mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-01 00:17:44 +03:00 
			
		
		
		
	small refactor and docs
This commit is contained in:
		
							parent
							
								
									33f4f90ff0
								
							
						
					
					
						commit
						e512874c80
					
				|  | @ -1,14 +1,14 @@ | |||
| from typing import List, Tuple | ||||
| import torch | ||||
| 
 | ||||
| from thinc.api import Model, chain, tuplify | ||||
| from thinc.api import Model, chain | ||||
| from thinc.api import PyTorchWrapper, ArgsKwargs | ||||
| from thinc.types import Floats2d, Ints1d, Ints2d | ||||
| from thinc.types import Floats2d, Ints2d | ||||
| from thinc.util import xp2torch, torch2xp | ||||
| 
 | ||||
| from ...tokens import Doc | ||||
| from ...util import registry | ||||
| from .coref_util import add_dummy, get_sentence_ids | ||||
| from .coref_util import add_dummy | ||||
| 
 | ||||
| 
 | ||||
| @registry.architectures("spacy.Coref.v1") | ||||
|  | @ -19,7 +19,6 @@ def build_wl_coref_model( | |||
|     n_hidden_layers: int = 1,  # TODO rename to "depth"? | ||||
|     dropout: float = 0.3, | ||||
|     # pairs to keep per mention after rough scoring | ||||
|     # TODO change to meaningful name | ||||
|     rough_k: int = 50, | ||||
|     # TODO is this not a training loop setting? | ||||
|     a_scoring_batch_size: int = 512, | ||||
|  | @ -34,7 +33,6 @@ def build_wl_coref_model( | |||
|         dim = 768 | ||||
| 
 | ||||
|     with Model.define_operators({">>": chain}): | ||||
|         # TODO chain tok2vec with these models | ||||
|         coref_scorer = PyTorchWrapper( | ||||
|             CorefScorer( | ||||
|                 dim, | ||||
|  | @ -49,18 +47,6 @@ def build_wl_coref_model( | |||
|             convert_outputs=convert_coref_scorer_outputs, | ||||
|         ) | ||||
|         coref_model = tok2vec >> coref_scorer | ||||
|         # XXX just ignore this until the coref scorer is integrated | ||||
|         # span_predictor = PyTorchWrapper( | ||||
|         #    SpanPredictor( | ||||
|         # TODO this was hardcoded to 1024, check | ||||
|         #        hidden_size, | ||||
|         #        sp_embedding_size, | ||||
|         #    ), | ||||
|         #    convert_inputs=convert_span_predictor_inputs | ||||
|         # ) | ||||
|     # TODO combine models so output is uniform (just one forward pass) | ||||
|     # It may be reasonable to have an option to disable span prediction, | ||||
|     # and just return words as spans. | ||||
|     return coref_model | ||||
| 
 | ||||
| 
 | ||||
|  | @ -95,46 +81,13 @@ def convert_coref_scorer_outputs(model: Model, inputs_outputs, is_train: bool): | |||
|     return (scores_xp, indices_xp), convert_for_torch_backward | ||||
| 
 | ||||
| 
 | ||||
| # TODO add docstring for this, maybe move to utils. | ||||
| # This might belong in the component. | ||||
| def _clusterize(model, scores: Floats2d, top_indices: Ints2d): | ||||
|     xp = model.ops.xp | ||||
|     antecedents = scores.argmax(axis=1) - 1 | ||||
|     not_dummy = antecedents >= 0 | ||||
|     coref_span_heads = xp.arange(0, len(scores))[not_dummy] | ||||
|     antecedents = top_indices[coref_span_heads, antecedents[not_dummy]] | ||||
|     n_words = scores.shape[0] | ||||
|     nodes = [GraphNode(i) for i in range(n_words)] | ||||
|     for i, j in zip(coref_span_heads.tolist(), antecedents.tolist()): | ||||
|         nodes[i].link(nodes[j]) | ||||
|         assert nodes[i] is not nodes[j] | ||||
| 
 | ||||
|     clusters = [] | ||||
|     for node in nodes: | ||||
|         if len(node.links) > 0 and not node.visited: | ||||
|             cluster = [] | ||||
|             stack = [node] | ||||
|             while stack: | ||||
|                 current_node = stack.pop() | ||||
|                 current_node.visited = True | ||||
|                 cluster.append(current_node.id) | ||||
|                 stack.extend(link for link in current_node.links if not link.visited) | ||||
|             assert len(cluster) > 1 | ||||
|             clusters.append(sorted(cluster)) | ||||
|     return sorted(clusters) | ||||
| 
 | ||||
| 
 | ||||
| class CorefScorer(torch.nn.Module): | ||||
|     """Combines all coref modules together to find coreferent spans. | ||||
| 
 | ||||
|     Attributes: | ||||
|         epochs_trained (int): number of epochs the model has been trained for | ||||
| 
 | ||||
|     """ | ||||
|     Combines all coref modules together to find coreferent token pairs. | ||||
|     Submodules (in the order of their usage in the pipeline): | ||||
|         rough_scorer (RoughScorer) | ||||
|         pw (PairwiseEncoder) | ||||
|         a_scorer (AnaphoricityScorer) | ||||
|         sp (SpanPredictor) | ||||
|         - rough_scorer (RoughScorer) that prunes candidate pairs | ||||
|         - pw (DistancePairwiseEncoder) that computes pairwise features | ||||
|         - a_scorer (AnaphoricityScorer) produces the final scores | ||||
|     """ | ||||
| 
 | ||||
|     def __init__( | ||||
|  | @ -149,50 +102,54 @@ class CorefScorer(torch.nn.Module): | |||
|     ): | ||||
|         super().__init__() | ||||
|         """ | ||||
|         A newly created model is set to evaluation mode. | ||||
| 
 | ||||
|         Args: | ||||
|             epochs_trained (int): the number of epochs finished | ||||
|                 (useful for warm start) | ||||
|         dim: Size of the input features. | ||||
|         dist_emb_size: Size of the distance embeddings. | ||||
|         hidden_size: Size of the coreference candidate embeddings. | ||||
|         n_layers: Numbers of layers in the AnaphoricityScorer. | ||||
|         dropout_rate: Dropout probability to apply across all modules. | ||||
|         roughk: Number of candidates the RoughScorer returns. | ||||
|         batch_size: Internal batch-size for the more expensive AnaphoricityScorer. | ||||
|         """ | ||||
|         self.dropout = torch.nn.Dropout(dropout_rate) | ||||
|         self.batch_size = batch_size | ||||
|         # Modules | ||||
|         self.lstm = torch.nn.LSTM( | ||||
|             input_size=dim, | ||||
|             hidden_size=dim, | ||||
|             batch_first=True, | ||||
|         ) | ||||
|         self.rough_scorer = RoughScorer(dim, dropout_rate, roughk) | ||||
|         self.pw = DistancePairwiseEncoder(dist_emb_size, dropout_rate) | ||||
|         # TODO clean this up | ||||
|         bert_emb = dim | ||||
|         pair_emb = bert_emb * 3 + self.pw.shape | ||||
|         pair_emb = dim * 3 + self.pw.shape | ||||
|         self.a_scorer = AnaphoricityScorer( | ||||
|             pair_emb, hidden_size, n_layers, dropout_rate | ||||
|         ) | ||||
|         self.lstm = torch.nn.LSTM( | ||||
|             input_size=bert_emb, | ||||
|             hidden_size=bert_emb, | ||||
|             batch_first=True, | ||||
|         ) | ||||
|         self.dropout = torch.nn.Dropout(dropout_rate) | ||||
|         self.rough_scorer = RoughScorer(bert_emb, dropout_rate, roughk) | ||||
|         self.batch_size = batch_size | ||||
| 
 | ||||
|     def forward(self, word_features: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | ||||
|         """ | ||||
|         This is a massive method, but it made sense to me to not split it into | ||||
|         several ones to let one see the data flow. | ||||
|         1. LSTM encodes the incoming word_features. | ||||
|         2. The RoughScorer scores and prunes the candidates. | ||||
|         3. The DistancePairwiseEncoder embeds the distance between remaning pairs. | ||||
|         4. The AnaphoricityScorer scores all pairs in mini-batches. | ||||
| 
 | ||||
|         Args: | ||||
|             word_features: torch.Tensor containing word encodings | ||||
|         Returns: | ||||
|             coreference scores and top indices | ||||
|         word_features: torch.Tensor containing word encodings | ||||
| 
 | ||||
|         returns: | ||||
|             coref_scores: n_words x roughk floats. | ||||
|             top_indices: n_words x roughk integers. | ||||
|         """ | ||||
|         # words           [n_words, span_emb] | ||||
|         # cluster_ids     [n_words] | ||||
|         self.lstm.flatten_parameters()  # XXX without this there's a warning | ||||
|         word_features = torch.unsqueeze(word_features, dim=0) | ||||
|         words, _ = self.lstm(word_features) | ||||
|         words = words.squeeze() | ||||
|         # words: n_words x dim | ||||
|         words = self.dropout(words) | ||||
|         # Obtain bilinear scores and leave only top-k antecedents for each word | ||||
|         # top_rough_scores  [n_words, n_ants] | ||||
|         # top_indices       [n_words, n_ants] | ||||
|         # top_rough_scores: (n_words x roughk) | ||||
|         # top_indices: (n_words x roughk) | ||||
|         top_rough_scores, top_indices = self.rough_scorer(words) | ||||
|         # Get pairwise features [n_words, n_ants, n_pw_features] | ||||
|         # Get pairwise features | ||||
|         # (n_words x roughk x n_pw_features) | ||||
|         pw = self.pw(top_indices) | ||||
|         batch_size = self.batch_size | ||||
|         a_scores_lst: List[torch.Tensor] = [] | ||||
|  | @ -272,13 +229,8 @@ class AnaphoricityScorer(torch.nn.Module): | |||
| 
 | ||||
|     def _ffnn(self, x: torch.Tensor) -> torch.Tensor: | ||||
|         """ | ||||
|         Calculates anaphoricity scores. | ||||
| 
 | ||||
|         Args: | ||||
|             x: tensor of shape [batch_size, n_ants, n_features] | ||||
| 
 | ||||
|         Returns: | ||||
|             tensor of shape [batch_size, n_ants] | ||||
|         x: tensor of shape (batch_size x roughk x n_features | ||||
|         returns: tensor of shape (batch_size x rough_k) | ||||
|         """ | ||||
|         x = self.out(self.hidden(x)) | ||||
|         return x.squeeze(2) | ||||
|  | @ -293,21 +245,18 @@ class AnaphoricityScorer(torch.nn.Module): | |||
|         """ | ||||
|         Builds the matrix used as input for AnaphoricityScorer. | ||||
| 
 | ||||
|         Args: | ||||
|             all_mentions (torch.Tensor): [n_mentions, mention_emb], | ||||
|                 all the valid mentions of the document, | ||||
|                 can be on a different device | ||||
|             mentions_batch (torch.Tensor): [batch_size, mention_emb], | ||||
|                 the mentions of the current batch, | ||||
|                 is expected to be on the current device | ||||
|             pw_batch (torch.Tensor): [batch_size, n_ants, pw_emb], | ||||
|                 pairwise features of the current batch, | ||||
|                 is expected to be on the current device | ||||
|             top_indices_batch (torch.Tensor): [batch_size, n_ants], | ||||
|                 indices of antecedents of each mention | ||||
|         all_mentions: (n_mentions x mention_emb), | ||||
|             all the valid mentions of the document, | ||||
|             can be on a different device | ||||
|         mentions_batch: (batch_size x mention_emb), | ||||
|             the mentions of the current batch. | ||||
|         pw_batch: (batch_size x roughk x pw_emb), | ||||
|             pairwise distance features of the current batch. | ||||
|         top_indices_batch: (batch_size x n_ants), | ||||
|             indices of antecedents of each mention | ||||
| 
 | ||||
|         Returns: | ||||
|             torch.Tensor: [batch_size, n_ants, pair_emb] | ||||
|             out: pairwise features (batch_size x n_ants x pair_emb) | ||||
|         """ | ||||
|         emb_size = mentions_batch.shape[1] | ||||
|         n_ants = pw_batch.shape[1] | ||||
|  | @ -322,16 +271,15 @@ class AnaphoricityScorer(torch.nn.Module): | |||
| 
 | ||||
| class RoughScorer(torch.nn.Module): | ||||
|     """ | ||||
|     Is needed to give a roughly estimate of the anaphoricity of two candidates, | ||||
|     only top scoring candidates are considered on later steps to reduce | ||||
|     computational complexity. | ||||
|     Cheaper module that gives a rough estimate of the anaphoricity of two | ||||
|     candidates, only top scoring candidates are considered on later | ||||
|     steps to reduce computational cost. | ||||
|     """ | ||||
| 
 | ||||
|     def __init__(self, features: int, dropout_rate: float, rough_k: float): | ||||
|         super().__init__() | ||||
|         self.dropout = torch.nn.Dropout(dropout_rate) | ||||
|         self.bilinear = torch.nn.Linear(features, features) | ||||
| 
 | ||||
|         self.k = rough_k | ||||
| 
 | ||||
|     def forward( | ||||
|  | @ -348,21 +296,6 @@ class RoughScorer(torch.nn.Module): | |||
|         pair_mask = torch.log((pair_mask > 0).to(torch.float)) | ||||
|         bilinear_scores = self.dropout(self.bilinear(mentions)).mm(mentions.T) | ||||
|         rough_scores = pair_mask + bilinear_scores | ||||
| 
 | ||||
|         return self._prune(rough_scores) | ||||
| 
 | ||||
|     def _prune(self, rough_scores: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | ||||
|         """ | ||||
|         Selects top-k rough antecedent scores for each mention. | ||||
| 
 | ||||
|         Args: | ||||
|             rough_scores: tensor of shape [n_mentions, n_mentions], containing | ||||
|                 rough antecedent scores of each mention-antecedent pair. | ||||
| 
 | ||||
|         Returns: | ||||
|             FloatTensor of shape [n_mentions, k], top rough scores | ||||
|             LongTensor of shape [n_mentions, k], top indices | ||||
|         """ | ||||
|         top_scores, indices = torch.topk( | ||||
|             rough_scores, k=min(self.k, len(rough_scores)), dim=1, sorted=False | ||||
|         ) | ||||
|  | @ -371,6 +304,18 @@ class RoughScorer(torch.nn.Module): | |||
| 
 | ||||
| class DistancePairwiseEncoder(torch.nn.Module): | ||||
|     def __init__(self, embedding_size, dropout_rate): | ||||
|         """ | ||||
|         Takes the top_indices indicating, which is a ranked | ||||
|         list for each word and its most likely corresponding | ||||
|         anaphora candidates. For each of these pairs it looks | ||||
|         up a distance embedding from a table, where the distance | ||||
|         corresponds to the log-distance. | ||||
| 
 | ||||
|         embedding_size: int, | ||||
|             Dimensionality of the distance-embeddings table. | ||||
|         dropout_rate: float, | ||||
|             Dropout probability. | ||||
|         """ | ||||
|         super().__init__() | ||||
|         emb_size = embedding_size | ||||
|         self.distance_emb = torch.nn.Embedding(9, emb_size) | ||||
|  | @ -378,7 +323,7 @@ class DistancePairwiseEncoder(torch.nn.Module): | |||
|         self.shape = emb_size | ||||
| 
 | ||||
|     def forward( | ||||
|         self,  # type: ignore  # pylint: disable=arguments-differ  #35566 in pytorch | ||||
|         self, | ||||
|         top_indices: torch.Tensor, | ||||
|     ) -> torch.Tensor: | ||||
|         word_ids = torch.arange(0, top_indices.size(0)) | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue
	
	Block a user