mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 18:06:29 +03:00
Update projects.md [ci skip]
This commit is contained in:
parent
743f7fb73a
commit
e6a6587a9a
|
@ -488,7 +488,8 @@ data for machine learning models, developed by us. It integrates with spaCy
|
||||||
out-of-the-box and provides many different
|
out-of-the-box and provides many different
|
||||||
[annotation recipes](https://prodi.gy/docs/recipes) for a variety of NLP tasks,
|
[annotation recipes](https://prodi.gy/docs/recipes) for a variety of NLP tasks,
|
||||||
with and without a model in the loop. If Prodigy is installed in your project,
|
with and without a model in the loop. If Prodigy is installed in your project,
|
||||||
you can
|
you can start the annotation server from your `project.yml` for a tight feedback
|
||||||
|
loop between data development and training.
|
||||||
|
|
||||||
The following example command starts the Prodigy app using the
|
The following example command starts the Prodigy app using the
|
||||||
[`ner.correct`](https://prodi.gy/docs/recipes#ner-correct) recipe and streams in
|
[`ner.correct`](https://prodi.gy/docs/recipes#ner-correct) recipe and streams in
|
||||||
|
@ -497,6 +498,12 @@ then correct the suggestions manually in the UI. After you save and exit the
|
||||||
server, the full dataset is exported in spaCy's format and split into a training
|
server, the full dataset is exported in spaCy's format and split into a training
|
||||||
and evaluation set.
|
and evaluation set.
|
||||||
|
|
||||||
|
> #### Example usage
|
||||||
|
>
|
||||||
|
> ```bash
|
||||||
|
> $ python -m spacy project run annotate
|
||||||
|
> ```
|
||||||
|
|
||||||
<!-- prettier-ignore -->
|
<!-- prettier-ignore -->
|
||||||
```yaml
|
```yaml
|
||||||
### project.yml
|
### project.yml
|
||||||
|
@ -509,7 +516,9 @@ commands:
|
||||||
- name: annotate
|
- name: annotate
|
||||||
- script:
|
- script:
|
||||||
- 'python -m prodigy ner.correct {PRODIGY_DATASET} ./assets/raw_data.jsonl {PRODIGY_MODEL} --labels {PRODIGY_LABELS}'
|
- 'python -m prodigy ner.correct {PRODIGY_DATASET} ./assets/raw_data.jsonl {PRODIGY_MODEL} --labels {PRODIGY_LABELS}'
|
||||||
- 'python -m prodigy data-to-spacy ./corpus/train.spacy ./corpus/eval.spacy --ner {PRODIGY_DATASET}'
|
- 'python -m prodigy data-to-spacy ./corpus/train.json ./corpus/eval.json --ner {PRODIGY_DATASET}'
|
||||||
|
- 'python -m spacy convert ./corpus/train.json ./corpus/train.spacy'
|
||||||
|
- 'python -m spacy convert ./corpus/eval.json ./corpus/eval.spacy'
|
||||||
- deps:
|
- deps:
|
||||||
- 'assets/raw_data.jsonl'
|
- 'assets/raw_data.jsonl'
|
||||||
- outputs:
|
- outputs:
|
||||||
|
@ -517,6 +526,15 @@ commands:
|
||||||
- 'corpus/eval.spacy'
|
- 'corpus/eval.spacy'
|
||||||
```
|
```
|
||||||
|
|
||||||
|
You can use the same approach for other types of projects and annotation
|
||||||
|
workflows, including
|
||||||
|
[text classification](https://prodi.gy/docs/recipes#textcat),
|
||||||
|
[dependency parsing](https://prodi.gy/docs/recipes#dep),
|
||||||
|
[part-of-speech tagging](https://prodi.gy/docs/recipes#pos) or fully
|
||||||
|
[custom recipes](https://prodi.gy/docs/custom-recipes) – for instance, an A/B
|
||||||
|
evaluation workflow that lets you compare two different models and their
|
||||||
|
results.
|
||||||
|
|
||||||
<Project id="integrations/prodigy">
|
<Project id="integrations/prodigy">
|
||||||
|
|
||||||
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus interdum
|
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus interdum
|
||||||
|
@ -567,6 +585,12 @@ MODELS = [name.strip() for name in sys.argv[1].split(",")]
|
||||||
spacy_streamlit.visualize(MODELS, DEFAULT_TEXT, visualizers=["ner"])
|
spacy_streamlit.visualize(MODELS, DEFAULT_TEXT, visualizers=["ner"])
|
||||||
```
|
```
|
||||||
|
|
||||||
|
> #### Example usage
|
||||||
|
>
|
||||||
|
> ```bash
|
||||||
|
> $ python -m spacy project run visualize
|
||||||
|
> ```
|
||||||
|
|
||||||
<!-- prettier-ignore -->
|
<!-- prettier-ignore -->
|
||||||
```yaml
|
```yaml
|
||||||
### project.yml
|
### project.yml
|
||||||
|
@ -591,7 +615,33 @@ mattis pretium.
|
||||||
|
|
||||||
### FastAPI {#fastapi} <IntegrationLogo name="fastapi" width={100} height="auto" align="right" />
|
### FastAPI {#fastapi} <IntegrationLogo name="fastapi" width={100} height="auto" align="right" />
|
||||||
|
|
||||||
<!-- TODO: come up with example – there's not much integration needed, but it'd be nice to show an example that addresses some of the main concerns for serving ML (workers etc.) -->
|
[FastAPI](https://fastapi.tiangolo.com/) is a modern high-performance framework
|
||||||
|
for building REST APIs with Python, based on Python
|
||||||
|
[type hints](https://fastapi.tiangolo.com/python-types/). It's become a popular
|
||||||
|
library for serving machine learning models and
|
||||||
|
|
||||||
|
```python
|
||||||
|
# TODO: show an example that addresses some of the main concerns for serving ML (workers etc.)
|
||||||
|
```
|
||||||
|
|
||||||
|
> #### Example usage
|
||||||
|
>
|
||||||
|
> ```bash
|
||||||
|
> $ python -m spacy project run visualize
|
||||||
|
> ```
|
||||||
|
|
||||||
|
<!-- prettier-ignore -->
|
||||||
|
```yaml
|
||||||
|
### project.yml
|
||||||
|
commands:
|
||||||
|
- name: serve
|
||||||
|
help: "Serve the trained model with FastAPI"
|
||||||
|
script:
|
||||||
|
- 'python ./scripts/serve.py ./training/model-best'
|
||||||
|
deps:
|
||||||
|
- 'training/model-best'
|
||||||
|
no_skip: true
|
||||||
|
```
|
||||||
|
|
||||||
<Project id="integrations/fastapi">
|
<Project id="integrations/fastapi">
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user