mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	Tidy up and auto-format
This commit is contained in:
		
							parent
							
								
									2a4d56e730
								
							
						
					
					
						commit
						e68459296d
					
				|  | @ -7,8 +7,6 @@ import typer | |||
| 
 | ||||
| from ._util import Arg, Opt, debug_cli, show_validation_error, parse_config_overrides | ||||
| from .. import util | ||||
| from ..lang.en import English | ||||
| from ..util import dot_to_object | ||||
| 
 | ||||
| 
 | ||||
| @debug_cli.command("model") | ||||
|  | @ -130,8 +128,8 @@ def _sentences(): | |||
|     ] | ||||
| 
 | ||||
| 
 | ||||
| def _get_docs(): | ||||
|     nlp = English() | ||||
| def _get_docs(lang: str = "en"): | ||||
|     nlp = util.get_lang_class(lang)() | ||||
|     return list(nlp.pipe(_sentences())) | ||||
| 
 | ||||
| 
 | ||||
|  |  | |||
|  | @ -1,5 +1,4 @@ | |||
| from typing import Optional, List, Dict | ||||
| from timeit import default_timer as timer | ||||
| from wasabi import Printer | ||||
| from pathlib import Path | ||||
| import re | ||||
|  |  | |||
|  | @ -1,7 +1,6 @@ | |||
| from typing import Optional | ||||
| from pathlib import Path | ||||
| from wasabi import msg | ||||
| import tqdm | ||||
| import re | ||||
| import shutil | ||||
| import requests | ||||
|  |  | |||
|  | @ -1,14 +1,8 @@ | |||
| from .corpus import Corpus | ||||
| from .example import Example | ||||
| from .align import Alignment | ||||
| 
 | ||||
| from .iob_utils import iob_to_biluo, biluo_to_iob | ||||
| from .iob_utils import biluo_tags_from_offsets, offsets_from_biluo_tags | ||||
| from .iob_utils import spans_from_biluo_tags | ||||
| from .iob_utils import tags_to_entities | ||||
| 
 | ||||
| from .gold_io import docs_to_json | ||||
| from .gold_io import read_json_file | ||||
| 
 | ||||
| 
 | ||||
| from .batchers import minibatch_by_padded_size, minibatch_by_words | ||||
| from .corpus import Corpus  # noqa: F401 | ||||
| from .example import Example  # noqa: F401 | ||||
| from .align import Alignment  # noqa: F401 | ||||
| from .iob_utils import iob_to_biluo, biluo_to_iob  # noqa: F401 | ||||
| from .iob_utils import biluo_tags_from_offsets, offsets_from_biluo_tags  # noqa: F401 | ||||
| from .iob_utils import spans_from_biluo_tags, tags_to_entities  # noqa: F401 | ||||
| from .gold_io import docs_to_json, read_json_file  # noqa: F401 | ||||
| from .batchers import minibatch_by_padded_size, minibatch_by_words  # noqa: F401 | ||||
|  |  | |||
|  | @ -3,7 +3,6 @@ from typing import Optional, Any | |||
| from functools import partial | ||||
| import itertools | ||||
| 
 | ||||
| from .example import Example | ||||
| from ..util import registry, minibatch | ||||
| 
 | ||||
| 
 | ||||
|  | @ -41,16 +40,13 @@ def configure_minibatch_by_words( | |||
| ) -> BatcherT: | ||||
|     optionals = {"get_length": get_length} if get_length is not None else {} | ||||
|     return partial( | ||||
|         minibatch_by_words, | ||||
|         size=size, | ||||
|         discard_oversize=discard_oversize, | ||||
|         **optionals | ||||
|         minibatch_by_words, size=size, discard_oversize=discard_oversize, **optionals | ||||
|     ) | ||||
| 
 | ||||
| 
 | ||||
| @registry.batchers("batch_by_sequence.v1") | ||||
| def configure_minibatch(size: Sizing, get_length=None) -> BatcherT: | ||||
|     optionals = ({"get_length": get_length} if get_length is not None else {}) | ||||
|     optionals = {"get_length": get_length} if get_length is not None else {} | ||||
|     return partial(minibatch, size=size, **optionals) | ||||
| 
 | ||||
| 
 | ||||
|  |  | |||
|  | @ -1,4 +1,4 @@ | |||
| from .iob2docs import iob2docs  # noqa: F401 | ||||
| from .conll_ner2docs import conll_ner2docs  # noqa: F401 | ||||
| from .json2docs import json2docs | ||||
| from .json2docs import json2docs  # noqa: F401 | ||||
| from .conllu2docs import conllu2docs  # noqa: F401 | ||||
|  |  | |||
|  | @ -1,6 +1,5 @@ | |||
| from typing import Union, List, Iterable, Iterator, TYPE_CHECKING, Callable, Tuple | ||||
| from typing import Union, List, Iterable, Iterator, TYPE_CHECKING, Callable | ||||
| from pathlib import Path | ||||
| import random | ||||
| 
 | ||||
| from .. import util | ||||
| from .example import Example | ||||
|  | @ -39,7 +38,12 @@ class Corpus: | |||
|     """ | ||||
| 
 | ||||
|     def __init__( | ||||
|         self, path, *, limit: int = 0, gold_preproc: bool = False, max_length: bool = False, | ||||
|         self, | ||||
|         path, | ||||
|         *, | ||||
|         limit: int = 0, | ||||
|         gold_preproc: bool = False, | ||||
|         max_length: bool = False, | ||||
|     ) -> None: | ||||
|         self.path = util.ensure_path(path) | ||||
|         self.gold_preproc = gold_preproc | ||||
|  |  | |||
|  | @ -80,7 +80,7 @@ def _get_transition_table( | |||
|     B_start, B_end = (0, n_labels) | ||||
|     I_start, I_end = (B_end, B_end + n_labels) | ||||
|     L_start, L_end = (I_end, I_end + n_labels) | ||||
|     U_start, _ = (L_end, L_end + n_labels) | ||||
|     U_start, _ = (L_end, L_end + n_labels)  # noqa: F841 | ||||
|     # Using ranges allows us to set specific cells, which is necessary to express | ||||
|     # that only actions of the same label are valid continuations. | ||||
|     B_range = numpy.arange(B_start, B_end) | ||||
|  |  | |||
|  | @ -17,9 +17,7 @@ MatcherPatternType = List[Dict[Union[int, str], Any]] | |||
| AttributeRulerPatternType = Dict[str, Union[MatcherPatternType, Dict, int]] | ||||
| 
 | ||||
| 
 | ||||
| @Language.factory( | ||||
|     "attribute_ruler", | ||||
| ) | ||||
| @Language.factory("attribute_ruler") | ||||
| def make_attribute_ruler( | ||||
|     nlp: Language, | ||||
|     name: str, | ||||
|  | @ -58,7 +56,7 @@ class AttributeRuler(Pipe): | |||
|         self.vocab = vocab | ||||
|         self.matcher = Matcher(self.vocab) | ||||
|         self.attrs = [] | ||||
|         self._attrs_unnormed = [] # store for reference | ||||
|         self._attrs_unnormed = []  # store for reference | ||||
|         self.indices = [] | ||||
| 
 | ||||
|         if pattern_dicts: | ||||
|  |  | |||
|  | @ -1,17 +1,23 @@ | |||
| from typing import Dict, List, Union, Optional, Sequence, Any, Callable, Type | ||||
| from typing import Iterable, TypeVar | ||||
| from typing import Iterable, TypeVar, TYPE_CHECKING | ||||
| from enum import Enum | ||||
| from pydantic import BaseModel, Field, ValidationError, validator | ||||
| from pydantic import StrictStr, StrictInt, StrictFloat, StrictBool | ||||
| from pydantic import root_validator | ||||
| from collections import defaultdict | ||||
| from thinc.api import Optimizer | ||||
| from pathlib import Path | ||||
| 
 | ||||
| from .attrs import NAMES | ||||
| 
 | ||||
| if TYPE_CHECKING: | ||||
|     # This lets us add type hints for mypy etc. without causing circular imports | ||||
|     from .language import Language  # noqa: F401 | ||||
|     from .gold import Example  # noqa: F401 | ||||
| 
 | ||||
| 
 | ||||
| ItemT = TypeVar("ItemT") | ||||
| Batcher = Callable[[Iterable[ItemT]], Iterable[List[ItemT]]] | ||||
| Reader = Callable[["Language", str], Iterable["Example"]] | ||||
| 
 | ||||
| 
 | ||||
| def validate(schema: Type[BaseModel], obj: Dict[str, Any]) -> List[str]: | ||||
|  | @ -183,7 +189,6 @@ class ModelMetaSchema(BaseModel): | |||
| # check that against this schema in the test suite to make sure it's always | ||||
| # up to date. | ||||
| 
 | ||||
| Reader = Callable[["Language", str], Iterable["Example"]] | ||||
| 
 | ||||
| class ConfigSchemaTraining(BaseModel): | ||||
|     # fmt: off | ||||
|  | @ -209,7 +214,6 @@ class ConfigSchemaTraining(BaseModel): | |||
|         extra = "forbid" | ||||
|         arbitrary_types_allowed = True | ||||
| 
 | ||||
| #eval_batch_size: StrictInt = Field(..., title="Evaluation batch size") | ||||
| 
 | ||||
| class ConfigSchemaNlp(BaseModel): | ||||
|     # fmt: off | ||||
|  |  | |||
|  | @ -291,6 +291,6 @@ def test_span_boundaries(doc): | |||
|     for i in range(start, end): | ||||
|         assert span[i - start] == doc[i] | ||||
|     with pytest.raises(IndexError): | ||||
|         _ = span[-5] | ||||
|         span[-5] | ||||
|     with pytest.raises(IndexError): | ||||
|         _ = span[5] | ||||
|         span[5] | ||||
|  |  | |||
|  | @ -29,9 +29,7 @@ def test_zh_tokenizer_serialize_jieba(zh_tokenizer_jieba): | |||
| def test_zh_tokenizer_serialize_pkuseg_with_processors(zh_tokenizer_pkuseg): | ||||
|     nlp = Chinese( | ||||
|         meta={ | ||||
|             "tokenizer": { | ||||
|                 "config": {"segmenter": "pkuseg", "pkuseg_model": "medicine",} | ||||
|             } | ||||
|             "tokenizer": {"config": {"segmenter": "pkuseg", "pkuseg_model": "medicine"}} | ||||
|         } | ||||
|     ) | ||||
|     zh_tokenizer_serialize(nlp.tokenizer) | ||||
|  |  | |||
|  | @ -21,7 +21,7 @@ re_pattern5 = "B*A*B" | |||
| longest1 = "A A A A A" | ||||
| longest2 = "A A A A A" | ||||
| longest3 = "A A" | ||||
| longest4 = "B A A A A A B"      # "FIRST" would be "B B" | ||||
| longest4 = "B A A A A A B"  # "FIRST" would be "B B" | ||||
| longest5 = "B B A A A A A B" | ||||
| 
 | ||||
| 
 | ||||
|  |  | |||
|  | @ -1,6 +1,6 @@ | |||
| import pytest | ||||
| from spacy.pipeline._parser_internals.nonproj import ancestors, contains_cycle, is_nonproj_arc | ||||
| from spacy.pipeline._parser_internals.nonproj import is_nonproj_tree | ||||
| from spacy.pipeline._parser_internals.nonproj import ancestors, contains_cycle | ||||
| from spacy.pipeline._parser_internals.nonproj import is_nonproj_tree, is_nonproj_arc | ||||
| from spacy.pipeline._parser_internals import nonproj | ||||
| 
 | ||||
| from ..util import get_doc | ||||
|  |  | |||
|  | @ -75,19 +75,18 @@ def test_attributeruler_init(nlp, pattern_dicts): | |||
| 
 | ||||
| def test_attributeruler_init_patterns(nlp, pattern_dicts): | ||||
|     # initialize with patterns | ||||
|     a = nlp.add_pipe("attribute_ruler", config={"pattern_dicts": pattern_dicts}) | ||||
| 
 | ||||
|     nlp.add_pipe("attribute_ruler", config={"pattern_dicts": pattern_dicts}) | ||||
|     doc = nlp("This is a test.") | ||||
|     assert doc[2].lemma_ == "the" | ||||
|     assert doc[2].morph_ == "Case=Nom|Number=Plur" | ||||
|     assert doc[3].lemma_ == "cat" | ||||
|     assert doc[3].morph_ == "Case=Nom|Number=Sing" | ||||
| 
 | ||||
|     nlp.remove_pipe("attribute_ruler") | ||||
| 
 | ||||
|     # initialize with patterns from asset | ||||
|     a = nlp.add_pipe("attribute_ruler", config={"pattern_dicts": {"@assets": "attribute_ruler_patterns"}}) | ||||
| 
 | ||||
|     nlp.add_pipe( | ||||
|         "attribute_ruler", | ||||
|         config={"pattern_dicts": {"@assets": "attribute_ruler_patterns"}}, | ||||
|     ) | ||||
|     doc = nlp("This is a test.") | ||||
|     assert doc[2].lemma_ == "the" | ||||
|     assert doc[2].morph_ == "Case=Nom|Number=Plur" | ||||
|  |  | |||
|  | @ -117,12 +117,15 @@ def test_kb_default(nlp): | |||
|     assert len(entity_linker.kb) == 0 | ||||
|     assert entity_linker.kb.get_size_entities() == 0 | ||||
|     assert entity_linker.kb.get_size_aliases() == 0 | ||||
|     assert entity_linker.kb.entity_vector_length == 64    # default value from pipeline.entity_linker | ||||
|     # default value from pipeline.entity_linker | ||||
|     assert entity_linker.kb.entity_vector_length == 64 | ||||
| 
 | ||||
| 
 | ||||
| def test_kb_custom_length(nlp): | ||||
|     """Test that the default (empty) KB can be configured with a custom entity length""" | ||||
|     entity_linker = nlp.add_pipe("entity_linker", config={"kb": {"entity_vector_length": 35}}) | ||||
|     entity_linker = nlp.add_pipe( | ||||
|         "entity_linker", config={"kb": {"entity_vector_length": 35}} | ||||
|     ) | ||||
|     assert len(entity_linker.kb) == 0 | ||||
|     assert entity_linker.kb.get_size_entities() == 0 | ||||
|     assert entity_linker.kb.get_size_aliases() == 0 | ||||
|  |  | |||
|  | @ -117,9 +117,7 @@ def test_overfitting_IO(): | |||
|         assert cats2["POSITIVE"] + cats2["NEGATIVE"] == pytest.approx(1.0, 0.1) | ||||
| 
 | ||||
|     # Test scoring | ||||
|     scores = nlp.evaluate( | ||||
|         train_examples, scorer_cfg={"positive_label": "POSITIVE"} | ||||
|     ) | ||||
|     scores = nlp.evaluate(train_examples, scorer_cfg={"positive_label": "POSITIVE"}) | ||||
|     assert scores["cats_f"] == 1.0 | ||||
|     assert scores["cats_score"] == 1.0 | ||||
|     assert "cats_score_desc" in scores | ||||
|  |  | |||
|  | @ -88,14 +88,9 @@ def my_parser(): | |||
|             width=321, | ||||
|             rows=5432, | ||||
|             also_embed_subwords=True, | ||||
|             also_use_static_vectors=False | ||||
|             also_use_static_vectors=False, | ||||
|         ), | ||||
|         MaxoutWindowEncoder( | ||||
|             width=321, | ||||
|             window_size=3, | ||||
|             maxout_pieces=4, | ||||
|             depth=2 | ||||
|         ) | ||||
|         MaxoutWindowEncoder(width=321, window_size=3, maxout_pieces=4, depth=2), | ||||
|     ) | ||||
|     parser = build_tb_parser_model( | ||||
|         tok2vec=tok2vec, nr_feature_tokens=7, hidden_width=65, maxout_pieces=5 | ||||
|  |  | |||
|  | @ -1,5 +1,4 @@ | |||
| import spacy | ||||
| import pytest | ||||
| from spacy.lang.en import English | ||||
| from spacy.tokens import Doc, DocBin | ||||
| 
 | ||||
|  |  | |||
|  | @ -711,16 +711,18 @@ def test_alignment_different_texts(): | |||
|     with pytest.raises(ValueError): | ||||
|         Alignment.from_strings(other_tokens, spacy_tokens) | ||||
| 
 | ||||
| 
 | ||||
| def test_retokenized_docs(doc): | ||||
|     a = doc.to_array(["TAG"]) | ||||
|     doc1 = Doc(doc.vocab, words=[t.text for t in doc]).from_array(["TAG"], a) | ||||
|     doc2 = Doc(doc.vocab, words=[t.text for t in doc]).from_array(["TAG"], a) | ||||
|     example = Example(doc1, doc2) | ||||
| 
 | ||||
|     assert example.get_aligned("ORTH", as_string=True) == ['Sarah', "'s", 'sister', 'flew', 'to', 'Silicon', 'Valley', 'via', 'London', '.'] | ||||
| 
 | ||||
|     # fmt: off | ||||
|     expected1 = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."] | ||||
|     expected2 = [None, "sister", "flew", "to", None, "via", "London", "."] | ||||
|     # fmt: on | ||||
|     assert example.get_aligned("ORTH", as_string=True) == expected1 | ||||
|     with doc1.retokenize() as retokenizer: | ||||
|         retokenizer.merge(doc1[0:2]) | ||||
|         retokenizer.merge(doc1[5:7]) | ||||
| 
 | ||||
|     assert example.get_aligned("ORTH", as_string=True) == [None, 'sister', 'flew', 'to', None, 'via', 'London', '.'] | ||||
|     assert example.get_aligned("ORTH", as_string=True) == expected2 | ||||
|  |  | |||
|  | @ -24,6 +24,7 @@ def get_textcat_kwargs(): | |||
|         "nO": 7, | ||||
|     } | ||||
| 
 | ||||
| 
 | ||||
| def get_textcat_cnn_kwargs(): | ||||
|     return { | ||||
|         "tok2vec": test_tok2vec(), | ||||
|  | @ -31,6 +32,7 @@ def get_textcat_cnn_kwargs(): | |||
|         "nO": 13, | ||||
|     } | ||||
| 
 | ||||
| 
 | ||||
| def get_all_params(model): | ||||
|     params = [] | ||||
|     for node in model.walk(): | ||||
|  | @ -59,17 +61,11 @@ def get_tok2vec_kwargs(): | |||
|     # This actually creates models, so seems best to put it in a function. | ||||
|     return { | ||||
|         "embed": MultiHashEmbed( | ||||
|             width=32, | ||||
|             rows=500, | ||||
|             also_embed_subwords=True, | ||||
|             also_use_static_vectors=False | ||||
|             width=32, rows=500, also_embed_subwords=True, also_use_static_vectors=False | ||||
|         ), | ||||
|         "encode": MaxoutWindowEncoder( | ||||
|             width=32, | ||||
|             depth=2, | ||||
|             maxout_pieces=2, | ||||
|             window_size=1, | ||||
|         ) | ||||
|             width=32, depth=2, maxout_pieces=2, window_size=1, | ||||
|         ), | ||||
|     } | ||||
| 
 | ||||
| 
 | ||||
|  |  | |||
|  | @ -19,14 +19,9 @@ def test_empty_doc(): | |||
|             width=width, | ||||
|             rows=embed_size, | ||||
|             also_use_static_vectors=False, | ||||
|             also_embed_subwords=True | ||||
|             also_embed_subwords=True, | ||||
|         ), | ||||
|         MaxoutWindowEncoder( | ||||
|             width=width, | ||||
|             depth=4, | ||||
|             window_size=1, | ||||
|             maxout_pieces=3 | ||||
|         ) | ||||
|         MaxoutWindowEncoder(width=width, depth=4, window_size=1, maxout_pieces=3), | ||||
|     ) | ||||
|     tok2vec.initialize() | ||||
|     vectors, backprop = tok2vec.begin_update([doc]) | ||||
|  | @ -44,14 +39,9 @@ def test_tok2vec_batch_sizes(batch_size, width, embed_size): | |||
|             width=width, | ||||
|             rows=embed_size, | ||||
|             also_use_static_vectors=False, | ||||
|             also_embed_subwords=True | ||||
|             also_embed_subwords=True, | ||||
|         ), | ||||
|         MaxoutWindowEncoder( | ||||
|             width=width, | ||||
|             depth=4, | ||||
|             window_size=1, | ||||
|             maxout_pieces=3, | ||||
|         ) | ||||
|         MaxoutWindowEncoder(width=width, depth=4, window_size=1, maxout_pieces=3,), | ||||
|     ) | ||||
|     tok2vec.initialize() | ||||
|     vectors, backprop = tok2vec.begin_update(batch) | ||||
|  |  | |||
|  | @ -85,27 +85,24 @@ def test_util_dot_section(): | |||
|     """ | ||||
|     nlp_config = Config().from_str(cfg_string) | ||||
|     en_nlp, en_config = util.load_model_from_config(nlp_config, auto_fill=True) | ||||
| 
 | ||||
|     default_config = Config().from_disk(DEFAULT_CONFIG_PATH) | ||||
|     default_config["nlp"]["lang"] = "nl" | ||||
|     nl_nlp, nl_config = util.load_model_from_config(default_config, auto_fill=True) | ||||
| 
 | ||||
|     # Test that creation went OK | ||||
|     assert isinstance(en_nlp, English) | ||||
|     assert isinstance(nl_nlp, Dutch) | ||||
|     assert nl_nlp.pipe_names == [] | ||||
|     assert en_nlp.pipe_names == ["textcat"] | ||||
|     assert en_nlp.get_pipe("textcat").model.attrs["multi_label"] == False   # not exclusive_classes | ||||
| 
 | ||||
|     # not exclusive_classes | ||||
|     assert en_nlp.get_pipe("textcat").model.attrs["multi_label"] is False | ||||
|     # Test that default values got overwritten | ||||
|     assert not en_config["nlp"]["load_vocab_data"] | ||||
|     assert nl_config["nlp"]["load_vocab_data"]  # default value True | ||||
| 
 | ||||
|     # Test proper functioning of 'dot_to_object' | ||||
|     with pytest.raises(KeyError): | ||||
|         obj = dot_to_object(en_config, "nlp.pipeline.tagger") | ||||
|         dot_to_object(en_config, "nlp.pipeline.tagger") | ||||
|     with pytest.raises(KeyError): | ||||
|         obj = dot_to_object(en_config, "nlp.unknownattribute") | ||||
|         dot_to_object(en_config, "nlp.unknownattribute") | ||||
|     assert not dot_to_object(en_config, "nlp.load_vocab_data") | ||||
|     assert dot_to_object(nl_config, "nlp.load_vocab_data") | ||||
|     assert isinstance(dot_to_object(nl_config, "training.optimizer"), Optimizer) | ||||
|  |  | |||
|  | @ -1,5 +1,5 @@ | |||
| from typing import List, Union, Dict, Any, Optional, Iterable, Callable, Tuple | ||||
| from typing import Iterator, Type, Pattern, Sequence, TYPE_CHECKING | ||||
| from typing import Iterator, Type, Pattern, TYPE_CHECKING | ||||
| from types import ModuleType | ||||
| import os | ||||
| import importlib | ||||
|  | @ -764,7 +764,6 @@ def normalize_slice( | |||
|     return start, stop | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| def filter_spans(spans: Iterable["Span"]) -> List["Span"]: | ||||
|     """Filter a sequence of spans and remove duplicates or overlaps. Useful for | ||||
|     creating named entities (where one token can only be part of one entity) or | ||||
|  | @ -1113,6 +1112,3 @@ def minibatch(items, size): | |||
|         if len(batch) == 0: | ||||
|             break | ||||
|         yield list(batch) | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue
	
	Block a user