diff --git a/spacy/ml/parser_model.pyx b/spacy/ml/parser_model.pyx index f004c562e..d5c660e67 100644 --- a/spacy/ml/parser_model.pyx +++ b/spacy/ml/parser_model.pyx @@ -5,7 +5,6 @@ from libc.math cimport exp from libc.stdlib cimport calloc, free, realloc from libc.string cimport memcpy, memset from thinc.backends.cblas cimport saxpy, sgemm -from thinc.backends.linalg cimport Vec, VecVec import numpy import numpy.random @@ -116,14 +115,10 @@ cdef void predict_states( n.hiddens * n.pieces ) for i in range(n.states): - VecVec.add_i( - &A.unmaxed[i*n.hiddens*n.pieces], - W.feat_bias, 1., - n.hiddens * n.pieces - ) + saxpy(cblas)(n.hiddens * n.pieces, 1., W.feat_bias, 1, &A.unmaxed[i*n.hiddens*n.pieces], 1) for j in range(n.hiddens): index = i * n.hiddens * n.pieces + j * n.pieces - which = Vec.arg_max(&A.unmaxed[index], n.pieces) + which = _arg_max(&A.unmaxed[index], n.pieces) A.hiddens[i*n.hiddens + j] = A.unmaxed[index + which] memset(A.scores, 0, n.states * n.classes * sizeof(float)) if W.hidden_weights == NULL: @@ -138,7 +133,7 @@ cdef void predict_states( ) # Add bias for i in range(n.states): - VecVec.add_i(&A.scores[i*n.classes], W.hidden_bias, 1., n.classes) + saxpy(cblas)(n.classes, 1., W.hidden_bias, 1, &scores[i*n.classes], 1) # Set unseen classes to minimum value i = 0 min_ = A.scores[0] @@ -187,7 +182,7 @@ cdef void cpu_log_loss( """Do multi-label log loss""" cdef double max_, gmax, Z, gZ best = arg_max_if_gold(scores, costs, is_valid, O) - guess = Vec.arg_max(scores, O) + guess = _arg_max(scores, O) if best == -1 or guess == -1: # These shouldn't happen, but if they do, we want to make sure we don't # cause an OOB access.