From e5d9eaf79c5c935b4553c5ede31de383571fe0dc Mon Sep 17 00:00:00 2001 From: Ines Montani Date: Tue, 28 Jul 2020 23:12:42 +0200 Subject: [PATCH] Tidy up docstrings and arguments --- spacy/language.py | 105 ++++++++++++++++++++++++++++++++++++---------- 1 file changed, 82 insertions(+), 23 deletions(-) diff --git a/spacy/language.py b/spacy/language.py index 79fceec95..a75295ca5 100644 --- a/spacy/language.py +++ b/spacy/language.py @@ -36,6 +36,7 @@ from . import util from . import about +# TODO: integrate pipeline analyis ENABLE_PIPELINE_ANALYSIS = False # This is the base config will all settings (training etc.) DEFAULT_CONFIG_PATH = Path(__file__).parent / "default_config.cfg" @@ -43,6 +44,10 @@ DEFAULT_CONFIG = Config().from_disk(DEFAULT_CONFIG_PATH) class BaseDefaults: + """Language data defaults, available via Language.Defaults. Can be + overwritten by language subclasses by defining their own subclasses of + Language.Defaults. + """ config: Config = Config() tokenizer_exceptions: Dict[str, List[dict]] = BASE_EXCEPTIONS prefixes: Optional[List[Union[str, Pattern]]] = TOKENIZER_PREFIXES @@ -58,6 +63,9 @@ class BaseDefaults: @registry.tokenizers("spacy.Tokenizer.v1") def create_tokenizer() -> Callable[["Language"], Tokenizer]: + """Registered function to create a tokenizer. Returns a factory that takes + the nlp object and returns a Tokenizer instance using the language detaults. + """ def tokenizer_factory(nlp: "Language") -> Tokenizer: prefixes = nlp.Defaults.prefixes suffixes = nlp.Defaults.suffixes @@ -80,6 +88,11 @@ def create_tokenizer() -> Callable[["Language"], Tokenizer]: @registry.lemmatizers("spacy.Lemmatizer.v1") def create_lemmatizer() -> Callable[["Language"], "Lemmatizer"]: + """Registered function to create a lemmatizer. Returns a factory that takes + the nlp object and returns a Lemmatizer instance with data loaded in from + spacy-lookups-data, if the package is installed. + """ + # TODO: Will be replaced when the lemmatizer becomes a pipeline component tables = ["lemma_lookup", "lemma_rules", "lemma_exc", "lemma_index"] def lemmatizer_factory(nlp: "Language") -> "Lemmatizer": @@ -116,7 +129,7 @@ class Language: create_tokenizer: Optional[Callable[["Language"], Callable[[str], Doc]]] = None, create_lemmatizer: Optional[Callable[["Language"], Callable]] = None, **kwargs, - ): + ) -> None: """Initialise a Language object. vocab (Vocab): A `Vocab` object. If `True`, a vocab is created. @@ -134,7 +147,8 @@ class Language: returns a tokenizer. create_lemmatizer (Callable): Function that takes the nlp object and returns a lemmatizer. - RETURNS (Language): The newly constructed object. + + DOCS: https://spacy.io/api/language#init """ # We're only calling this to import all factories provided via entry # points. The factory decorator applied to these functions takes care @@ -189,6 +203,13 @@ class Language: @property def meta(self) -> Dict[str, Any]: + """Custom meta data of the language class. If a model is loaded, this + includes details from the model's meta.json. + + RETURNS (Dict[str, Any]): The meta. + + DOCS: https://spacy.io/api/language#meta + """ spacy_version = util.get_model_version_range(about.__version__) if self.vocab.lang: self._meta.setdefault("lang", self.vocab.lang) @@ -221,6 +242,13 @@ class Language: @property def config(self) -> Config: + """Trainable config for the current language instance. Includes the + current pipeline components, as well as default training config. + + RETURNS (thinc.api.Config): The config. + + DOCS: https://spacy.io/api/language#config + """ self._config.setdefault("nlp", {}) self._config.setdefault("training", {}) self._config["nlp"]["lang"] = self.lang @@ -382,6 +410,8 @@ class Language: select the best model. Weights should sum to 1.0 per component and will be combined and normalized for the whole pipeline. func (Optional[Callable]): Factory function if not used as a decorator. + + DOCS: https://spacy.io/api/language#factory """ if not isinstance(name, str): raise ValueError(Errors.E963.format(decorator="factory")) @@ -460,6 +490,8 @@ class Language: select the best model. Weights should sum to 1.0 per component and will be combined and normalized for the whole pipeline. func (Optional[Callable]): Factory function if not used as a decorator. + + DOCS: https://spacy.io/api/language#component """ if name is not None and not isinstance(name, str): raise ValueError(Errors.E963.format(decorator="component")) @@ -504,6 +536,7 @@ class Language: self, factory_name: str, name: Optional[str] = None, + *, config: Optional[Dict[str, Any]] = SimpleFrozenDict(), overrides: Optional[Dict[str, Any]] = SimpleFrozenDict(), validate: bool = True, @@ -521,6 +554,8 @@ class Language: validate (bool): Whether to validate the component config against the arguments and types expected by the factory. RETURNS (Callable[[Doc], Doc]): The pipeline component. + + DOCS: https://spacy.io/api/language#create_pipe """ name = name if name is not None else factory_name if not isinstance(config, dict): @@ -692,6 +727,7 @@ class Language: self, name: str, factory_name: str, + *, config: Dict[str, Any] = SimpleFrozenDict(), validate: bool = True, ) -> None: @@ -761,6 +797,7 @@ class Language: def __call__( self, text: str, + *, disable: Iterable[str] = tuple(), component_cfg: Optional[Dict[str, Dict[str, Any]]] = None, ) -> Doc: @@ -770,8 +807,8 @@ class Language: text (str): The text to be processed. disable (list): Names of the pipeline components to disable. - component_cfg (dict): An optional dictionary with extra keyword arguments - for specific components. + component_cfg (Dict[str, dict]): An optional dictionary with extra + keyword arguments for specific components. RETURNS (Doc): A container for accessing the annotations. DOCS: https://spacy.io/api/language#call @@ -811,6 +848,7 @@ class Language: def select_pipes( self, + *, disable: Optional[Union[str, Iterable[str]]] = None, enable: Optional[Union[str, Iterable[str]]] = None, ) -> "DisabledPipes": @@ -853,7 +891,7 @@ class Language: def update( self, examples: Iterable[Example], - dummy: Optional[Any] = None, + _: Optional[Any] = None, *, drop: float = 0.0, sgd: Optional[Optimizer] = None, @@ -863,7 +901,7 @@ class Language: """Update the models in the pipeline. examples (Iterable[Example]): A batch of examples - dummy: Should not be set - serves to catch backwards-incompatible scripts. + _: Should not be set - serves to catch backwards-incompatible scripts. drop (float): The dropout rate. sgd (Optimizer): An optimizer. losses (Dict[str, float]): Dictionary to update with the loss, keyed by component. @@ -873,7 +911,7 @@ class Language: DOCS: https://spacy.io/api/language#update """ - if dummy is not None: + if _ is not None: raise ValueError(Errors.E989) if losses is None: losses = {} @@ -890,12 +928,10 @@ class Language: raise TypeError( Errors.E978.format(name="language", method="update", types=wrong_types) ) - if sgd is None: if self._optimizer is None: self._optimizer = create_default_optimizer() sgd = self._optimizer - if component_cfg is None: component_cfg = {} for i, (name, proc) in enumerate(self.pipeline): @@ -915,6 +951,7 @@ class Language: def rehearse( self, examples: Iterable[Example], + *, sgd: Optional[Optimizer] = None, losses: Optional[Dict[str, float]] = None, component_cfg: Optional[Dict[str, Dict[str, Any]]] = None, @@ -937,8 +974,9 @@ class Language: >>> nlp.update(labelled_batch) >>> raw_batch = [Example.from_dict(nlp.make_doc(text), {}) for text in next(raw_text_batches)] >>> nlp.rehearse(raw_batch) + + DOCS: https://spacy.io/api/language#rehearse """ - # TODO: document if len(examples) == 0: return if not isinstance(examples, IterableInstance): @@ -983,17 +1021,18 @@ class Language: def begin_training( self, - get_examples: Optional[Callable] = None, + get_examples: Optional[Callable[[], Iterable[Example]]] = None, + *, sgd: Optional[Optimizer] = None, device: int = -1, ) -> Optimizer: - """Allocate models, pre-process training data and acquire a trainer and - optimizer. Used as a contextmanager. + """Initialize the pipe for training, using data examples if available. - get_examples (function): Function returning example training data. - TODO: document format change since 3.0. - sgd (Optional[Optimizer]): An optimizer. - RETURNS: An optimizer. + get_examples (Callable[[], Iterable[Example]]): Optional function that + returns gold-standard Example objects. + sgd (thinc.api.Optimizer): Optional optimizer. Will be created with + create_optimizer if it doesn't exist. + RETURNS (thinc.api.Optimizer): The optimizer. DOCS: https://spacy.io/api/language#begin_training """ @@ -1022,18 +1061,20 @@ class Language: return self._optimizer def resume_training( - self, sgd: Optional[Optimizer] = None, device: int = -1 + self, *, sgd: Optional[Optimizer] = None, device: int = -1 ) -> Optimizer: """Continue training a pretrained model. Create and return an optimizer, and initialize "rehearsal" for any pipeline component that has a .rehearse() method. Rehearsal is used to prevent - models from "forgetting" their initialised "knowledge". To perform + models from "forgetting" their initialized "knowledge". To perform rehearsal, collect samples of text you want the models to retain performance on, and call nlp.rehearse() with a batch of Example objects. sgd (Optional[Optimizer]): An optimizer. RETURNS (Optimizer): The optimizer. + + DOCS: https://spacy.io/api/language#resume_training """ if device >= 0: # TODO: do we need this here? require_gpu(device) @@ -1052,11 +1093,12 @@ class Language: def evaluate( self, examples: Iterable[Example], + *, verbose: bool = False, batch_size: int = 256, scorer: Optional[Scorer] = None, component_cfg: Optional[Dict[str, Dict[str, Any]]] = None, - ) -> Scorer: + ) -> Dict[str, Union[float, dict]]: """Evaluate a model's pipeline components. examples (Iterable[Example]): `Example` objects. @@ -1112,7 +1154,9 @@ class Language: EXAMPLE: >>> with nlp.use_params(optimizer.averages): - >>> nlp.to_disk('/tmp/checkpoint') + >>> nlp.to_disk("/tmp/checkpoint") + + DOCS: https://spacy.io/api/language#use_params """ contexts = [ pipe.use_params(params) @@ -1136,6 +1180,7 @@ class Language: def pipe( self, texts: Iterable[str], + *, as_tuples: bool = False, batch_size: int = 1000, disable: Iterable[str] = tuple(), @@ -1305,6 +1350,16 @@ class Language: """Create the nlp object from a loaded config. Will set up the tokenizer and language data, add pipeline components etc. If no config is provided, the default config of the given language is used. + + config (Dict[str, Any] / Config): The loaded config. + disable (Iterable[str]): List of pipeline component names to disable. + auto_fill (bool): Automatically fill in missing values in config based + on defaults and function argument annotations. + validate (bool): Validate the component config and arguments against + the types expected by the factory. + RETURNS (Language): The initialized Language class. + + DOCS: https://spacy.io/api/language#from_config """ if auto_fill: config = util.deep_merge_configs(config, cls.default_config) @@ -1418,7 +1473,6 @@ class Language: _fix_pretrained_vectors_name(self) path = util.ensure_path(path) - deserializers = {} if Path(path / "config.cfg").exists(): deserializers["config.cfg"] = lambda p: self.config.from_disk(p) @@ -1509,6 +1563,11 @@ class Language: @dataclass class FactoryMeta: + """Dataclass containing information about a component and its defaults + provided by the @Language.component or @Language.factory decorator. It's + created whenever a component is defined and stored on the Language class for + each component instance and factory instance. + """ factory: str default_config: Optional[Dict[str, Any]] = None # noqa: E704 assigns: Iterable[str] = tuple() @@ -1551,7 +1610,7 @@ def _fix_pretrained_vectors_name(nlp: Language) -> None: class DisabledPipes(list): """Manager for temporary pipeline disabling.""" - def __init__(self, nlp: Language, names: List[str]): + def __init__(self, nlp: Language, names: List[str]) -> None: self.nlp = nlp self.names = names # Important! Not deep copy -- we just want the container (but we also