mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Merge pull request #7039 from svlandeg/debug
This commit is contained in:
commit
e583050547
|
@ -291,14 +291,16 @@ def forward(model: Tok2VecListener, inputs, is_train: bool):
|
|||
# of data.
|
||||
# When the components batch differently, we don't receive a matching
|
||||
# prediction from the upstream, so we can't predict.
|
||||
if not all(doc.tensor.size for doc in inputs):
|
||||
outputs = []
|
||||
width = model.get_dim("nO")
|
||||
for doc in inputs:
|
||||
if doc.tensor.size == 0:
|
||||
# But we do need to do *something* if the tensor hasn't been set.
|
||||
# The compromise is to at least return data of the right shape,
|
||||
# so the output is valid.
|
||||
width = model.get_dim("nO")
|
||||
outputs = [model.ops.alloc2f(len(doc), width) for doc in inputs]
|
||||
outputs.append(model.ops.alloc2f(len(doc), width))
|
||||
else:
|
||||
outputs = [doc.tensor for doc in inputs]
|
||||
outputs.append(doc.tensor)
|
||||
return outputs, lambda dX: []
|
||||
|
||||
|
||||
|
|
68
spacy/tests/regression/test_issue7029.py
Normal file
68
spacy/tests/regression/test_issue7029.py
Normal file
|
@ -0,0 +1,68 @@
|
|||
from spacy.lang.en import English
|
||||
from spacy.training import Example
|
||||
from spacy.util import load_config_from_str
|
||||
|
||||
|
||||
CONFIG = """
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["tok2vec", "tagger"]
|
||||
|
||||
[components]
|
||||
|
||||
[components.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[components.tok2vec.model]
|
||||
@architectures = "spacy.Tok2Vec.v1"
|
||||
|
||||
[components.tok2vec.model.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v1"
|
||||
width = ${components.tok2vec.model.encode:width}
|
||||
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
|
||||
rows = [5000,2500,2500,2500]
|
||||
include_static_vectors = false
|
||||
|
||||
[components.tok2vec.model.encode]
|
||||
@architectures = "spacy.MaxoutWindowEncoder.v1"
|
||||
width = 96
|
||||
depth = 4
|
||||
window_size = 1
|
||||
maxout_pieces = 3
|
||||
|
||||
[components.tagger]
|
||||
factory = "tagger"
|
||||
|
||||
[components.tagger.model]
|
||||
@architectures = "spacy.Tagger.v1"
|
||||
nO = null
|
||||
|
||||
[components.tagger.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = ${components.tok2vec.model.encode:width}
|
||||
upstream = "*"
|
||||
"""
|
||||
|
||||
|
||||
TRAIN_DATA = [
|
||||
("I like green eggs", {"tags": ["N", "V", "J", "N"]}),
|
||||
("Eat blue ham", {"tags": ["V", "J", "N"]}),
|
||||
]
|
||||
|
||||
|
||||
def test_issue7029():
|
||||
"""Test that an empty document doesn't mess up an entire batch.
|
||||
"""
|
||||
nlp = English.from_config(load_config_from_str(CONFIG))
|
||||
train_examples = []
|
||||
for t in TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
||||
for i in range(50):
|
||||
losses = {}
|
||||
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||
texts = ["first", "second", "third", "fourth", "and", "then", "some", ""]
|
||||
nlp.select_pipes(enable=["tok2vec", "tagger"])
|
||||
docs1 = list(nlp.pipe(texts, batch_size=1))
|
||||
docs2 = list(nlp.pipe(texts, batch_size=4))
|
||||
assert [doc[0].tag_ for doc in docs1[:-1]] == [doc[0].tag_ for doc in docs2[:-1]]
|
Loading…
Reference in New Issue
Block a user