mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-18 12:12:20 +03:00
small refactor and docs
This commit is contained in:
parent
33f4f90ff0
commit
e512874c80
|
@ -1,14 +1,14 @@
|
||||||
from typing import List, Tuple
|
from typing import List, Tuple
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from thinc.api import Model, chain, tuplify
|
from thinc.api import Model, chain
|
||||||
from thinc.api import PyTorchWrapper, ArgsKwargs
|
from thinc.api import PyTorchWrapper, ArgsKwargs
|
||||||
from thinc.types import Floats2d, Ints1d, Ints2d
|
from thinc.types import Floats2d, Ints2d
|
||||||
from thinc.util import xp2torch, torch2xp
|
from thinc.util import xp2torch, torch2xp
|
||||||
|
|
||||||
from ...tokens import Doc
|
from ...tokens import Doc
|
||||||
from ...util import registry
|
from ...util import registry
|
||||||
from .coref_util import add_dummy, get_sentence_ids
|
from .coref_util import add_dummy
|
||||||
|
|
||||||
|
|
||||||
@registry.architectures("spacy.Coref.v1")
|
@registry.architectures("spacy.Coref.v1")
|
||||||
|
@ -19,7 +19,6 @@ def build_wl_coref_model(
|
||||||
n_hidden_layers: int = 1, # TODO rename to "depth"?
|
n_hidden_layers: int = 1, # TODO rename to "depth"?
|
||||||
dropout: float = 0.3,
|
dropout: float = 0.3,
|
||||||
# pairs to keep per mention after rough scoring
|
# pairs to keep per mention after rough scoring
|
||||||
# TODO change to meaningful name
|
|
||||||
rough_k: int = 50,
|
rough_k: int = 50,
|
||||||
# TODO is this not a training loop setting?
|
# TODO is this not a training loop setting?
|
||||||
a_scoring_batch_size: int = 512,
|
a_scoring_batch_size: int = 512,
|
||||||
|
@ -34,7 +33,6 @@ def build_wl_coref_model(
|
||||||
dim = 768
|
dim = 768
|
||||||
|
|
||||||
with Model.define_operators({">>": chain}):
|
with Model.define_operators({">>": chain}):
|
||||||
# TODO chain tok2vec with these models
|
|
||||||
coref_scorer = PyTorchWrapper(
|
coref_scorer = PyTorchWrapper(
|
||||||
CorefScorer(
|
CorefScorer(
|
||||||
dim,
|
dim,
|
||||||
|
@ -49,18 +47,6 @@ def build_wl_coref_model(
|
||||||
convert_outputs=convert_coref_scorer_outputs,
|
convert_outputs=convert_coref_scorer_outputs,
|
||||||
)
|
)
|
||||||
coref_model = tok2vec >> coref_scorer
|
coref_model = tok2vec >> coref_scorer
|
||||||
# XXX just ignore this until the coref scorer is integrated
|
|
||||||
# span_predictor = PyTorchWrapper(
|
|
||||||
# SpanPredictor(
|
|
||||||
# TODO this was hardcoded to 1024, check
|
|
||||||
# hidden_size,
|
|
||||||
# sp_embedding_size,
|
|
||||||
# ),
|
|
||||||
# convert_inputs=convert_span_predictor_inputs
|
|
||||||
# )
|
|
||||||
# TODO combine models so output is uniform (just one forward pass)
|
|
||||||
# It may be reasonable to have an option to disable span prediction,
|
|
||||||
# and just return words as spans.
|
|
||||||
return coref_model
|
return coref_model
|
||||||
|
|
||||||
|
|
||||||
|
@ -95,46 +81,13 @@ def convert_coref_scorer_outputs(model: Model, inputs_outputs, is_train: bool):
|
||||||
return (scores_xp, indices_xp), convert_for_torch_backward
|
return (scores_xp, indices_xp), convert_for_torch_backward
|
||||||
|
|
||||||
|
|
||||||
# TODO add docstring for this, maybe move to utils.
|
|
||||||
# This might belong in the component.
|
|
||||||
def _clusterize(model, scores: Floats2d, top_indices: Ints2d):
|
|
||||||
xp = model.ops.xp
|
|
||||||
antecedents = scores.argmax(axis=1) - 1
|
|
||||||
not_dummy = antecedents >= 0
|
|
||||||
coref_span_heads = xp.arange(0, len(scores))[not_dummy]
|
|
||||||
antecedents = top_indices[coref_span_heads, antecedents[not_dummy]]
|
|
||||||
n_words = scores.shape[0]
|
|
||||||
nodes = [GraphNode(i) for i in range(n_words)]
|
|
||||||
for i, j in zip(coref_span_heads.tolist(), antecedents.tolist()):
|
|
||||||
nodes[i].link(nodes[j])
|
|
||||||
assert nodes[i] is not nodes[j]
|
|
||||||
|
|
||||||
clusters = []
|
|
||||||
for node in nodes:
|
|
||||||
if len(node.links) > 0 and not node.visited:
|
|
||||||
cluster = []
|
|
||||||
stack = [node]
|
|
||||||
while stack:
|
|
||||||
current_node = stack.pop()
|
|
||||||
current_node.visited = True
|
|
||||||
cluster.append(current_node.id)
|
|
||||||
stack.extend(link for link in current_node.links if not link.visited)
|
|
||||||
assert len(cluster) > 1
|
|
||||||
clusters.append(sorted(cluster))
|
|
||||||
return sorted(clusters)
|
|
||||||
|
|
||||||
|
|
||||||
class CorefScorer(torch.nn.Module):
|
class CorefScorer(torch.nn.Module):
|
||||||
"""Combines all coref modules together to find coreferent spans.
|
"""
|
||||||
|
Combines all coref modules together to find coreferent token pairs.
|
||||||
Attributes:
|
|
||||||
epochs_trained (int): number of epochs the model has been trained for
|
|
||||||
|
|
||||||
Submodules (in the order of their usage in the pipeline):
|
Submodules (in the order of their usage in the pipeline):
|
||||||
rough_scorer (RoughScorer)
|
- rough_scorer (RoughScorer) that prunes candidate pairs
|
||||||
pw (PairwiseEncoder)
|
- pw (DistancePairwiseEncoder) that computes pairwise features
|
||||||
a_scorer (AnaphoricityScorer)
|
- a_scorer (AnaphoricityScorer) produces the final scores
|
||||||
sp (SpanPredictor)
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
|
@ -149,50 +102,54 @@ class CorefScorer(torch.nn.Module):
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
"""
|
"""
|
||||||
A newly created model is set to evaluation mode.
|
dim: Size of the input features.
|
||||||
|
dist_emb_size: Size of the distance embeddings.
|
||||||
Args:
|
hidden_size: Size of the coreference candidate embeddings.
|
||||||
epochs_trained (int): the number of epochs finished
|
n_layers: Numbers of layers in the AnaphoricityScorer.
|
||||||
(useful for warm start)
|
dropout_rate: Dropout probability to apply across all modules.
|
||||||
|
roughk: Number of candidates the RoughScorer returns.
|
||||||
|
batch_size: Internal batch-size for the more expensive AnaphoricityScorer.
|
||||||
"""
|
"""
|
||||||
|
self.dropout = torch.nn.Dropout(dropout_rate)
|
||||||
|
self.batch_size = batch_size
|
||||||
|
# Modules
|
||||||
|
self.lstm = torch.nn.LSTM(
|
||||||
|
input_size=dim,
|
||||||
|
hidden_size=dim,
|
||||||
|
batch_first=True,
|
||||||
|
)
|
||||||
|
self.rough_scorer = RoughScorer(dim, dropout_rate, roughk)
|
||||||
self.pw = DistancePairwiseEncoder(dist_emb_size, dropout_rate)
|
self.pw = DistancePairwiseEncoder(dist_emb_size, dropout_rate)
|
||||||
# TODO clean this up
|
pair_emb = dim * 3 + self.pw.shape
|
||||||
bert_emb = dim
|
|
||||||
pair_emb = bert_emb * 3 + self.pw.shape
|
|
||||||
self.a_scorer = AnaphoricityScorer(
|
self.a_scorer = AnaphoricityScorer(
|
||||||
pair_emb, hidden_size, n_layers, dropout_rate
|
pair_emb, hidden_size, n_layers, dropout_rate
|
||||||
)
|
)
|
||||||
self.lstm = torch.nn.LSTM(
|
|
||||||
input_size=bert_emb,
|
|
||||||
hidden_size=bert_emb,
|
|
||||||
batch_first=True,
|
|
||||||
)
|
|
||||||
self.dropout = torch.nn.Dropout(dropout_rate)
|
|
||||||
self.rough_scorer = RoughScorer(bert_emb, dropout_rate, roughk)
|
|
||||||
self.batch_size = batch_size
|
|
||||||
|
|
||||||
def forward(self, word_features: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
def forward(self, word_features: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
"""
|
"""
|
||||||
This is a massive method, but it made sense to me to not split it into
|
1. LSTM encodes the incoming word_features.
|
||||||
several ones to let one see the data flow.
|
2. The RoughScorer scores and prunes the candidates.
|
||||||
|
3. The DistancePairwiseEncoder embeds the distance between remaning pairs.
|
||||||
|
4. The AnaphoricityScorer scores all pairs in mini-batches.
|
||||||
|
|
||||||
Args:
|
word_features: torch.Tensor containing word encodings
|
||||||
word_features: torch.Tensor containing word encodings
|
|
||||||
Returns:
|
returns:
|
||||||
coreference scores and top indices
|
coref_scores: n_words x roughk floats.
|
||||||
|
top_indices: n_words x roughk integers.
|
||||||
"""
|
"""
|
||||||
# words [n_words, span_emb]
|
|
||||||
# cluster_ids [n_words]
|
|
||||||
self.lstm.flatten_parameters() # XXX without this there's a warning
|
self.lstm.flatten_parameters() # XXX without this there's a warning
|
||||||
word_features = torch.unsqueeze(word_features, dim=0)
|
word_features = torch.unsqueeze(word_features, dim=0)
|
||||||
words, _ = self.lstm(word_features)
|
words, _ = self.lstm(word_features)
|
||||||
words = words.squeeze()
|
words = words.squeeze()
|
||||||
|
# words: n_words x dim
|
||||||
words = self.dropout(words)
|
words = self.dropout(words)
|
||||||
# Obtain bilinear scores and leave only top-k antecedents for each word
|
# Obtain bilinear scores and leave only top-k antecedents for each word
|
||||||
# top_rough_scores [n_words, n_ants]
|
# top_rough_scores: (n_words x roughk)
|
||||||
# top_indices [n_words, n_ants]
|
# top_indices: (n_words x roughk)
|
||||||
top_rough_scores, top_indices = self.rough_scorer(words)
|
top_rough_scores, top_indices = self.rough_scorer(words)
|
||||||
# Get pairwise features [n_words, n_ants, n_pw_features]
|
# Get pairwise features
|
||||||
|
# (n_words x roughk x n_pw_features)
|
||||||
pw = self.pw(top_indices)
|
pw = self.pw(top_indices)
|
||||||
batch_size = self.batch_size
|
batch_size = self.batch_size
|
||||||
a_scores_lst: List[torch.Tensor] = []
|
a_scores_lst: List[torch.Tensor] = []
|
||||||
|
@ -272,13 +229,8 @@ class AnaphoricityScorer(torch.nn.Module):
|
||||||
|
|
||||||
def _ffnn(self, x: torch.Tensor) -> torch.Tensor:
|
def _ffnn(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
"""
|
"""
|
||||||
Calculates anaphoricity scores.
|
x: tensor of shape (batch_size x roughk x n_features
|
||||||
|
returns: tensor of shape (batch_size x rough_k)
|
||||||
Args:
|
|
||||||
x: tensor of shape [batch_size, n_ants, n_features]
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
tensor of shape [batch_size, n_ants]
|
|
||||||
"""
|
"""
|
||||||
x = self.out(self.hidden(x))
|
x = self.out(self.hidden(x))
|
||||||
return x.squeeze(2)
|
return x.squeeze(2)
|
||||||
|
@ -293,21 +245,18 @@ class AnaphoricityScorer(torch.nn.Module):
|
||||||
"""
|
"""
|
||||||
Builds the matrix used as input for AnaphoricityScorer.
|
Builds the matrix used as input for AnaphoricityScorer.
|
||||||
|
|
||||||
Args:
|
all_mentions: (n_mentions x mention_emb),
|
||||||
all_mentions (torch.Tensor): [n_mentions, mention_emb],
|
all the valid mentions of the document,
|
||||||
all the valid mentions of the document,
|
can be on a different device
|
||||||
can be on a different device
|
mentions_batch: (batch_size x mention_emb),
|
||||||
mentions_batch (torch.Tensor): [batch_size, mention_emb],
|
the mentions of the current batch.
|
||||||
the mentions of the current batch,
|
pw_batch: (batch_size x roughk x pw_emb),
|
||||||
is expected to be on the current device
|
pairwise distance features of the current batch.
|
||||||
pw_batch (torch.Tensor): [batch_size, n_ants, pw_emb],
|
top_indices_batch: (batch_size x n_ants),
|
||||||
pairwise features of the current batch,
|
indices of antecedents of each mention
|
||||||
is expected to be on the current device
|
|
||||||
top_indices_batch (torch.Tensor): [batch_size, n_ants],
|
|
||||||
indices of antecedents of each mention
|
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
torch.Tensor: [batch_size, n_ants, pair_emb]
|
out: pairwise features (batch_size x n_ants x pair_emb)
|
||||||
"""
|
"""
|
||||||
emb_size = mentions_batch.shape[1]
|
emb_size = mentions_batch.shape[1]
|
||||||
n_ants = pw_batch.shape[1]
|
n_ants = pw_batch.shape[1]
|
||||||
|
@ -322,16 +271,15 @@ class AnaphoricityScorer(torch.nn.Module):
|
||||||
|
|
||||||
class RoughScorer(torch.nn.Module):
|
class RoughScorer(torch.nn.Module):
|
||||||
"""
|
"""
|
||||||
Is needed to give a roughly estimate of the anaphoricity of two candidates,
|
Cheaper module that gives a rough estimate of the anaphoricity of two
|
||||||
only top scoring candidates are considered on later steps to reduce
|
candidates, only top scoring candidates are considered on later
|
||||||
computational complexity.
|
steps to reduce computational cost.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, features: int, dropout_rate: float, rough_k: float):
|
def __init__(self, features: int, dropout_rate: float, rough_k: float):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.dropout = torch.nn.Dropout(dropout_rate)
|
self.dropout = torch.nn.Dropout(dropout_rate)
|
||||||
self.bilinear = torch.nn.Linear(features, features)
|
self.bilinear = torch.nn.Linear(features, features)
|
||||||
|
|
||||||
self.k = rough_k
|
self.k = rough_k
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
|
@ -348,21 +296,6 @@ class RoughScorer(torch.nn.Module):
|
||||||
pair_mask = torch.log((pair_mask > 0).to(torch.float))
|
pair_mask = torch.log((pair_mask > 0).to(torch.float))
|
||||||
bilinear_scores = self.dropout(self.bilinear(mentions)).mm(mentions.T)
|
bilinear_scores = self.dropout(self.bilinear(mentions)).mm(mentions.T)
|
||||||
rough_scores = pair_mask + bilinear_scores
|
rough_scores = pair_mask + bilinear_scores
|
||||||
|
|
||||||
return self._prune(rough_scores)
|
|
||||||
|
|
||||||
def _prune(self, rough_scores: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
||||||
"""
|
|
||||||
Selects top-k rough antecedent scores for each mention.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
rough_scores: tensor of shape [n_mentions, n_mentions], containing
|
|
||||||
rough antecedent scores of each mention-antecedent pair.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
FloatTensor of shape [n_mentions, k], top rough scores
|
|
||||||
LongTensor of shape [n_mentions, k], top indices
|
|
||||||
"""
|
|
||||||
top_scores, indices = torch.topk(
|
top_scores, indices = torch.topk(
|
||||||
rough_scores, k=min(self.k, len(rough_scores)), dim=1, sorted=False
|
rough_scores, k=min(self.k, len(rough_scores)), dim=1, sorted=False
|
||||||
)
|
)
|
||||||
|
@ -371,6 +304,18 @@ class RoughScorer(torch.nn.Module):
|
||||||
|
|
||||||
class DistancePairwiseEncoder(torch.nn.Module):
|
class DistancePairwiseEncoder(torch.nn.Module):
|
||||||
def __init__(self, embedding_size, dropout_rate):
|
def __init__(self, embedding_size, dropout_rate):
|
||||||
|
"""
|
||||||
|
Takes the top_indices indicating, which is a ranked
|
||||||
|
list for each word and its most likely corresponding
|
||||||
|
anaphora candidates. For each of these pairs it looks
|
||||||
|
up a distance embedding from a table, where the distance
|
||||||
|
corresponds to the log-distance.
|
||||||
|
|
||||||
|
embedding_size: int,
|
||||||
|
Dimensionality of the distance-embeddings table.
|
||||||
|
dropout_rate: float,
|
||||||
|
Dropout probability.
|
||||||
|
"""
|
||||||
super().__init__()
|
super().__init__()
|
||||||
emb_size = embedding_size
|
emb_size = embedding_size
|
||||||
self.distance_emb = torch.nn.Embedding(9, emb_size)
|
self.distance_emb = torch.nn.Embedding(9, emb_size)
|
||||||
|
@ -378,7 +323,7 @@ class DistancePairwiseEncoder(torch.nn.Module):
|
||||||
self.shape = emb_size
|
self.shape = emb_size
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self, # type: ignore # pylint: disable=arguments-differ #35566 in pytorch
|
self,
|
||||||
top_indices: torch.Tensor,
|
top_indices: torch.Tensor,
|
||||||
) -> torch.Tensor:
|
) -> torch.Tensor:
|
||||||
word_ids = torch.arange(0, top_indices.size(0))
|
word_ids = torch.arange(0, top_indices.size(0))
|
||||||
|
|
Loading…
Reference in New Issue
Block a user