mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 01:46:28 +03:00
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
commit
e38089d598
|
@ -7,7 +7,7 @@ if __name__ == '__main__':
|
|||
import plac
|
||||
import sys
|
||||
from spacy.cli import download, link, info, package, train, convert, model
|
||||
from spacy.cli import profile
|
||||
from spacy.cli import profile, evaluate
|
||||
from spacy.util import prints
|
||||
|
||||
commands = {
|
||||
|
@ -15,6 +15,7 @@ if __name__ == '__main__':
|
|||
'link': link,
|
||||
'info': info,
|
||||
'train': train,
|
||||
'evaluate': evaluate,
|
||||
'convert': convert,
|
||||
'package': package,
|
||||
'model': model,
|
||||
|
|
|
@ -4,5 +4,6 @@ from .link import link
|
|||
from .package import package
|
||||
from .profile import profile
|
||||
from .train import train
|
||||
from .evaluate import evaluate
|
||||
from .convert import convert
|
||||
from .model import model
|
||||
|
|
93
spacy/cli/evaluate.py
Normal file
93
spacy/cli/evaluate.py
Normal file
|
@ -0,0 +1,93 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals, division, print_function
|
||||
|
||||
import plac
|
||||
import json
|
||||
from collections import defaultdict
|
||||
import cytoolz
|
||||
from pathlib import Path
|
||||
import dill
|
||||
import tqdm
|
||||
from thinc.neural._classes.model import Model
|
||||
from thinc.neural.optimizers import linear_decay
|
||||
from timeit import default_timer as timer
|
||||
import random
|
||||
import numpy.random
|
||||
|
||||
from ..tokens.doc import Doc
|
||||
from ..scorer import Scorer
|
||||
from ..gold import GoldParse, merge_sents
|
||||
from ..gold import GoldCorpus, minibatch
|
||||
from ..util import prints
|
||||
from .. import util
|
||||
from .. import about
|
||||
from .. import displacy
|
||||
from ..compat import json_dumps
|
||||
|
||||
random.seed(0)
|
||||
numpy.random.seed(0)
|
||||
|
||||
|
||||
@plac.annotations(
|
||||
model=("Model name or path", "positional", None, str),
|
||||
data_path=("Location of JSON-formatted evaluation data", "positional", None, str),
|
||||
gold_preproc=("Use gold preprocessing", "flag", "G", bool),
|
||||
)
|
||||
def evaluate(cmd, model, data_path, gold_preproc=False):
|
||||
"""
|
||||
Train a model. Expects data in spaCy's JSON format.
|
||||
"""
|
||||
util.set_env_log(True)
|
||||
data_path = util.ensure_path(data_path)
|
||||
if not data_path.exists():
|
||||
prints(data_path, title="Evaluation data not found", exits=1)
|
||||
corpus = GoldCorpus(data_path, data_path)
|
||||
nlp = util.load_model(model)
|
||||
scorer = nlp.evaluate(list(corpus.dev_docs(nlp, gold_preproc=gold_preproc)))
|
||||
print_results(scorer)
|
||||
|
||||
|
||||
def _render_parses(i, to_render):
|
||||
to_render[0].user_data['title'] = "Batch %d" % i
|
||||
with Path('/tmp/entities.html').open('w') as file_:
|
||||
html = displacy.render(to_render[:5], style='ent', page=True)
|
||||
file_.write(html)
|
||||
with Path('/tmp/parses.html').open('w') as file_:
|
||||
html = displacy.render(to_render[:5], style='dep', page=True)
|
||||
file_.write(html)
|
||||
|
||||
|
||||
def print_progress(itn, losses, dev_scores, wps=0.0):
|
||||
scores = {}
|
||||
for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc',
|
||||
'ents_p', 'ents_r', 'ents_f', 'wps']:
|
||||
scores[col] = 0.0
|
||||
scores['dep_loss'] = losses.get('parser', 0.0)
|
||||
scores['ner_loss'] = losses.get('ner', 0.0)
|
||||
scores['tag_loss'] = losses.get('tagger', 0.0)
|
||||
scores.update(dev_scores)
|
||||
scores['wps'] = wps
|
||||
tpl = '\t'.join((
|
||||
'{:d}',
|
||||
'{dep_loss:.3f}',
|
||||
'{ner_loss:.3f}',
|
||||
'{uas:.3f}',
|
||||
'{ents_p:.3f}',
|
||||
'{ents_r:.3f}',
|
||||
'{ents_f:.3f}',
|
||||
'{tags_acc:.3f}',
|
||||
'{token_acc:.3f}',
|
||||
'{wps:.1f}'))
|
||||
print(tpl.format(itn, **scores))
|
||||
|
||||
|
||||
def print_results(scorer):
|
||||
results = {
|
||||
'TOK': '%.2f' % scorer.token_acc,
|
||||
'POS': '%.2f' % scorer.tags_acc,
|
||||
'UAS': '%.2f' % scorer.uas,
|
||||
'LAS': '%.2f' % scorer.las,
|
||||
'NER P': '%.2f' % scorer.ents_p,
|
||||
'NER R': '%.2f' % scorer.ents_r,
|
||||
'NER F': '%.2f' % scorer.ents_f}
|
||||
util.print_table(results, title="Results")
|
|
@ -105,8 +105,11 @@ def generate_pipeline():
|
|||
"parser, ner. For more information, see the docs on processing pipelines.",
|
||||
title="Enter your model's pipeline components")
|
||||
pipeline = util.get_raw_input("Pipeline components", True)
|
||||
replace = {'True': True, 'False': False}
|
||||
return replace[pipeline] if pipeline in replace else pipeline.split(', ')
|
||||
subs = {'True': True, 'False': False}
|
||||
if pipeline in subs:
|
||||
return subs[pipeline]
|
||||
else:
|
||||
return [p.strip() for p in pipeline.split(',')]
|
||||
|
||||
|
||||
def validate_meta(meta, keys):
|
||||
|
|
|
@ -533,7 +533,7 @@ cdef class Parser:
|
|||
|
||||
states, golds, max_steps = self._init_gold_batch(docs, golds)
|
||||
(tokvecs, bp_tokvecs), state2vec, vec2scores = self.get_batch_model(docs, cuda_stream,
|
||||
0.0)
|
||||
drop)
|
||||
todo = [(s, g) for (s, g) in zip(states, golds)
|
||||
if not s.is_final() and g is not None]
|
||||
if not todo:
|
||||
|
@ -598,7 +598,7 @@ cdef class Parser:
|
|||
self.moves.preprocess_gold(gold)
|
||||
|
||||
cuda_stream = get_cuda_stream()
|
||||
(tokvecs, bp_tokvecs), state2vec, vec2scores = self.get_batch_model(docs, cuda_stream, 0.0)
|
||||
(tokvecs, bp_tokvecs), state2vec, vec2scores = self.get_batch_model(docs, cuda_stream, drop)
|
||||
|
||||
states_d_scores, backprops = _beam_utils.update_beam(self.moves, self.nr_feature, 500,
|
||||
states, golds,
|
||||
|
@ -685,7 +685,7 @@ cdef class Parser:
|
|||
tok2vec, lower, upper = self.model
|
||||
tokvecs, bp_tokvecs = tok2vec.begin_update(docs, drop=dropout)
|
||||
state2vec = precompute_hiddens(len(docs), tokvecs,
|
||||
lower, stream, drop=dropout)
|
||||
lower, stream, drop=0.0)
|
||||
return (tokvecs, bp_tokvecs), state2vec, upper
|
||||
|
||||
nr_feature = 8
|
||||
|
|
|
@ -181,9 +181,10 @@ def is_package(name):
|
|||
name (unicode): Name of package.
|
||||
RETURNS (bool): True if installed package, False if not.
|
||||
"""
|
||||
name = name.lower() # compare package name against lowercase name
|
||||
packages = pkg_resources.working_set.by_key.keys()
|
||||
for package in packages:
|
||||
if package.replace('-', '_') == name:
|
||||
if package.lower().replace('-', '_') == name:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
@ -194,6 +195,7 @@ def get_package_path(name):
|
|||
name (unicode): Package name.
|
||||
RETURNS (Path): Path to installed package.
|
||||
"""
|
||||
name = name.lower() # use lowercase version to be safe
|
||||
# Here we're importing the module just to find it. This is worryingly
|
||||
# indirect, but it's otherwise very difficult to find the package.
|
||||
pkg = importlib.import_module(name)
|
||||
|
|
|
@ -262,7 +262,7 @@ cdef class Vocab:
|
|||
Words can be looked up by string or int ID.
|
||||
|
||||
RETURNS:
|
||||
A word vector. Size and shape determed by the
|
||||
A word vector. Size and shape determined by the
|
||||
vocab.vectors instance. Usually, a numpy ndarray
|
||||
of shape (300,) and dtype float32.
|
||||
|
||||
|
@ -324,6 +324,7 @@ cdef class Vocab:
|
|||
self.lexemes_from_bytes(file_.read())
|
||||
if self.vectors is not None:
|
||||
self.vectors.from_disk(path, exclude='strings.json')
|
||||
link_vectors_to_models(self)
|
||||
return self
|
||||
|
||||
def to_bytes(self, **exclude):
|
||||
|
|
Loading…
Reference in New Issue
Block a user