Merge branch 'master' into spacy.io

This commit is contained in:
Ines Montani 2019-10-23 14:41:38 +02:00
commit e4820fa667
14 changed files with 200 additions and 132 deletions

View File

@ -9,6 +9,11 @@ trigger:
exclude: exclude:
- 'website/*' - 'website/*'
- '*.md' - '*.md'
pr:
paths:
exclude:
- 'website/*'
- '*.md'
jobs: jobs:

View File

@ -1,6 +1,6 @@
# fmt: off # fmt: off
__title__ = "spacy" __title__ = "spacy"
__version__ = "2.2.1" __version__ = "2.2.2.dev1"
__release__ = True __release__ = True
__download_url__ = "https://github.com/explosion/spacy-models/releases/download" __download_url__ = "https://github.com/explosion/spacy-models/releases/download"
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json" __compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"

View File

@ -546,7 +546,7 @@ cdef class GoldParse:
def __init__(self, doc, annot_tuples=None, words=None, tags=None, morphology=None, def __init__(self, doc, annot_tuples=None, words=None, tags=None, morphology=None,
heads=None, deps=None, entities=None, make_projective=False, heads=None, deps=None, entities=None, make_projective=False,
cats=None, links=None, **_): cats=None, links=None, **_):
"""Create a GoldParse. """Create a GoldParse. The fields will not be initialized if len(doc) is zero.
doc (Doc): The document the annotations refer to. doc (Doc): The document the annotations refer to.
words (iterable): A sequence of unicode word strings. words (iterable): A sequence of unicode word strings.
@ -575,138 +575,142 @@ cdef class GoldParse:
negative examples respectively. negative examples respectively.
RETURNS (GoldParse): The newly constructed object. RETURNS (GoldParse): The newly constructed object.
""" """
if words is None:
words = [token.text for token in doc]
if tags is None:
tags = [None for _ in words]
if heads is None:
heads = [None for _ in words]
if deps is None:
deps = [None for _ in words]
if morphology is None:
morphology = [None for _ in words]
if entities is None:
entities = ["-" for _ in doc]
elif len(entities) == 0:
entities = ["O" for _ in doc]
else:
# Translate the None values to '-', to make processing easier.
# See Issue #2603
entities = [(ent if ent is not None else "-") for ent in entities]
if not isinstance(entities[0], basestring):
# Assume we have entities specified by character offset.
entities = biluo_tags_from_offsets(doc, entities)
self.mem = Pool() self.mem = Pool()
self.loss = 0 self.loss = 0
self.length = len(doc) self.length = len(doc)
# These are filled by the tagger/parser/entity recogniser
self.c.tags = <int*>self.mem.alloc(len(doc), sizeof(int))
self.c.heads = <int*>self.mem.alloc(len(doc), sizeof(int))
self.c.labels = <attr_t*>self.mem.alloc(len(doc), sizeof(attr_t))
self.c.has_dep = <int*>self.mem.alloc(len(doc), sizeof(int))
self.c.sent_start = <int*>self.mem.alloc(len(doc), sizeof(int))
self.c.ner = <Transition*>self.mem.alloc(len(doc), sizeof(Transition))
self.cats = {} if cats is None else dict(cats) self.cats = {} if cats is None else dict(cats)
self.links = links self.links = links
self.words = [None] * len(doc)
self.tags = [None] * len(doc)
self.heads = [None] * len(doc)
self.labels = [None] * len(doc)
self.ner = [None] * len(doc)
self.morphology = [None] * len(doc)
# This needs to be done before we align the words # avoid allocating memory if the doc does not contain any tokens
if make_projective and heads is not None and deps is not None: if self.length > 0:
heads, deps = nonproj.projectivize(heads, deps) if words is None:
words = [token.text for token in doc]
# Do many-to-one alignment for misaligned tokens. if tags is None:
# If we over-segment, we'll have one gold word that covers a sequence tags = [None for _ in words]
# of predicted words if heads is None:
# If we under-segment, we'll have one predicted word that covers a heads = [None for _ in words]
# sequence of gold words. if deps is None:
# If we "mis-segment", we'll have a sequence of predicted words covering deps = [None for _ in words]
# a sequence of gold words. That's many-to-many -- we don't do that. if morphology is None:
cost, i2j, j2i, i2j_multi, j2i_multi = align([t.orth_ for t in doc], words) morphology = [None for _ in words]
if entities is None:
self.cand_to_gold = [(j if j >= 0 else None) for j in i2j] entities = ["-" for _ in doc]
self.gold_to_cand = [(i if i >= 0 else None) for i in j2i] elif len(entities) == 0:
entities = ["O" for _ in doc]
annot_tuples = (range(len(words)), words, tags, heads, deps, entities)
self.orig_annot = list(zip(*annot_tuples))
for i, gold_i in enumerate(self.cand_to_gold):
if doc[i].text.isspace():
self.words[i] = doc[i].text
self.tags[i] = "_SP"
self.heads[i] = None
self.labels[i] = None
self.ner[i] = None
self.morphology[i] = set()
if gold_i is None:
if i in i2j_multi:
self.words[i] = words[i2j_multi[i]]
self.tags[i] = tags[i2j_multi[i]]
self.morphology[i] = morphology[i2j_multi[i]]
is_last = i2j_multi[i] != i2j_multi.get(i+1)
is_first = i2j_multi[i] != i2j_multi.get(i-1)
# Set next word in multi-token span as head, until last
if not is_last:
self.heads[i] = i+1
self.labels[i] = "subtok"
else:
self.heads[i] = self.gold_to_cand[heads[i2j_multi[i]]]
self.labels[i] = deps[i2j_multi[i]]
# Now set NER...This is annoying because if we've split
# got an entity word split into two, we need to adjust the
# BILUO tags. We can't have BB or LL etc.
# Case 1: O -- easy.
ner_tag = entities[i2j_multi[i]]
if ner_tag == "O":
self.ner[i] = "O"
# Case 2: U. This has to become a B I* L sequence.
elif ner_tag.startswith("U-"):
if is_first:
self.ner[i] = ner_tag.replace("U-", "B-", 1)
elif is_last:
self.ner[i] = ner_tag.replace("U-", "L-", 1)
else:
self.ner[i] = ner_tag.replace("U-", "I-", 1)
# Case 3: L. If not last, change to I.
elif ner_tag.startswith("L-"):
if is_last:
self.ner[i] = ner_tag
else:
self.ner[i] = ner_tag.replace("L-", "I-", 1)
# Case 4: I. Stays correct
elif ner_tag.startswith("I-"):
self.ner[i] = ner_tag
else: else:
self.words[i] = words[gold_i] # Translate the None values to '-', to make processing easier.
self.tags[i] = tags[gold_i] # See Issue #2603
self.morphology[i] = morphology[gold_i] entities = [(ent if ent is not None else "-") for ent in entities]
if heads[gold_i] is None: if not isinstance(entities[0], basestring):
# Assume we have entities specified by character offset.
entities = biluo_tags_from_offsets(doc, entities)
# These are filled by the tagger/parser/entity recogniser
self.c.tags = <int*>self.mem.alloc(len(doc), sizeof(int))
self.c.heads = <int*>self.mem.alloc(len(doc), sizeof(int))
self.c.labels = <attr_t*>self.mem.alloc(len(doc), sizeof(attr_t))
self.c.has_dep = <int*>self.mem.alloc(len(doc), sizeof(int))
self.c.sent_start = <int*>self.mem.alloc(len(doc), sizeof(int))
self.c.ner = <Transition*>self.mem.alloc(len(doc), sizeof(Transition))
self.words = [None] * len(doc)
self.tags = [None] * len(doc)
self.heads = [None] * len(doc)
self.labels = [None] * len(doc)
self.ner = [None] * len(doc)
self.morphology = [None] * len(doc)
# This needs to be done before we align the words
if make_projective and heads is not None and deps is not None:
heads, deps = nonproj.projectivize(heads, deps)
# Do many-to-one alignment for misaligned tokens.
# If we over-segment, we'll have one gold word that covers a sequence
# of predicted words
# If we under-segment, we'll have one predicted word that covers a
# sequence of gold words.
# If we "mis-segment", we'll have a sequence of predicted words covering
# a sequence of gold words. That's many-to-many -- we don't do that.
cost, i2j, j2i, i2j_multi, j2i_multi = align([t.orth_ for t in doc], words)
self.cand_to_gold = [(j if j >= 0 else None) for j in i2j]
self.gold_to_cand = [(i if i >= 0 else None) for i in j2i]
annot_tuples = (range(len(words)), words, tags, heads, deps, entities)
self.orig_annot = list(zip(*annot_tuples))
for i, gold_i in enumerate(self.cand_to_gold):
if doc[i].text.isspace():
self.words[i] = doc[i].text
self.tags[i] = "_SP"
self.heads[i] = None self.heads[i] = None
self.labels[i] = None
self.ner[i] = None
self.morphology[i] = set()
if gold_i is None:
if i in i2j_multi:
self.words[i] = words[i2j_multi[i]]
self.tags[i] = tags[i2j_multi[i]]
self.morphology[i] = morphology[i2j_multi[i]]
is_last = i2j_multi[i] != i2j_multi.get(i+1)
is_first = i2j_multi[i] != i2j_multi.get(i-1)
# Set next word in multi-token span as head, until last
if not is_last:
self.heads[i] = i+1
self.labels[i] = "subtok"
else:
self.heads[i] = self.gold_to_cand[heads[i2j_multi[i]]]
self.labels[i] = deps[i2j_multi[i]]
# Now set NER...This is annoying because if we've split
# got an entity word split into two, we need to adjust the
# BILUO tags. We can't have BB or LL etc.
# Case 1: O -- easy.
ner_tag = entities[i2j_multi[i]]
if ner_tag == "O":
self.ner[i] = "O"
# Case 2: U. This has to become a B I* L sequence.
elif ner_tag.startswith("U-"):
if is_first:
self.ner[i] = ner_tag.replace("U-", "B-", 1)
elif is_last:
self.ner[i] = ner_tag.replace("U-", "L-", 1)
else:
self.ner[i] = ner_tag.replace("U-", "I-", 1)
# Case 3: L. If not last, change to I.
elif ner_tag.startswith("L-"):
if is_last:
self.ner[i] = ner_tag
else:
self.ner[i] = ner_tag.replace("L-", "I-", 1)
# Case 4: I. Stays correct
elif ner_tag.startswith("I-"):
self.ner[i] = ner_tag
else: else:
self.heads[i] = self.gold_to_cand[heads[gold_i]] self.words[i] = words[gold_i]
self.labels[i] = deps[gold_i] self.tags[i] = tags[gold_i]
self.ner[i] = entities[gold_i] self.morphology[i] = morphology[gold_i]
if heads[gold_i] is None:
self.heads[i] = None
else:
self.heads[i] = self.gold_to_cand[heads[gold_i]]
self.labels[i] = deps[gold_i]
self.ner[i] = entities[gold_i]
# Prevent whitespace that isn't within entities from being tagged as # Prevent whitespace that isn't within entities from being tagged as
# an entity. # an entity.
for i in range(len(self.ner)): for i in range(len(self.ner)):
if self.tags[i] == "_SP": if self.tags[i] == "_SP":
prev_ner = self.ner[i-1] if i >= 1 else None prev_ner = self.ner[i-1] if i >= 1 else None
next_ner = self.ner[i+1] if (i+1) < len(self.ner) else None next_ner = self.ner[i+1] if (i+1) < len(self.ner) else None
if prev_ner == "O" or next_ner == "O": if prev_ner == "O" or next_ner == "O":
self.ner[i] = "O" self.ner[i] = "O"
cycle = nonproj.contains_cycle(self.heads) cycle = nonproj.contains_cycle(self.heads)
if cycle is not None: if cycle is not None:
raise ValueError(Errors.E069.format(cycle=cycle, raise ValueError(Errors.E069.format(cycle=cycle,
cycle_tokens=" ".join(["'{}'".format(self.words[tok_id]) for tok_id in cycle]), cycle_tokens=" ".join(["'{}'".format(self.words[tok_id]) for tok_id in cycle]),
doc_tokens=" ".join(words[:50]))) doc_tokens=" ".join(words[:50])))
def __len__(self): def __len__(self):
"""Get the number of gold-standard tokens. """Get the number of gold-standard tokens.

View File

@ -254,7 +254,12 @@ cdef find_matches(TokenPatternC** patterns, int n, Doc doc, extensions=None,
cdef PatternStateC state cdef PatternStateC state
cdef int i, j, nr_extra_attr cdef int i, j, nr_extra_attr
cdef Pool mem = Pool() cdef Pool mem = Pool()
predicate_cache = <char*>mem.alloc(doc.length * len(predicates), sizeof(char)) output = []
if doc.length == 0:
# avoid any processing or mem alloc if the document is empty
return output
if len(predicates) > 0:
predicate_cache = <char*>mem.alloc(doc.length * len(predicates), sizeof(char))
if extensions is not None and len(extensions) >= 1: if extensions is not None and len(extensions) >= 1:
nr_extra_attr = max(extensions.values()) + 1 nr_extra_attr = max(extensions.values()) + 1
extra_attr_values = <attr_t*>mem.alloc(doc.length * nr_extra_attr, sizeof(attr_t)) extra_attr_values = <attr_t*>mem.alloc(doc.length * nr_extra_attr, sizeof(attr_t))
@ -278,7 +283,6 @@ cdef find_matches(TokenPatternC** patterns, int n, Doc doc, extensions=None,
predicate_cache += len(predicates) predicate_cache += len(predicates)
# Handle matches that end in 0-width patterns # Handle matches that end in 0-width patterns
finish_states(matches, states) finish_states(matches, states)
output = []
seen = set() seen = set()
for i in range(matches.size()): for i in range(matches.size()):
match = ( match = (
@ -560,12 +564,14 @@ cdef TokenPatternC* init_pattern(Pool mem, attr_t entity_id, object token_specs)
for j, (attr, value) in enumerate(spec): for j, (attr, value) in enumerate(spec):
pattern[i].attrs[j].attr = attr pattern[i].attrs[j].attr = attr
pattern[i].attrs[j].value = value pattern[i].attrs[j].value = value
pattern[i].extra_attrs = <IndexValueC*>mem.alloc(len(extensions), sizeof(IndexValueC)) if len(extensions) > 0:
pattern[i].extra_attrs = <IndexValueC*>mem.alloc(len(extensions), sizeof(IndexValueC))
for j, (index, value) in enumerate(extensions): for j, (index, value) in enumerate(extensions):
pattern[i].extra_attrs[j].index = index pattern[i].extra_attrs[j].index = index
pattern[i].extra_attrs[j].value = value pattern[i].extra_attrs[j].value = value
pattern[i].nr_extra_attr = len(extensions) pattern[i].nr_extra_attr = len(extensions)
pattern[i].py_predicates = <int32_t*>mem.alloc(len(predicates), sizeof(int32_t)) if len(predicates) > 0:
pattern[i].py_predicates = <int32_t*>mem.alloc(len(predicates), sizeof(int32_t))
for j, index in enumerate(predicates): for j, index in enumerate(predicates):
pattern[i].py_predicates[j] = index pattern[i].py_predicates[j] = index
pattern[i].nr_py = len(predicates) pattern[i].nr_py = len(predicates)

View File

@ -36,7 +36,9 @@ cdef WeightsC get_c_weights(model) except *
cdef SizesC get_c_sizes(model, int batch_size) except * cdef SizesC get_c_sizes(model, int batch_size) except *
cdef void resize_activations(ActivationsC* A, SizesC n) nogil cdef ActivationsC alloc_activations(SizesC n) nogil
cdef void free_activations(const ActivationsC* A) nogil
cdef void predict_states(ActivationsC* A, StateC** states, cdef void predict_states(ActivationsC* A, StateC** states,
const WeightsC* W, SizesC n) nogil const WeightsC* W, SizesC n) nogil

View File

@ -62,6 +62,21 @@ cdef SizesC get_c_sizes(model, int batch_size) except *:
return output return output
cdef ActivationsC alloc_activations(SizesC n) nogil:
cdef ActivationsC A
memset(&A, 0, sizeof(A))
resize_activations(&A, n)
return A
cdef void free_activations(const ActivationsC* A) nogil:
free(A.token_ids)
free(A.scores)
free(A.unmaxed)
free(A.hiddens)
free(A.is_valid)
cdef void resize_activations(ActivationsC* A, SizesC n) nogil: cdef void resize_activations(ActivationsC* A, SizesC n) nogil:
if n.states <= A._max_size: if n.states <= A._max_size:
A._curr_size = n.states A._curr_size = n.states

View File

@ -27,7 +27,8 @@ from thinc.neural.util import get_array_module
from thinc.linalg cimport Vec, VecVec from thinc.linalg cimport Vec, VecVec
import srsly import srsly
from ._parser_model cimport resize_activations, predict_states, arg_max_if_valid from ._parser_model cimport alloc_activations, free_activations
from ._parser_model cimport predict_states, arg_max_if_valid
from ._parser_model cimport WeightsC, ActivationsC, SizesC, cpu_log_loss from ._parser_model cimport WeightsC, ActivationsC, SizesC, cpu_log_loss
from ._parser_model cimport get_c_weights, get_c_sizes from ._parser_model cimport get_c_weights, get_c_sizes
from ._parser_model import ParserModel from ._parser_model import ParserModel
@ -312,8 +313,7 @@ cdef class Parser:
WeightsC weights, SizesC sizes) nogil: WeightsC weights, SizesC sizes) nogil:
cdef int i, j cdef int i, j
cdef vector[StateC*] unfinished cdef vector[StateC*] unfinished
cdef ActivationsC activations cdef ActivationsC activations = alloc_activations(sizes)
memset(&activations, 0, sizeof(activations))
while sizes.states >= 1: while sizes.states >= 1:
predict_states(&activations, predict_states(&activations,
states, &weights, sizes) states, &weights, sizes)
@ -327,6 +327,7 @@ cdef class Parser:
states[i] = unfinished[i] states[i] = unfinished[i]
sizes.states = unfinished.size() sizes.states = unfinished.size()
unfinished.clear() unfinished.clear()
free_activations(&activations)
def set_annotations(self, docs, states_or_beams, tensors=None): def set_annotations(self, docs, states_or_beams, tensors=None):
cdef StateClass state cdef StateClass state
@ -363,6 +364,9 @@ cdef class Parser:
cdef void c_transition_batch(self, StateC** states, const float* scores, cdef void c_transition_batch(self, StateC** states, const float* scores,
int nr_class, int batch_size) nogil: int nr_class, int batch_size) nogil:
# n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc
with gil:
assert self.moves.n_moves > 0
is_valid = <int*>calloc(self.moves.n_moves, sizeof(int)) is_valid = <int*>calloc(self.moves.n_moves, sizeof(int))
cdef int i, guess cdef int i, guess
cdef Transition action cdef Transition action
@ -546,6 +550,10 @@ cdef class Parser:
cdef GoldParse gold cdef GoldParse gold
cdef Pool mem = Pool() cdef Pool mem = Pool()
cdef int i cdef int i
# n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc
assert self.moves.n_moves > 0
is_valid = <int*>mem.alloc(self.moves.n_moves, sizeof(int)) is_valid = <int*>mem.alloc(self.moves.n_moves, sizeof(int))
costs = <float*>mem.alloc(self.moves.n_moves, sizeof(float)) costs = <float*>mem.alloc(self.moves.n_moves, sizeof(float))
cdef np.ndarray d_scores = numpy.zeros((len(states), self.moves.n_moves), cdef np.ndarray d_scores = numpy.zeros((len(states), self.moves.n_moves),

View File

@ -83,6 +83,8 @@ cdef class TransitionSystem:
def get_oracle_sequence(self, doc, GoldParse gold): def get_oracle_sequence(self, doc, GoldParse gold):
cdef Pool mem = Pool() cdef Pool mem = Pool()
# n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc
assert self.n_moves > 0
costs = <float*>mem.alloc(self.n_moves, sizeof(float)) costs = <float*>mem.alloc(self.n_moves, sizeof(float))
is_valid = <int*>mem.alloc(self.n_moves, sizeof(int)) is_valid = <int*>mem.alloc(self.n_moves, sizeof(int))

View File

@ -141,6 +141,18 @@ def test_vectors_most_similar(most_similar_vectors_data):
assert all(row[0] == i for i, row in enumerate(best_rows)) assert all(row[0] == i for i, row in enumerate(best_rows))
def test_vectors_most_similar_identical():
"""Test that most similar identical vectors are assigned a score of 1.0."""
data = numpy.asarray([[4, 2, 2, 2], [4, 2, 2, 2], [1, 1, 1, 1]], dtype="f")
v = Vectors(data=data, keys=["A", "B", "C"])
keys, _, scores = v.most_similar(numpy.asarray([[4, 2, 2, 2]], dtype="f"))
assert scores[0][0] == 1.0 # not 1.0000002
data = numpy.asarray([[1, 2, 3], [1, 2, 3], [1, 1, 1]], dtype="f")
v = Vectors(data=data, keys=["A", "B", "C"])
keys, _, scores = v.most_similar(numpy.asarray([[1, 2, 3]], dtype="f"))
assert scores[0][0] == 1.0 # not 0.9999999
@pytest.mark.parametrize("text", ["apple and orange"]) @pytest.mark.parametrize("text", ["apple and orange"])
def test_vectors_token_vector(tokenizer_v, vectors, text): def test_vectors_token_vector(tokenizer_v, vectors, text):
doc = tokenizer_v(text) doc = tokenizer_v(text)
@ -302,4 +314,4 @@ def test_vocab_prune_vectors():
assert list(remap.keys()) == ["kitten"] assert list(remap.keys()) == ["kitten"]
neighbour, similarity = list(remap.values())[0] neighbour, similarity = list(remap.values())[0]
assert neighbour == "cat", remap assert neighbour == "cat", remap
assert_allclose(similarity, cosine(data[0], data[2]), atol=1e-6) assert_allclose(similarity, cosine(data[0], data[2]), atol=1e-4, rtol=1e-3)

View File

@ -331,6 +331,9 @@ cdef class Tokenizer:
cdef int _save_cached(self, const TokenC* tokens, hash_t key, cdef int _save_cached(self, const TokenC* tokens, hash_t key,
int has_special, int n) except -1: int has_special, int n) except -1:
cdef int i cdef int i
if n <= 0:
# avoid mem alloc of zero length
return 0
for i in range(n): for i in range(n):
if self.vocab._by_orth.get(tokens[i].lex.orth) == NULL: if self.vocab._by_orth.get(tokens[i].lex.orth) == NULL:
return 0 return 0

View File

@ -157,6 +157,9 @@ def _merge(Doc doc, merges):
cdef TokenC* token cdef TokenC* token
cdef Pool mem = Pool() cdef Pool mem = Pool()
cdef int merged_iob = 0 cdef int merged_iob = 0
# merges should not be empty, but make sure to avoid zero-length mem alloc
assert len(merges) > 0
tokens = <TokenC**>mem.alloc(len(merges), sizeof(TokenC)) tokens = <TokenC**>mem.alloc(len(merges), sizeof(TokenC))
spans = [] spans = []

View File

@ -791,6 +791,8 @@ cdef class Doc:
# Get set up for fast loading # Get set up for fast loading
cdef Pool mem = Pool() cdef Pool mem = Pool()
cdef int n_attrs = len(attrs) cdef int n_attrs = len(attrs)
# attrs should not be empty, but make sure to avoid zero-length mem alloc
assert n_attrs > 0
attr_ids = <attr_id_t*>mem.alloc(n_attrs, sizeof(attr_id_t)) attr_ids = <attr_id_t*>mem.alloc(n_attrs, sizeof(attr_id_t))
for i, attr_id in enumerate(attrs): for i, attr_id in enumerate(attrs):
attr_ids[i] = attr_id attr_ids[i] = attr_id

View File

@ -344,8 +344,12 @@ cdef class Vectors:
sorted_index = xp.arange(scores.shape[0])[:,None][i:i+batch_size],xp.argsort(scores[i:i+batch_size], axis=1)[:,::-1] sorted_index = xp.arange(scores.shape[0])[:,None][i:i+batch_size],xp.argsort(scores[i:i+batch_size], axis=1)[:,::-1]
scores[i:i+batch_size] = scores[sorted_index] scores[i:i+batch_size] = scores[sorted_index]
best_rows[i:i+batch_size] = best_rows[sorted_index] best_rows[i:i+batch_size] = best_rows[sorted_index]
xp = get_array_module(self.data) xp = get_array_module(self.data)
# Round values really close to 1 or -1
scores = xp.around(scores, decimals=4, out=scores)
# Account for numerical error we want to return in range -1, 1
scores = xp.clip(scores, a_min=-1, a_max=1, out=scores)
row2key = {row: key for key, row in self.key2row.items()} row2key = {row: key for key, row in self.key2row.items()}
keys = xp.asarray( keys = xp.asarray(
[[row2key[row] for row in best_rows[i] if row in row2key] [[row2key[row] for row in best_rows[i] if row in row2key]

View File

@ -1135,6 +1135,8 @@ def expand_person_entities(doc):
if prev_token.text in ("Dr", "Dr.", "Mr", "Mr.", "Ms", "Ms."): if prev_token.text in ("Dr", "Dr.", "Mr", "Mr.", "Ms", "Ms."):
new_ent = Span(doc, ent.start - 1, ent.end, label=ent.label) new_ent = Span(doc, ent.start - 1, ent.end, label=ent.label)
new_ents.append(new_ent) new_ents.append(new_ent)
else:
new_ents.append(ent)
else: else:
new_ents.append(ent) new_ents.append(ent)
doc.ents = new_ents doc.ents = new_ents