mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-19 20:52:23 +03:00
Add util functions for wl-coref
This commit is contained in:
parent
dfec6993d6
commit
e6917d8dc4
163
spacy/ml/models/coref_util_wl.py
Normal file
163
spacy/ml/models/coref_util_wl.py
Normal file
|
@ -0,0 +1,163 @@
|
||||||
|
""" Contains functions not directly linked to coreference resolution """
|
||||||
|
|
||||||
|
from typing import List, Set, Dict, Tuple
|
||||||
|
from thinc.types import Ints1d
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from ...tokens import Doc
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
EPSILON = 1e-7
|
||||||
|
|
||||||
|
class GraphNode:
|
||||||
|
def __init__(self, node_id: int):
|
||||||
|
self.id = node_id
|
||||||
|
self.links: Set[GraphNode] = set()
|
||||||
|
self.visited = False
|
||||||
|
|
||||||
|
def link(self, another: "GraphNode"):
|
||||||
|
self.links.add(another)
|
||||||
|
another.links.add(self)
|
||||||
|
|
||||||
|
def __repr__(self) -> str:
|
||||||
|
return str(self.id)
|
||||||
|
|
||||||
|
|
||||||
|
def add_dummy(tensor: torch.Tensor, eps: bool = False):
|
||||||
|
""" Prepends zeros (or a very small value if eps is True)
|
||||||
|
to the first (not zeroth) dimension of tensor.
|
||||||
|
"""
|
||||||
|
kwargs = dict(device=tensor.device, dtype=tensor.dtype)
|
||||||
|
shape: List[int] = list(tensor.shape)
|
||||||
|
shape[1] = 1
|
||||||
|
if not eps:
|
||||||
|
dummy = torch.zeros(shape, **kwargs) # type: ignore
|
||||||
|
else:
|
||||||
|
dummy = torch.full(shape, EPSILON, **kwargs) # type: ignore
|
||||||
|
output = torch.cat((dummy, tensor), dim=1)
|
||||||
|
return output
|
||||||
|
|
||||||
|
def make_head_only_clusters(examples):
|
||||||
|
"""Replace coref clusters with head-only clusters.
|
||||||
|
|
||||||
|
This destructively modifies the docs.
|
||||||
|
"""
|
||||||
|
|
||||||
|
#TODO what if all clusters are eliminated?
|
||||||
|
for eg in examples:
|
||||||
|
final = [] # save out clusters here
|
||||||
|
for key, sg in eg.reference.spans.items():
|
||||||
|
if not key.startswith("coref_clusters_"):
|
||||||
|
continue
|
||||||
|
|
||||||
|
heads = [span.root.i for span in sg]
|
||||||
|
heads = list(set(heads))
|
||||||
|
head_spans = [eg.reference[hh:hh+1] for hh in heads]
|
||||||
|
if len(heads) > 1:
|
||||||
|
final.append(head_spans)
|
||||||
|
|
||||||
|
# now delete the existing clusters
|
||||||
|
keys = list(eg.reference.spans.keys())
|
||||||
|
for key in keys:
|
||||||
|
if not key.startswith("coref_clusters_"):
|
||||||
|
continue
|
||||||
|
|
||||||
|
del eg.reference.spans[key]
|
||||||
|
|
||||||
|
# now add the new spangroups
|
||||||
|
for ii, spans in enumerate(final):
|
||||||
|
#TODO support alternate keys
|
||||||
|
eg.reference.spans[f"coref_clusters_{ii}"] = spans
|
||||||
|
|
||||||
|
# TODO replace with spaCy config
|
||||||
|
@dataclass
|
||||||
|
class CorefConfig: # pylint: disable=too-many-instance-attributes, too-few-public-methods
|
||||||
|
""" Contains values needed to set up the coreference model. """
|
||||||
|
section: str
|
||||||
|
|
||||||
|
data_dir: str
|
||||||
|
|
||||||
|
train_data: str
|
||||||
|
dev_data: str
|
||||||
|
test_data: str
|
||||||
|
|
||||||
|
device: str
|
||||||
|
|
||||||
|
bert_model: str
|
||||||
|
bert_window_size: int
|
||||||
|
|
||||||
|
embedding_size: int
|
||||||
|
sp_embedding_size: int
|
||||||
|
a_scoring_batch_size: int
|
||||||
|
hidden_size: int
|
||||||
|
n_hidden_layers: int
|
||||||
|
|
||||||
|
max_span_len: int
|
||||||
|
|
||||||
|
rough_k: int
|
||||||
|
|
||||||
|
bert_finetune: bool
|
||||||
|
bert_mini_finetune: bool
|
||||||
|
dropout_rate: float
|
||||||
|
learning_rate: float
|
||||||
|
bert_learning_rate: float
|
||||||
|
train_epochs: int
|
||||||
|
bce_loss_weight: float
|
||||||
|
|
||||||
|
tokenizer_kwargs: Dict[str, dict]
|
||||||
|
conll_log_dir: str
|
||||||
|
|
||||||
|
|
||||||
|
def get_sent_ids(doc):
|
||||||
|
sid = 0
|
||||||
|
sids = []
|
||||||
|
for sent in doc.sents:
|
||||||
|
for tok in sent:
|
||||||
|
sids.append(sid)
|
||||||
|
sid += 1
|
||||||
|
return sids
|
||||||
|
|
||||||
|
def get_cluster_ids(doc):
|
||||||
|
"""Get the cluster ids of head tokens."""
|
||||||
|
|
||||||
|
out = [0] * len(doc)
|
||||||
|
head_spangroups = [doc.spans[sk] for sk in doc.spans if sk.startswith("coref_word_clusters")]
|
||||||
|
for ii, group in enumerate(head_spangroups, start=1):
|
||||||
|
for span in group:
|
||||||
|
out[span[0].i] = ii
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
def get_head2span(doc):
|
||||||
|
out = []
|
||||||
|
for sk in doc.spans:
|
||||||
|
if not sk.startswith("coref_clusters"):
|
||||||
|
continue
|
||||||
|
|
||||||
|
if len(doc.spans[sk]) == 1:
|
||||||
|
print("===== UNARY MENTION ====")
|
||||||
|
|
||||||
|
for span in doc.spans[sk]:
|
||||||
|
out.append( (span.root.i, span.start, span.end) )
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
def doc2tensors(
|
||||||
|
xp,
|
||||||
|
doc: Doc
|
||||||
|
) -> Tuple[Ints1d, Ints1d, Ints1d, Ints1d, Ints1d]:
|
||||||
|
sent_ids = get_sent_ids(doc)
|
||||||
|
cluster_ids = get_cluster_ids(doc)
|
||||||
|
head2span = get_head2span(doc)
|
||||||
|
|
||||||
|
|
||||||
|
if not head2span:
|
||||||
|
heads, starts, ends = [], [], []
|
||||||
|
else:
|
||||||
|
heads, starts, ends = zip(*head2span)
|
||||||
|
sent_ids = xp.asarray(sent_ids)
|
||||||
|
cluster_ids = xp.asarray(cluster_ids)
|
||||||
|
heads = xp.asarray(heads)
|
||||||
|
starts = xp.asarray(starts)
|
||||||
|
ends = xp.asarray(ends) - 1
|
||||||
|
return sent_ids, cluster_ids, heads, starts, ends
|
Loading…
Reference in New Issue
Block a user