETURNS (uint64): ID of the verbatim text content.""" """RETURNS (uint64): ID of the verbatim text content."""
def __get__(self):
return self.c.lex.orth return self.c.lex.orth
property lower: @property
def lower(self):
"""RETURNS (uint64): ID of the lowercase token text.""" """RETURNS (uint64): ID of the lowercase token text."""
def __get__(self):
return self.c.lex.lower return self.c.lex.lower
property norm: @property
def norm(self):
"""RETURNS (uint64): ID of the token's norm, i.e. a normalised form of """RETURNS (uint64): ID of the token's norm, i.e. a normalised form of
the token text. Usually set in the language's tokenizer exceptions the token text. Usually set in the language's tokenizer exceptions
or norm exceptions. or norm exceptions.
""" """
def __get__(self):
if self.c.norm == 0: if self.c.norm == 0:
return self.c.lex.norm return self.c.lex.norm
else: else:
return self.c.norm return self.c.norm
property shape: @property
def shape(self):
"""RETURNS (uint64): ID of the token's shape, a transform of the """RETURNS (uint64): ID of the token's shape, a transform of the
tokens's string, to show orthographic features (e.g. "Xxxx", "dd"). tokens's string, to show orthographic features (e.g. "Xxxx", "dd").
""" """
def __get__(self):
return self.c.lex.shape return self.c.lex.shape
property prefix: @property
def prefix(self):
"""RETURNS (uint64): ID of a length-N substring from the start of the """RETURNS (uint64): ID of a length-N substring from the start of the
token. Defaults to `N=1`. token. Defaults to `N=1`.
""" """
def __get__(self):
return self.c.lex.prefix return self.c.lex.prefix
property suffix: @property
def suffix(self):
"""RETURNS (uint64): ID of a length-N substring from the end of the """RETURNS (uint64): ID of a length-N substring from the end of the
token. Defaults to `N=3`. token. Defaults to `N=3`.
""" """
def __get__(self):
return self.c.lex.suffix return self.c.lex.suffix
property lemma: property lemma:
@ -362,7 +362,8 @@ cdef class Token:
def __set__(self, attr_t label): def __set__(self, attr_t label):
self.c.dep = label self.c.dep = label
property has_vector: @property
def has_vector(self):
"""A boolean value indicating whether a word vector is associated with """A boolean value indicating whether a word vector is associated with
the object. the object.
@ -370,14 +371,14 @@ cdef class Token:
DOCS: https://spacy.io/api/token#has_vector DOCS: https://spacy.io/api/token#has_vector
""" """
def __get__(self): if "has_vector" in self.doc.user_token_hooks:
if 'has_vector' in self.doc.user_token_hooks:
return self.doc.user_token_hooks["has_vector"](self) return self.doc.user_token_hooks["has_vector"](self)
if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0: if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
return True return True
return self.vocab.has_vector(self.c.lex.orth) return self.vocab.has_vector(self.c.lex.orth)
property vector: @property
def vector(self):
"""A real-valued meaning representation. """A real-valued meaning representation.
RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
@ -385,28 +386,28 @@ cdef class Token:
DOCS: https://spacy.io/api/token#vector DOCS: https://spacy.io/api/token#vector
""" """
def __get__(self): if "vector" in self.doc.user_token_hooks:
if 'vector' in self.doc.user_token_hooks:
return self.doc.user_token_hooks["vector"](self) return self.doc.user_token_hooks["vector"](self)
if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0: if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
return self.doc.tensor[self.i] return self.doc.tensor[self.i]
else: else:
return self.vocab.get_vector(self.c.lex.orth) return self.vocab.get_vector(self.c.lex.orth)
property vector_norm: @property
def vector_norm(self):
"""The L2 norm of the token's vector representation. """The L2 norm of the token's vector representation.
RETURNS (float): The L2 norm of the vector representation. RETURNS (float): The L2 norm of the vector representation.
DOCS: https://spacy.io/api/token#vector_norm DOCS: https://spacy.io/api/token#vector_norm
""" """
def __get__(self): if "vector_norm" in self.doc.user_token_hooks:
if 'vector_norm' in self.doc.user_token_hooks:
return self.doc.user_token_hooks["vector_norm"](self) return self.doc.user_token_hooks["vector_norm"](self)
vector = self.vector vector = self.vector
return numpy.sqrt((vector ** 2).sum()) return numpy.sqrt((vector ** 2).sum())
property n_lefts: @property
def n_lefts(self):
"""The number of leftward immediate children of the word, in the """The number of leftward immediate children of the word, in the
syntactic dependency parse. syntactic dependency parse.
@ -415,10 +416,10 @@ cdef class Token:
DOCS: https://spacy.io/api/token#n_lefts DOCS: https://spacy.io/api/token#n_lefts
""" """
def __get__(self):
return self.c.l_kids return self.c.l_kids
property n_rights: @property
def n_rights(self):
"""The number of rightward immediate children of the word, in the """The number of rightward immediate children of the word, in the
syntactic dependency parse. syntactic dependency parse.
@ -427,12 +428,11 @@ cdef class Token:
DOCS: https://spacy.io/api/token#n_rights DOCS: https://spacy.io/api/token#n_rights
""" """
def __get__(self):
return self.c.r_kids return self.c.r_kids
property sent: @property
def sent(self):
"""RETURNS (Span): The sentence span that the token is a part of.""" """RETURNS (Span): The sentence span that the token is a part of."""
def __get__(self):
if 'sent' in self.doc.user_token_hooks: if 'sent' in self.doc.user_token_hooks:
return self.doc.user_token_hooks["sent"](self) return self.doc.user_token_hooks["sent"](self)
return self.doc[self.i : self.i+1].sent return self.doc[self.i : self.i+1].sent
@ -479,7 +479,8 @@ cdef class Token:
else: else:
raise ValueError(Errors.E044.format(value=value)) raise ValueError(Errors.E044.format(value=value))
property lefts: @property
def lefts(self):
"""The leftward immediate children of the word, in the syntactic """The leftward immediate children of the word, in the syntactic
dependency parse. dependency parse.
@ -487,7 +488,6 @@ cdef class Token:
DOCS: https://spacy.io/api/token#lefts DOCS: https://spacy.io/api/token#lefts
""" """
def __get__(self):
cdef int nr_iter = 0 cdef int nr_iter = 0
cdef const TokenC* ptr = self.c - (self.i - self.c.l_edge) cdef const TokenC* ptr = self.c - (self.i - self.c.l_edge)
while ptr < self.c: while ptr < self.c:
@ -499,7 +499,8 @@ cdef class Token:
if nr_iter >= 10000000: if nr_iter >= 10000000:
raise RuntimeError(Errors.E045.format(attr="token.lefts")) raise RuntimeError(Errors.E045.format(attr="token.lefts"))
property rights: @property
def rights(self):
"""The rightward immediate children of the word, in the syntactic """The rightward immediate children of the word, in the syntactic
dependency parse. dependency parse.
@ -507,7 +508,6 @@ cdef class Token:
DOCS: https://spacy.io/api/token#rights DOCS: https://spacy.io/api/token#rights
""" """
def __get__(self):
cdef const TokenC* ptr = self.c + (self.c.r_edge - self.i) cdef const TokenC* ptr = self.c + (self.c.r_edge - self.i)
tokens = [] tokens = []
cdef int nr_iter = 0 cdef int nr_iter = 0
@ -522,18 +522,19 @@ cdef class Token:
for t in tokens: for t in tokens:
yield t yield t
property children: @property
def children(self):
"""A sequence of the token's immediate syntactic children. """A sequence of the token's immediate syntactic children.
YIELDS (Token): A child token such that `child.head==self`. YIELDS (Token): A child token such that `child.head==self`.
DOCS: https://spacy.io/api/token#children DOCS: https://spacy.io/api/token#children
""" """
def __get__(self):
yield from self.lefts yield from self.lefts
yield from self.rights yield from self.rights
property subtree: @property
def subtree(self):
"""A sequence containing the token and all the token's syntactic """A sequence containing the token and all the token's syntactic
descendants. descendants.
@ -542,30 +543,30 @@ cdef class Token:
DOCS: https://spacy.io/api/token#subtree DOCS: https://spacy.io/api/token#subtree
""" """
def __get__(self):
for word in self.lefts: for word in self.lefts:
yield from word.subtree yield from word.subtree
yield self yield self
for word in self.rights: for word in self.rights:
yield from word.subtree yield from word.subtree
property left_edge: @property
def left_edge(self):
"""The leftmost token of this token's syntactic descendents. """The leftmost token of this token's syntactic descendents.
RETURNS (Token): The first token such that `self.is_ancestor(token)`. RETURNS (Token): The first token such that `self.is_ancestor(token)`.
""" """
def __get__(self):
return self.doc[self.c.l_edge] return self.doc[self.c.l_edge]
property right_edge: @property
def right_edge(self):
"""The rightmost token of this token's syntactic descendents. """The rightmost token of this token's syntactic descendents.
RETURNS (Token): The last token such that `self.is_ancestor(token)`. RETURNS (Token): The last token such that `self.is_ancestor(token)`.
""" """
def __get__(self):
return self.doc[self.c.r_edge] return self.doc[self.c.r_edge]
property ancestors: @property
def ancestors(self):
"""A sequence of this token's syntactic ancestors. """A sequence of this token's syntactic ancestors.
YIELDS (Token): A sequence of ancestor tokens such that YIELDS (Token): A sequence of ancestor tokens such that
@ -573,7 +574,6 @@ cdef class Token:
DOCS: https://spacy.io/api/token#ancestors DOCS: https://spacy.io/api/token#ancestors
""" """
def __get__(self):
cdef const TokenC* head_ptr = self.c cdef const TokenC* head_ptr = self.c
# Guard against infinite loop, no token can have # Guard against infinite loop, no token can have
# more ancestors than tokens in the tree. # more ancestors than tokens in the tree.
@ -685,14 +685,14 @@ cdef class Token:
# Set new head # Set new head
self.c.head = rel_newhead_i self.c.head = rel_newhead_i
property conjuncts: @property
def conjuncts(self):
"""A sequence of coordinated tokens, including the token itself. """A sequence of coordinated tokens, including the token itself.
YIELDS (Token): A coordinated token. YIELDS (Token): A coordinated token.
DOCS: https://spacy.io/api/token#conjuncts DOCS: https://spacy.io/api/token#conjuncts
""" """
def __get__(self):
cdef Token word cdef Token word
if "conjuncts" in self.doc.user_token_hooks: if "conjuncts" in self.doc.user_token_hooks:
yield from self.doc.user_token_hooks["conjuncts"](self) yield from self.doc.user_token_hooks["conjuncts"](self)
@ -711,15 +711,6 @@ cdef class Token:
def __set__(self, ent_type): def __set__(self, ent_type):
self.c.ent_type = ent_type self.c.ent_type = ent_type
property ent_iob:
"""IOB code of named entity tag. `1="I", 2="O", 3="B"`. 0 means no tag
is assigned.
RETURNS (uint64): IOB code of named entity tag.
"""
def __get__(self):
return self.c.ent_iob
property ent_type_: property ent_type_:
"""RETURNS (unicode): Named entity type.""" """RETURNS (unicode): Named entity type."""
def __get__(self): def __get__(self):
@ -728,14 +719,23 @@ cdef class Token:
def __set__(self, ent_type): def __set__(self, ent_type):
self.c.ent_type = self.vocab.strings.add(ent_type) self.c.ent_type = self.vocab.strings.add(ent_type)
property ent_iob_: @property
def ent_iob(self):
"""IOB code of named entity tag. `1="I", 2="O", 3="B"`. 0 means no tag
is assigned.
RETURNS (uint64): IOB code of named entity tag.
"""
return self.c.ent_iob
@property
def ent_iob_(self):
"""IOB code of named entity tag. "B" means the token begins an entity, """IOB code of named entity tag. "B" means the token begins an entity,
"I" means it is inside an entity, "O" means it is outside an entity, "I" means it is inside an entity, "O" means it is outside an entity,
and "" means no entity tag is set. and "" means no entity tag is set.
RETURNS (unicode): IOB code of named entity tag. RETURNS (unicode): IOB code of named entity tag.
""" """
def __get__(self):
iob_strings = ("", "I", "O", "B") iob_strings = ("", "I", "O", "B")
return iob_strings[self.c.ent_iob] return iob_strings[self.c.ent_iob]
@ -759,25 +759,24 @@ cdef class Token:
def __set__(self, name): def __set__(self, name):
self.c.ent_id = self.vocab.strings.add(name) self.c.ent_id = self.vocab.strings.add(name)
property whitespace_: @property
"""RETURNS (unicode): The trailing whitespace character, if present. def whitespace_(self):
""" """RETURNS (unicode): The trailing whitespace character, if present."""
def __get__(self):
return " " if self.c.spacy else "" return " " if self.c.spacy else ""
property orth_: @property
def orth_(self):
"""RETURNS (unicode): Verbatim text content (identical to """RETURNS (unicode): Verbatim text content (identical to
`Token.text`). Exists mostly for consistency with the other `Token.text`). Exists mostly for consistency with the other
attributes. attributes.
""" """
def __get__(self):
return self.vocab.strings[self.c.lex.orth] return self.vocab.strings[self.c.lex.orth]
property lower_: @property
def lower_(self):
"""RETURNS (unicode): The lowercase token text. Equivalent to """RETURNS (unicode): The lowercase token text. Equivalent to
`Token.text.lower()`. `Token.text.lower()`.
""" """
def __get__(self):
return self.vocab.strings[self.c.lex.lower] return self.vocab.strings[self.c.lex.lower]
property norm_: property norm_:
@ -791,32 +790,32 @@ cdef class Token:
def __set__(self, unicode norm_): def __set__(self, unicode norm_):
self.c.norm = self.vocab.strings.add(norm_) self.c.norm = self.vocab.strings.add(norm_)
property shape_: @property
def shape_(self):
"""RETURNS (unicode): Transform of the tokens's string, to show """RETURNS (unicode): Transform of the tokens's string, to show
orthographic features. For example, "Xxxx" or "dd". orthographic features. For example, "Xxxx" or "dd".
""" """
def __get__(self):
return self.vocab.strings[self.c.lex.shape] return self.vocab.strings[self.c.lex.shape]
property prefix_: @property
def prefix_(self):
"""RETURNS (unicode): A length-N substring from the start of the token. """RETURNS (unicode): A length-N substring from the start of the token.
Defaults to `N=1`. Defaults to `N=1`.
""" """
def __get__(self):
return self.vocab.strings[self.c.lex.prefix] return self.vocab.strings[self.c.lex.prefix]
property suffix_: @property
def suffix_(self):
"""RETURNS (unicode): A length-N substring from the end of the token. """RETURNS (unicode): A length-N substring from the end of the token.
Defaults to `N=3`. Defaults to `N=3`.
""" """
def __get__(self):
return self.vocab.strings[self.c.lex.suffix] return self.vocab.strings[self.c.lex.suffix]
property lang_: @property
def lang_(self):
"""RETURNS (unicode): Language of the parent document's vocabulary, """RETURNS (unicode): Language of the parent document's vocabulary,
e.g. 'en'. e.g. 'en'.
""" """
def __get__(self):
return self.vocab.strings[self.c.lex.lang] return self.vocab.strings[self.c.lex.lang]
property lemma_: property lemma_:
@ -856,110 +855,110 @@ cdef class Token:
def __set__(self, unicode label): def __set__(self, unicode label):
self.c.dep = self.vocab.strings.add(label) self.c.dep = self.vocab.strings.add(label)
property is_oov: @property
def is_oov(self):
"""RETURNS (bool): Whether the token is out-of-vocabulary.""" """RETURNS (bool): Whether the token is out-of-vocabulary."""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_OOV) return Lexeme.c_check_flag(self.c.lex, IS_OOV)
property is_stop: @property
def is_stop(self):
"""RETURNS (bool): Whether the token is a stop word, i.e. part of a """RETURNS (bool): Whether the token is a stop word, i.e. part of a
"stop list" defined by the language data. "stop list" defined by the language data.
""" """
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_STOP) return Lexeme.c_check_flag(self.c.lex, IS_STOP)
property is_alpha: @property
def is_alpha(self):
"""RETURNS (bool): Whether the token consists of alpha characters. """RETURNS (bool): Whether the token consists of alpha characters.
Equivalent to `token.text.isalpha()`. Equivalent to `token.text.isalpha()`.
""" """
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_ALPHA) return Lexeme.c_check_flag(self.c.lex, IS_ALPHA)
property is_ascii: @property
def is_ascii(self):
"""RETURNS (bool): Whether the token consists of ASCII characters. """RETURNS (bool): Whether the token consists of ASCII characters.
Equivalent to `[any(ord(c) >= 128 for c in token.text)]`. Equivalent to `[any(ord(c) >= 128 for c in token.text)]`.
""" """
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_ASCII) return Lexeme.c_check_flag(self.c.lex, IS_ASCII)
property is_digit: @property
def is_digit(self):
"""RETURNS (bool): Whether the token consists of digits. Equivalent to """RETURNS (bool): Whether the token consists of digits. Equivalent to
`token.text.isdigit()`. `token.text.isdigit()`.
""" """
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_DIGIT) return Lexeme.c_check_flag(self.c.lex, IS_DIGIT)
property is_lower: @property
def is_lower(self):
"""RETURNS (bool): Whether the token is in lowercase. Equivalent to """RETURNS (bool): Whether the token is in lowercase. Equivalent to
`token.text.islower()`. `token.text.islower()`.
""" """
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_LOWER) return Lexeme.c_check_flag(self.c.lex, IS_LOWER)
property is_upper: @property
def is_upper(self):
"""RETURNS (bool): Whether the token is in uppercase. Equivalent to """RETURNS (bool): Whether the token is in uppercase. Equivalent to
`token.text.isupper()` `token.text.isupper()`
""" """
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_UPPER) return Lexeme.c_check_flag(self.c.lex, IS_UPPER)
property is_title: @property
def is_title(self):
"""RETURNS (bool): Whether the token is in titlecase. Equivalent to """RETURNS (bool): Whether the token is in titlecase. Equivalent to
`token.text.istitle()`. `token.text.istitle()`.
""" """
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_TITLE) return Lexeme.c_check_flag(self.c.lex, IS_TITLE)
property is_punct: @property
def is_punct(self):
"""RETURNS (bool): Whether the token is punctuation.""" """RETURNS (bool): Whether the token is punctuation."""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_PUNCT) return Lexeme.c_check_flag(self.c.lex, IS_PUNCT)
property is_space: @property
def is_space(self):
"""RETURNS (bool): Whether the token consists of whitespace characters. """RETURNS (bool): Whether the token consists of whitespace characters.
Equivalent to `token.text.isspace()`. Equivalent to `token.text.isspace()`.
""" """
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_SPACE) return Lexeme.c_check_flag(self.c.lex, IS_SPACE)
property is_bracket: @property
def is_bracket(self):
"""RETURNS (bool): Whether the token is a bracket.""" """RETURNS (bool): Whether the token is a bracket."""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_BRACKET) return Lexeme.c_check_flag(self.c.lex, IS_BRACKET)
property is_quote: @property
def is_quote(self):
"""RETURNS (bool): Whether the token is a quotation mark.""" """RETURNS (bool): Whether the token is a quotation mark."""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_QUOTE) return Lexeme.c_check_flag(self.c.lex, IS_QUOTE)
property is_left_punct: @property
def is_left_punct(self):
"""RETURNS (bool): Whether the token is a left punctuation mark.""" """RETURNS (bool): Whether the token is a left punctuation mark."""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_LEFT_PUNCT) return Lexeme.c_check_flag(self.c.lex, IS_LEFT_PUNCT)
property is_right_punct: @property
def is_right_punct(self):
"""RETURNS (bool): Whether the token is a right punctuation mark.""" """RETURNS (bool): Whether the token is a right punctuation mark."""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_RIGHT_PUNCT) return Lexeme.c_check_flag(self.c.lex, IS_RIGHT_PUNCT)
property is_currency: @property
def is_currency(self):
"""RETURNS (bool): Whether the token is a currency symbol.""" """RETURNS (bool): Whether the token is a currency symbol."""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_CURRENCY) return Lexeme.c_check_flag(self.c.lex, IS_CURRENCY)
property like_url: @property
def like_url(self):
"""RETURNS (bool): Whether the token resembles a URL.""" """RETURNS (bool): Whether the token resembles a URL."""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, LIKE_URL) return Lexeme.c_check_flag(self.c.lex, LIKE_URL)
property like_num: @property
def like_num(self):
"""RETURNS (bool): Whether the token resembles a number, e.g. "10.9", """RETURNS (bool): Whether the token resembles a number, e.g. "10.9",
"10", "ten", etc. "10", "ten", etc.
""" """
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, LIKE_NUM) return Lexeme.c_check_flag(self.c.lex, LIKE_NUM)
property like_email: @property
def like_email(self):
"""RETURNS (bool): Whether the token resembles an email address.""" """RETURNS (bool): Whether the token resembles an email address."""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, LIKE_EMAIL) return Lexeme.c_check_flag(self.c.lex, LIKE_EMAIL)

View File

@ -38,6 +38,18 @@ def set_env_log(value):
_PRINT_ENV = value _PRINT_ENV = value
def lang_class_is_loaded(lang):
"""Check whether a Language class is already loaded. Language classes are
loaded lazily, to avoid expensive setup code associated with the language
data.
lang (unicode): Two-letter language code, e.g. 'en'.
RETURNS (bool): Whether a Language class has been loaded.
"""
global LANGUAGES
return lang in LANGUAGES
def get_lang_class(lang): def get_lang_class(lang):
"""Import and load a Language class. """Import and load a Language class.

View File

@ -60,13 +60,24 @@ cdef class Vocab:
self.morphology = Morphology(self.strings, tag_map, lemmatizer) self.morphology = Morphology(self.strings, tag_map, lemmatizer)
self.vectors = Vectors() self.vectors = Vectors()
property lang: @property
def __get__(self): def lang(self):
langfunc = None langfunc = None
if self.lex_attr_getters: if self.lex_attr_getters:
langfunc = self.lex_attr_getters.get(LANG, None) langfunc = self.lex_attr_getters.get(LANG, None)
return langfunc("_") if langfunc else "" return langfunc("_") if langfunc else ""
property writing_system:
"""A dict with information about the language's writing system. To get
the data, we use the vocab.lang property to fetch the Language class.
If the Language class is not loaded, an empty dict is returned.
"""
def __get__(self):
if not util.lang_class_is_loaded(self.lang):
return {}
lang_class = util.get_lang_class(self.lang)
return dict(lang_class.Defaults.writing_system)
def __len__(self): def __len__(self):
"""The current number of lexemes stored. """The current number of lexemes stored.

View File

@ -351,6 +351,24 @@ the two-letter language code.
| `name` | unicode | Two-letter language code, e.g. `'en'`. | | `name` | unicode | Two-letter language code, e.g. `'en'`. |
| `cls` | `Language` | The language class, e.g. `English`. | | `cls` | `Language` | The language class, e.g. `English`. |
### util.lang_class_is_loaded (#util.lang_class_is_loaded tag="function" new="2.1")
Check whether a `Language` class is already loaded. `Language` classes are
loaded lazily, to avoid expensive setup code associated with the language data.
> #### Example
>
> ```python
> lang_cls = util.get_lang_class("en")
> assert util.lang_class_is_loaded("en") is True
> assert util.lang_class_is_loaded("de") is False
> ```
| Name | Type | Description |
| ----------- | ------- | -------------------------------------- |
| `name` | unicode | Two-letter language code, e.g. `'en'`. |
| **RETURNS** | bool | Whether the class has been loaded. |
### util.load_model {#util.load_model tag="function" new="2"} ### util.load_model {#util.load_model tag="function" new="2"}
Load a model from a shortcut link, package or data path. If called with a Load a model from a shortcut link, package or data path. If called with a

View File

@ -289,10 +289,11 @@ Load state from a binary string.
> ``` > ```
| Name | Type | Description | | Name | Type | Description |
| ------------------------------------ | ------------- | --------------------------------------------- | | --------------------------------------------- | ------------- | ------------------------------------------------------------ |
| `strings` | `StringStore` | A table managing the string-to-int mapping. | | `strings` | `StringStore` | A table managing the string-to-int mapping. |
| `vectors` <Tag variant="new">2</Tag> | `Vectors` | A table associating word IDs to word vectors. | | `vectors` <Tag variant="new">2</Tag> | `Vectors` | A table associating word IDs to word vectors. |
| `vectors_length` | int | Number of dimensions for each word vector. | | `vectors_length` | int | Number of dimensions for each word vector. |
| `writing_system` <Tag variant="new">2.1</Tag> | dict | A dict with information about the language's writing system. |
## Serialization fields {#serialization-fields} ## Serialization fields {#serialization-fields}